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ABSTRACT

Among the 25 planetary systems detected up to now by gravitational microlensing, there are two cases of a star
with two planets, and two cases of a binary star with a planet. Other, yet undetected types of triple lenses include
triple stars or stars with a planet with a moon. The analysis and interpretation of such events is hindered by the lack
of understanding of essential characteristics of triple lenses, such as their critical curves and caustics. We present
here analytical and numerical methods for mapping the critical-curve topology and caustic cusp number in the
parameter space of n-point-mass lenses. We apply the methods to the analysis of four symmetric triple-lens models,
and obtain altogether 9 different critical-curve topologies and 32 caustic structures. While these results include
various generic types, they represent just a subset of all possible triple-lens critical curves and caustics. Using the
analyzed models, we demonstrate interesting features of triple lenses that do not occur in two-point-mass lenses.
We show an example of a lens that cannot be described by the Chang–Refsdal model in the wide limit. In the close
limit we demonstrate unusual structures of primary and secondary caustic loops, and explain the conditions for
their occurrence. In the planetary limit we find that the presence of a planet may lead to a whole sequence of
additional caustic metamorphoses. We show that a pair of planets may change the structure of the primary caustic
even when placed far from their resonant position at the Einstein radius.
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1. INTRODUCTION

In the past two decades gravitational microlensing surveys
have been very successful, in particular as a tool for studying
the stellar population toward the Galactic bulge. In a
microlensing event, a star passing close to the line of sight to
a background “source” star is detected by its gravitational lens
effect, which temporarily amplifies the flux from the source
(e.g., Paczyński 1996). The main advantage of the method is its
sensitivity to low-mass objects, ranging from stellar down to
planetary masses, with most of them too faint to be routinely
detected by other means.

In addition to single-star microlensing events, right from
their start of operations the surveys have detected events with
binary-star lenses (Udalski et al. 1994; Alard et al. 1995). The
frequency of binary events is lower than the frequency of
binary stars, since binaries with too close or too far components
often mimic single-lens events. The microlensing sensitivity to
low mass ratios finally led in 2003 to the first detection of
microlensing by a star with a planet (Bond et al. 2004). By the
time of writing, altogether 25 planetary systems had been
detected by microlensing.1 A majority involved a star with a
single planet; nevertheless, four of them involved three-body
systems. In two cases the lens was a star with two planets
(Gaudi et al. 2008; Han et al. 2013), while the other two
involved a binary with a planet (Gould et al. 2014; Poleski
et al. 2014). Other possible triple-lens systems that had not
been detected yet include triple stars, or even lenses formed by
a star with a planet with a moon.

Turning to the underlying physics, in the case of a single lens
the light from the source star is split into two images, which
remain generally unresolved due to their small angular
separation ≲1 mