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Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/
Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled
by an electron of an energetically higher lying orbital and a secondary electron is instantaneously
emitted to the continuum. Whether or not such a process occurs depends both on the energetic acces-
sibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms.
We present a realization of the non-relativistically established FanoADC-Stieltjes method for the
description of autoionization decay widths including relativistic effects. This procedure, being based
on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and
implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to
other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in
spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ
this method to the Auger processes following the Kr3d−1, Xe4d−1, and Rn5d−1 ionization. Based on
the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths
of autoionization processes. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917255]

I. INTRODUCTION

Electronic vacancies in the sub-outer-valence orbital of
an atom or molecule created by radiation or radioactive decay
are excited systems. These excited systems can decay via mul-
tiple pathways like photon emission, coupling to vibrational
degrees of freedom or via electronic decay processes like the
Auger decay,1,2 or the manifold of Interatomic/Intermolecular
Coulombic Decay (ICD) processes,3,4 both being autoioniza-
tion processes. The latter can occur in small5–7 and large4,8–11

noble gas clusters, as well as clusters of molecules like
water,12–16 ammonia,17 or hydrogen fluoride3,18 after exposure
to synchrotron radiation, in enzymes of the human body,19

in the mechanisms of cancer drugs,20–25 and quantum dots in
semiconductors26 just to name a few examples.

Electronic decay processes in general can occur if two
criteria, the energy and the coupling criterion, are fulfilled. To
fulfill the energy criterion, the final state energy is required to
be lower than the energy of the singly ionized initial state. If
this is not the case, the channel defined by a certain doubly
ionized final state is closed and the corresponding fragments
of the channel are not observed after the decay. To fulfill the
coupling criterion, the decay process needs to be fast enough
to prevail over other energetically accessible decay pathways.
It hence contains the information whether an energetically
allowed process can be expected to be observed experimentally
or not. Therefore, a typical study of autoionization processes
consists of two parts.

a)Email: Elke.Fasshauer@uit.no

• Determination of the kinetic energy of the secondary
electron and, as a consequence, which decay channels
are open.

• Calculation of the decay width Γ = ~
τ

, which is propor-
tional to the decay rate 1

τ
and inversely proportional to

the lifetime τ.

Especially in systems containing heavy elements or initial
ionizations from the core region, relativistic effects play an
important role and cannot be neglected. Phenomenologically,
the relativistic effects can be divided into spin-orbit coupling
and scalar-relativistic effects. The spin-orbit coupling requires
the system to be described in terms of the total angular
momentum j rather than the orbital momentum l and the
spin momentum s. Thereby, the non-relativistically degenerate
states of one particular l value are split into two states with
j = l ± s of different energies.27 The scalar-relativistic effects
result in spatial contractions of the s and p orbitals and
decontraction of d and f orbitals.27

Spin-orbit coupling has been shown to cause a larger
number of distinguishable channels in ICD-like processes.28

At the same time, the influence of the spin-orbit splitting
using asymptotic formulas based on experimental data of
the atoms was investigated. The results showed only minor
deviations of the decay widths due to spin-orbit coupling in
the case of all channels being open. However, this approach
intrinsically includes scalar-relativistic effects, which are
automatically included in the experimental data used. In order
to investigate also the influence of scalar-relativistic effects and
to enable a relativistic description at short bond distances, the

0021-9606/2015/142(14)/144106/9/$30.00 142, 144106-1 © 2015 AIP Publishing LLC
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purpose of this paper is to present the ab initio relativistic
FanoADC-Stieltjes method for the determination of decay
widths. From our calculations, we gain further insights into
the influence of relativistic (mainly scalar-relativistic) effects
on Auger processes and from these, generalize our findings
for autoionization processes.

In both autoionization processes (Auger and ICD), the
initial vacancy is filled with an electron of higher energy and
the excess energy is transferred to another electron, which is
finally emitted. Hence, the final state is characterized by a
doubly charged system and an electron in the continuum. Our
subject of interest is mainly the ICD-like processes. However,
due to the similarity between the autoionization processes,
methods developed for the description of ICD-like processes
can also be applied to the Auger process, where more data
from theory and experiment are available for comparison.

In this work, we therefore focus on the atomic Auger
process as a model system in order to exploit basic knowledge
about the influence of relativistic effects. The Auger decay
process initiated by a photoionization can most generally be
described by

A
hν−−→ (A+)∗ + e−ph

Auger
−−−−−→ A2+ + e−ph + e−sec.

A system A is ionized, while the photo-electron e−ph is
emitted. Afterwards, the actual Auger process of the initial
state A+ can occur. An electron from an outer shell fills the
vacancy and the excess energy is instantaneously transferred
to another (secondary) electron e−sec, which is subsequently
emitted. The final state of the decay process is to be described
by a doubly charged atom A2+ and the secondary electron in
the continuum.

The initial and final state energies can be obtained using a
variety of quantum chemical approaches known in the litera-
ture as the Algebraic Diagrammatic Construction29–32 (ADC),
which is also available for a fully relativistic treatment.33–35

On the other hand, the evaluation of decay widths Γ is a
highly non-trivial problem. Analytically, it can be described
by the theories of Feshbach and Fano.36–38 However, this
theory naturally incorporates the description of both bound
and continuum states, which describe the initial and final
state, respectively. These different kinds of states satisfy
different boundary conditions, i.e., the boundary conditions
of bound states being of L2-type and the boundary conditions
of plane waves in case of the final state because of the freely
moving electron. Any approach will have to stick to either
L2-functions, plane waves or to combine these two in some
way connecting the bound with the continuum functions.
Either of these approaches faces difficulties in either describing
the bound or the continuum states or some artificially
constructed interface region.

It is most convenient to start from an L2-function
based approach, because most quantum chemical programs
are based on this kind of functions and hence the basic
ingredients necessary for a decay width calculation like
SCF and integral transformation are already available. The
quantum chemical methods, which have been used for non-
relativistic descriptions of the decay widths are the Wigner-
Weisskopf theory,39 CAP-CI (Complex Absorbing Potential

based on a Configuration Interaction wavefunction),6,40 CAP-
ADC,41 CAP/EOM-CCSD (Equation of Motion Coupled
Cluster with Singles and Doubles)42 and the FanoADC-
Stieltjes method.43 While the CAP-based methods have the
most sound formal basis of the methods above, they suffer from
wrong densities and populations for many-particle systems
and are computationally expensive at the same time. In contrast
to this, the Wigner-Weisskopf theory is based on the lowest
non-vanishing order of perturbation theory and therefore
computationally affordable even for large systems. However,
the price for the lower computational costs is less accurate
results. A compromise between accuracy and computational
cost is the FanoADC-Stieltjes approach, which is based on the
ADC and therefore includes higher perturbational orders and
is size-consistent. For these reasons, the FanoADC-Stieltjes
method was implemented in the relativistic quantum chemical
program package Dirac.44 We present first results obtained
with the relativistic FanoADC-Stieltjes method in this work.

So far, relativistic decay widths were calculated using
Multichannel Multi-Configurational Dirac-Fock (MMCDF).45

However, this approach does not only highly depend on
manual selection of CI (Configuration Interaction) compo-
nents to be included in the description of initial and final state,
it moreover is not capable of describing systems with less
than spherical symmetry. This reduces the applicability of the
method to atomic Auger processes, but allows us to compare
our results obtained with the relativistic FanoADC-Stieltjes
method for exactly this special case.

Based on the results for the Auger process following the
(n − 1)d−1 ionization of the noble gases krypton, xenon, and
radon, we are going to show the importance of including
relativistic effects into decay width calculations based on
comparisons of four-component Dirac-Coulomb (including
spin-orbit coupling and scalar-relativistic effects), scalar-
relativistic, and non-relativistic results.

The paper is structured as follows: in Sec. II, we explain
the physical definition of the decay widths and the three com-
pounds of the FanoADC-Stieltjes method: ADC, FanoADC,
and Stieltjes imaging. We then give the computational details
for our ab initio calculations in Sec. III and present our results
for the Auger process after an initial ionization of the (n − 1)d
of krypton, xenon, and radon. We discuss the influence of
relativistic effects on the decay widths of autoionization
processes in Sec. IV. We then draw conclusions in Sec. V.

II. THEORY

Following Wentzel46 and later Feshbach36,38 and Fano,37

the decay width of a decay process initiated by a primary
ionization is given by

Γ =

β

2π
�⟨Φ|V̂ | χβ,ε⟩�2 . (1)

Here, |Φ⟩ and | χβ,ε⟩ denote the initial and final state,
respectively. V̂ is the interaction operator of the initial and
final states, which in Feshbach’s definitions is known as
HPQ. The index β counts the different decay channels and
ε denotes the energy of the final state. Equation (1) thereby
connects the metastable initial and the continuum final states.
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They are constructed by partitioning the Hamiltonian into two
subspaces. The initial (final) state is then an eigenfunction
of this initial (final) state sub-space Hamiltonian. However,
finding proper solutions to both the initial and the final states
on an equal footing is a non-trivial task, because they adhere
to different boundary conditions. Since the final state depends
on the energy of the emitted electron, any approach needs
to either determine the continuum state or to mimic the final
state using L2-functions. While the continuum functions are
normalized with respect to their energy,

⟨χε | χε′⟩ = δ(ε − ε′), (2)

the L2 approach is based on a discrete set of final states
| χ̃Ẽ⟩ which adhere to different boundary conditions and are
normalized with respect to space (see, e.g., Ref. 47),

⟨ χ̃Ẽi
| χ̃Ẽ j

⟩ = δi j . (3)

Because of this different normalization, the decay widths
are not amenable to a direct calculation. As first proposed by
Hazi,48 for autoionization processes such difficulties can be
solved by using the Stieltjes-Chebyshev moment theory also
called Stieltjes imaging.49–51 It relies on the observation that
the moments of the projected final state Hamiltonian H f ,

µk = ⟨Φ|V̂ Hk
f V̂ |Φ⟩, (4)

calculated from the determined discrete pseudo-spectrum are
good approximations to the moments determined from the
real continuum states. This can be shown by inserting the
resolution of identity for the continuum states

µk =

i

εki
�⟨Φ|V̂ | χi,ε⟩�2 +

 ∞

Ethr

εk
�⟨Φ|V̂ | χε⟩�2 dε. (5)

Since the non-zero contribution to the coupling matrix
elements in the Feshbach-Fano approach stems only from
an interaction region of finite size, where the L2 final
state functions are nonvanishing, we may replace the expan-
sion


i
| χi,ε⟩ ⟨χi,ε | +


dε| χε⟩ ⟨χε | by its L2 approximation

j
| χ̃Ẽ j

⟩ ⟨ χ̃Ẽ j
| (see Ref. 52),

µk ≈

j

Ẽk
j
���⟨Φ|V̂ | χ̃Ẽ j

⟩���
2
. (6)

Then the decay width can be determined through a series
of consecutive approximations to the moments of increasing
order k.

To achieve this kind of description, we choose the
non-relativistic FanoADC-Stieltjes approach, described in
Secs. II A–II C. Here, the ADC is used for the description
of the initial and final states and the resulting discrete pseudo-
spectrum is then subject to a Stieltjes imaging procedure. An
exhaustive description of the method can be found in Ref. 53.

A. ADC

The ADC is a Green’s function approach, which is a
method for the calculation of ionization energies and electron
affinities. Its advantage is the ability to determine the desired
ionization energies without explicit calculation of the initial
and final states, but instead obtaining their energy differences

directly. Moreover, this approach is size-consistent and is
hence suitable for the description of larger systems.32

Originally, the Green’s function was formulated in the
Dyson ansatz and determined using perturbation theory.29,54

This way, both the ionization and the electron affinity part had
to be included in the description. In the non-Dyson scheme,
those two are separable and hence, the dimension of the
problem is reduced when one is interested in either the N + 1
(electron affinity) or the N − 1 (ionization energy) part31

Gpq(ω) = G+pq(ω) + G−pq(ω). (7)

The ionization part G−pq(ω) is a function of the ionization
energies ω and is transposed to give G̃−pq(ω) = G−qp(ω). It can
be cast to the compact and orthogonal form

G̃−(ω) = x†(ω1 −Ω)−1x, (8)

where x are the spectroscopic amplitudes andΩ is the diagonal
matrix of energy eigenvalues. This diagonal representation can
be reformulated using so-called intermediate states (IS),30

G̃−(ω) = f†(ω1 −M)−1f. (9)

Here, M denotes the ADC matrix and f denotes the
effective transition moments.

By inspection of both Eqs. (8) and (9), the ionization
energies are poles of G̃−(ω), which can be determined by
solving the eigenvalue problem

MY = YΩ, with Y†Y = 1. (10)

The spectroscopic amplitudes x can then be obtained from
the effective transition moments f as

x = Y†f. (11)

To this point, the approach is exact. For the actual
construction of the ADC matrix M and the effective transitions
moments f, both are expanded into orders of perturbations
based on the Møller-Plesset partitioned Hamiltonian,

M =M(0) +M(1) +M(2) + · · ·, (12)

f = f(0) + f(1) + f(2) + · · ·. (13)

From these, different orders of perturbation theory of
the Hamiltonian can be constructed successively in terms
of correlated N − 1 particle states (1h, 2h1p, . . . ). Hereby,
the truncation after the n-th order leads to ADC(n). The
contributions to the different classes for different orders of
ADC are shown in Figure 1.55

The matrix elements of ADC(2x) are explicitly given by

• 1h/1h (1h block):

M (0)
kk′ = εkδkk′, (14)

M (1)
kk′ = 0, (15)

M (2)
kk′ = −

1
2


abl

Vab[kl]Vk′l[ab]

×
εa + εb − εl − 1

2εk −
1
2εk′

(εa + εb − εk − εl)(εa + εb − εk′ − εl) .
(16)
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FIG. 1. Schematic illustration of an ADC(n) matrix for different orders of
perturbation for n = 0,1,2,2x,3. In the illustration, the respective highest
order contribution is shown for the different blocks. Hence, ADC(2x) is an
extended ADC(2) including first order contributions to the satellite block.

• 1h/2h1p (coupling block):

M (1)
j,akl
= Vkl[a j]. (17)

• 2h1p/2h1p (satellite block):

M (0)
akl,a′k′l′ = (−εa + εk + εl) δaa′δkk′δll′, (18)

M (1)
akl,a′k′l′ = −δaa′Vk′l′[kl] + δkk′Val′[a′l]

+ δll′Vak′[a′k] − (k ↔ l). (19)

Here, εr denotes the r-th Hartree Fock orbital energy. The
occupied states are labelled by i, j, k, . . . and the unoccupied
states are labelled by a,b,c, . . .. The two-electron integrals for
any combination of occupied and unoccupied orbitals labelled
by p,q,r, s read as

Vpqr s = ⟨ϕp(1)ϕq(2)|V (1,2)|ϕr(1)ϕs(2)⟩ (20)

and Vpq[r s] = Vpqr s − Vpqsr .
These equations can also be used in the relativistic

case based on Dirac-Hartree-Fock orbital energies as well
as integrals33,34 and using the no-pair approximation (see,
e.g., Ref. 27). This approximation ensures that pair creation
processes are excluded from the calculation by allowing
annihilation and creation operators cp and c†q in the spectral
representation

G−pq(ω) =


n∈{N−1}

⟨ΨN
0 |c†q |ΨN−1

n ⟩⟨ΨN−1
n |cp |ΨN−1

0 ⟩
ω + EN−1

n − EN
0 − iη

(21)

of Eq. (7) to operate on the space of positive energy solutions
only. Since energies high enough to overcome the gap of
2mc2 are hardly achieved in chemistry, this approximation
is reasonable.

B. FanoADC

In the FanoADC, the discrete ADC Hamiltonian is used
for the construction of the pseudo-spectrum of the total decay
width Γ. Due to multiple possible final states, the procedure
of Feshbach38 using projection operators for the partitioning
of the Hamiltonian into an initial and a final state subspace

is employed. The processes of interest start from a singly
ionized initial state and end in a doubly ionized final state with
an additional electron in the continuum. Therefore, the basis
functions for the description of the entire final state subspace
are chosen from the 2h1p class of configurations, where the
2h part is assumed to describe the doubly ionized final state
and the particle represents the electron in the continuum. This
approach can be justified by rewriting the spectral moments
(see Eq. (6)) of the decay width Γ (Eq. (1)) explicitly

Γ̃k = 2πµk (22)

= 2π

j

Ẽk
j ⟨Φ|V̂ | χ̃Ẽ j

⟩⟨ χ̃Ẽ j
|V̂ |Φ⟩ (23)

≈ 2π

q

(
E2h1p
q

)k⟨Φ|V̂ | χ2h1p
q ⟩⟨χ2h1p

q |V̂ |Φ⟩. (24)

One may interpret the set of final states as a complete
basis of the final state subspace. This might be replaced by
any other complete basis describing the outgoing electron.
The idea of the FanoADC is to choose the manifold of 2h1p
states describing the decay to replace this complete basis.
As shown in Ref. 43, this basis is not required to yield the
exact energies of the different channels as long as it spans the
space of interest. The manifold of 2h1p states is formally not
complete, but yields a proper description when the ionization
of the system can be described reasonably well in the single-
particle picture. Additionally, one has to consider the error
introduced by using an incomplete basis set on the Hartree-
Fock level and the truncation of the virtual space in the post
Hartree-Fock procedure.

Not all 2h1p states describe energetically allowed final
states. The energy conservation Ein = EA2+ + Ee−sec

has to be
satisfied, which is only possible for EA2+ < Ein, where Ein

denotes the initial state energy, EA2+ the energy of the doubly
ionized part of the final state, and Ee−sec

denotes the kinetic
energy of the secondary electron emitted in the process. If the
energy of the doubly charged system is higher than the energy
of the initial state, the process is energetically forbidden.
Hence, all 2h1p states characterized by a 2h contribution with
an energy higher than the initial state energy will not contribute
to the final states. Instead, these 2h1p states can be used to
improve the description of the initial state. The partitioning
into initial and final state configurations can be achieved based
on Hartree-Fock orbital occupations by manual choice of 2h
configurations or in an energy-based approach as described
by Averbukh.43 In this work, we employ the partitioning by
population and manually include those configurations which
correspond to open channels.

The partitioning is therefore achieved as follows. All
2h1p configurations characterized by a 2h part corresponding
to one of the final state configurations of possible decay
channels are chosen to be part of the final state subspace.
All 1h configurations and those 2h1p configurations not
corresponding to a possible final state configuration are used
for the description of the initial state. This leads to a resorted
ADC matrix as shown in Figure 2, where the subspace of the
initial state is denoted by M, the final state subspace by N,
and the interaction coupling those two subsets is named W.
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FIG. 2. Schematic illustration of the partitioning of the ADC matrix accord-
ing to the projection operators of the initial and final states.

Speaking in terms of Feshbach’s projection operators, where
P denotes the projector for the final state subspace acting on
the full Hamiltonian of the system H and Q = 1 − P denotes
the projector for the initial state subspace, these subspaces are
given by M = QHQ and N = PHP.

The separate diagonalization of the initial and final state
subspaces M and N yields the corresponding eigenvectors and
eigenvalues on the diagonal of the matrices Λ and Ω,

Λ = ITMI, (25)
Ω = FTNF, (26)

and the Hamiltonian is represented in the basis of their
eigenstates as illustrated in Figure 3 with V = ITWF being
the interaction part in this new basis. It has to be noticed
that Ω in this definition is the matrix of final state subspace
eigenvalues and does not equal the eigenvalue matrix of the
full ADC matrix in Eq. (8).

In general, neither of the final state energies ω̄q equals
the resonance energy. Therefore, the pseudo-spectrum enters
the Stieltjes calculation. For a specific choice of the initial
state i, this pseudo-spectrum is given by the manifold of
final state energies ω̄q and the corresponding interaction
part in the basis of the initial and final subspace eigenstates
Vi,q = ⟨φi |V̂ |ψ2h1p

q ⟩.

C. Stieltjes imaging

In general, Gaussian quadrature is a numerical method to
solve integrals. From the discrete pseudo-spectrum consisting
of ω̄q and Vi,q = ⟨φi |V̂ |ψ2h1p

q ⟩, N pairs of optimal abscissae
(1/ωi) and weights f i for a Gaussian quadrature can be ob-
tained using Chebyshev polynomials as elaborately described
in Ref. 51. These are then used for the construction of inverse
moments, which are preferred to normal moments because of
their convergence behaviour

S(−k) =
∞

Ethr

ω−k dF(ω) =
∞

Ethr

ω−k f (ω) dω

≈
N
i=1

(
1
ωi

)k
f i. (27)

The inverse moments are in terms of Gaussian quadrature
connected to both the distribution function F(ω) and a density
function f (ω). In the particular case of interest, the density
function f (ω) equals the decay width Γ(E) (see Eq. (6)). The
procedure and the background shortly explained here can be
found in detail in Refs. 49, 50, 52, and 56. For convenience,
we from this point on write the optimal abscissae 1

ωi
as ε.

Having obtained the optimal abscissae and weights, the
probability distribution function F(ε) can be approximated.
For this purpose, the so-called Stieltjes imaging is employed,
where

F(n)(ε) =




0 ε < ε1
i

j=1

f j εi < ε < εi+1

n
j=1

f j = S(0) εn < ε.

(28)

This procedure is based on the so-called Chebyshev
inequalities

F(n)(εi − 0) ≤ F(n+1)(εi − 0) ≤ F(εi) ≤ F(n+1)(εi + 0)
≤ F(n)(εi + 0). (29)

This means that the distribution functions obtained from
the Chebyshev polynomials approaching the abscissae εi from
below and from above give lower and upper bounds to the
actual value of the distribution function at this particular point
F(εi). In fact, the mean of these two values usually is a very
good approximation to the exact value

F(n)(εi) = 1
2


F(n)(εi − 0) + F(n)(εi + 0) . (30)

Since the integral was evaluated and not the density
function, as such the distribution function obtained from
the discrete pseudo-spectrum is normalized correctly (see
Ref. 52). This distribution function is then numerically
differentiated via

f (n)(ε) =



1
2

f1

ε1
ε < ε1

1
2

f i+1 + f i
εi+1 − εi

εi < ε < εi+1

0 εn < ε

(31)

FIG. 3. Schematic illustration of the basis transformation of the full ADC matrix into the basis of initial and final states. The pseudo-spectrum is given by the
manifold of ω̄q and Vi,q = ⟨φi |V̂ |ψ2h1p

q ⟩.
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to give r − 1 non-zero points of the desired density function
f (ε), which are subsequently interpolated. In the routine of
Averbukh, a monotonicity-preserving piecewise cubic Her-
mite spline interpolation is used for this purpose. Afterwards,
the interpolated density function is evaluated for the energy
of interest, which is the resonance energy Er in case of the
autoionization processes to give the decay width Γ. Finally,
convergence of the decay widths with increasing orders of
moments is investigated.

Unfortunately, the procedure to obtain the optimal
abscissae and weights involves the subtraction of two large
numbers, which leads to numerical instabilities in high order
moments. Therefore, they have to be checked carefully and
only trustworthy moments should be used for the evaluation
of the decay widths. This can be achieved by inspection
of abscissae and weights of each order. Since the decay
width Γ(E) is a smooth function, unphysical oscillations
in the curve constructed from the abscissae and weights of
one order of moments indicate numerical instabilities in this
particular order. If this behaviour is observed, the abscissae
and weights obtained from this order of moments and all
higher orders are discarded. Finally, the abscissae and weights
from the remaining, consecutive orders of moments enter the
interpolation scheme.

III. COMPUTATIONAL DETAILS

The decay width calculations were performed using
the relativistic FanoADC-Stieltjes code, which has been
implemented in Dirac.44 For each element, four-component
calculations based on the Dirac-Coulomb Hamiltonian, scalar-
relativistic spin-free calculations, and non-relativistic calcu-
lations were performed. Hereby, the respective cv4z basis
sets of Dyall57 were used and diffuse basis functions of the
Kaufmann-Baumeister-Jungen type58 were added at the center
of the atom. For the s, p, and d-type functions, five functions
were added for each orbital type and three f -type functions
were added to the basis set.

The resulting moments were checked for numerical insta-
bilities. Only those moments without numerical instabilities
entered the interpolation scheme for the determination of the
decay widths.

The expectation value of the radial distance ⟨r⟩ and orbital
densities were performed using the atomic program G.59

IV. RESULTS AND DISCUSSION

We present theoretical values for the Kr3d−1, Xe4d−1, and
Rn5d−1 Auger decay widths. The relativistically calculated
single and double ionization potential spectra (SIPs and DIPs)
for xenon are shown in Fig. 4 as representative of the three
noble gases.33–35 A more detailed population analysis of the
double ionization spectrum can be found in Ref. 60. From
this, the energetically accessible Auger decay channels can
be deduced by comparison of the respective spectra. All
doubly ionized states with an ionization energy lower than the
ionization energy of the initial (n − 1)d state can be populated
after the decay. Hence, three major final state groups are

FIG. 4. Comparison of the single and double ionization spectra of the xenon
atom obtained by a DC-ADC calculation. All groups of doubly ionized states
with lower energies than the initially ionized Xe4d−1 can be considered as
possible final states.

found in all three cases: ns−2, ns−1np−1, and np−2. From the
corresponding 2h configurations, the final state subspaces of
the decay width calculations were constructed.

Due to truncation of the full ADC matrix caused by the
partitioning into initial and final state subspaces, the absolute
value of the single ionization energy of the initial state used as
approximation to the real part of the resonance energy loses
accuracy. Even though the discrepancies are about 1–2 eV,
this shift does only have a minor effect on the resulting
decay widths in the results presented here, because the density
functions Γ(E) are very flat around the resonance energy.
However, this shift can in general be a source of error and
results obtained with the FanoADC-Stieltjes method have to
be checked carefully.

The resulting decay widths and, if available, experimental
and theoretically obtained decay widths for comparison are
shown in Table I.

For krypton, one other set of calculated decay widths
is available in the literature.61 These calculations are based

TABLE I. Total Auger decay widths of the Kr, Xe, and Rn Rg(n−1)d−1
5/2, and

Rg(n−1)d−1
3/2 and the non-relativistic Rg(n−1)d−1 initial states compared

to theoretical values for krypton,61 xenon,62 and experimental values for
xenon.63 All widths are given in meV.

Γ Initial state Exp. Theoretical This work

Kr

3d5/2 ... 51 63
3d3/2 ... 49 56
3dspinfree ... ... 62
3dnrel ... ... 49

Xe

4d5/2 110–130 160 162
4d3/2 105–116 143 132
4dspinfree ... ... 168
4dnrel ... ... 90

Rn

5d5/2 ... ... 624
5d3/2 ... ... 547
5dspinfree ... ... 686
5dnrel ... ... 161
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FIG. 5. Comparison of the xenon Auger decay widths from the Xe4d−1
3/2 and

4d−1
5/2 initial state obtained with the relativistic FanoADC in this work, the

MMCDF approach,62 and mean experimental values.63 The calculated values
are in very good agreement with each other, while both methods provide
higher decay widths than the experimental ones.

on a many-body perturbation approach including all orders
of perturbation. The authors state that these results are
approximately 75% of the values for calculations including
perturbations up to second order only. Therefore, the second
order numbers would agree well with our values obtained with
the FanoADC-Stieltjes method shown in Table I. However, all
integrations in this procedure rely on analytic evaluation using
angular momentum algebra and are hence not applicable to
non-spherical systems.

In case of Xe, both experimental and theoretical data are
available in the literature. A graphical comparison of this data
to our results is shown in Figure 5. The theoretical results
from Ref. 62 were obtained using the MMCDF method.45

For quantum chemists, the name of this method might be
misleading, since it is by no means equivalent to Multi-
Configurational Self-Consistent Field (MCSCF). MMCDF is
based on an atomic Dirac-Fock calculation. For the initial state
description of the xenon decay widths in Ref. 62, the pure
Dirac-Fock solution is used. For the final state description, the
Dirac-Fock solution is the reference state for a CI approach.
Then, the excitation classes are chosen manually based on the
experience of the scientist as well as by trial and error. In the
case of the xenon decay widths shown in Table I and Figure 5,
5s05p6, 5s15p5, and 5s25p4 configurations were included in the
final state description. This resembles the space spanned by
the 2h1p states in our FanoADC-Stieltjes approach. However,
the method is generally not limited to doubly ionized states but
can additionally include higher order excitations as well (see,
e.g., Ref. 64). Hence, results from both the FanoADC-Stieltjes
approach presented in this work and the MMCDF results of
Ref. 62 include dynamic correlation in the description of the
final state. However, the results obtained with the FanoADC-
Stieltjes method incorporate correlation effects in the initial
state description as well.

Considering the different qualities of the initial state
description, the results of Ref. 62 are in excellent agree-
ment with the results obtained with the fully relativistic
four-component FanoADC-Stieltjes method. Both approaches
overestimate the decay width compared to experiment. Taking
into account that in this non-trivial problem of the calculation

FIG. 6. Comparison of the Auger decay widths after primary ionization in
the Rg(n−1)d−1 for different Hamiltonians. The non-relativistically obtained
results are lower than those obtained with the spinfree and four-component
Hamiltonian. Overall, the decay width increases with the atomic number Z .

of decay widths, errors within a factor of two are to be
expected, the results are in reasonably good agreement with
experiment as well. Latest results of Sukhorukov indicate that
the overestimation of the decay widths by both the MMCDF
and the FanoADC results is due to these methods lacking the
description of core polarization65,66 first discussed by Born
and Heisenberg.67

From Table I and Figure 6, it can be seen that only the four-
component calculation is capable of describing the spin-orbit
splitting which causes two different initial states. Therefore,
this calculation is to be preferred. However, by employing the
other schemes as well, one can learn more about the nature of
the decay process.

The spinfree results with scalar-relativistic effects included
are very close to the fully relativistic results for all three
elements. In contrast to this, the non-relativistically obtained
decay width is much smaller in all three cases. The difference
increases as one goes down in the periodic table, which is
summarized in Table II. In case of radon, the decay width is
about four times as high as one would expect from a non-
relativistic treatment.

This shows that the inclusion of at least scalar-relativistic
effects is crucial in the calculation of autoionization decay
widths in systems containing heavy elements. The reason for
this behaviour can easily be understood, remembering that
scalar-relativistic effects can phenomenologically be described
as the decontraction of d and f and the contraction of s and

TABLE II. Absolute and relative increase of the decay widths due to the in-
clusion of scalar-relativistic effects in the calculations. The absolute decrease
is given in meV.

Kr Xe Rn

∆spinfree,nrel 13 78 525
Increase +27% +87% +326%
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TABLE III. Expectation values of the electron’s distance from the nucleus
for the noble gases Kr, Xe, and Rn given in Å.

⟨r ⟩ (n−1)d− (n−1)d+ ns np− np+

Kr
rel 0.292 0.293 0.847 1.013 1.037
nrel 0.291 0.862 1.033

Xe
rel 0.460 0.466 1.008 1.186 1.245
nrel 0.460 1.048 1.237

Rn
rel 0.559 0.578 1.017 1.186 1.366
nrel 0.561 1.141 1.346

FIG. 7. Probability densities P(r )2+Q(r )2 for the orbitals participating in
the Auger decay for Kr, Xe, and Rn calculated both relativistically and
non-relativistically.

p orbitals, which in this case corresponds to initial and final
states, respectively (see Table III and Figure 7). It can be seen
that the decontraction of the d orbitals is only minor but the
contraction of especially the s orbitals and also the p orbitals
is remarkable and increases within the group.

Hence, the difference ∆⟨r⟩ = ⟨rin⟩ − ⟨rfin⟩ between the
distance expectation values of the electron ⟨r⟩ from the nucleus
between the orbitals describing the initial state and those
orbitals describing the final states is decreased. This leads
to an increased spatial overlap between the initial and final
states, which in turn influences the decay width by making the
s/p → d de-excitation transition more efficient. In the case at
hand, the smaller ∆⟨r⟩ leads to an increase of the decay width.
Likewise, a larger ∆⟨r⟩ would lead to a decrease of the decay
width compared to the non-relativistic description.

This effect does not only affect the decay widths of
Auger processes but also the decay widths of many other
autoionization processes like the ICD or the Electron Transfer
Mediated Decay (ETMD). The latter relies on an electron
transfer between two units and hence can be expected to be
crucially influenced by the scalar-relativistic effects reported
in this work. Both will be subject to future research.

V. CONCLUSIONS

We presented the relativistic counterpart of the non-
relativistically known FanoADC-Stieltjes approach. This
method is able to predict decay widths including relativistic
effects also for non-spherical systems, which was not possible
so far, according to our knowledge, with other approaches.
The calculations of ICD decay widths using the relativistic
FanoADC-Stieltjes approach are going to be subject of future
work.

Decay widths for the Auger process following an initial
ionization from the (n − 1)d of krypton, xenon, and radon were
calculated using three different Hamiltonians. They cover the
four component approach including both spin-orbit coupling
and scalar-relativistic effects, the spinfree approach only
including scalar-relativistic effects and the non-relativistic
approach for comparison. In the results, we observe a large
influence of the scalar-relativistic effects, which increases
going down in the periodic table within a group. We show
that these are caused by a change in overlap of the orbitals
involved in the decay mainly due to the contraction of the s
and p orbitals.

We predict these findings not to be unique to Auger
processes but to be a general effect in autoionization processes
including ICD and ETMD. Therefore, we propose further
investigation of ICD and ETMD processes in systems contain-
ing heavy elements. The systems of interest for this purpose
are systems with initially ionized d orbitals and final states
containing vacancies in s orbitals. Also, the inverse setup with
the initial vacancy in an s orbital and final states containing d
vacancies can be expected to show the influence of relativistic
effects. These effects are expected to be larger in ETMD than
in ICD processes. However, due to the large computational
cost growing with system size, one would start to study the
ICD process.
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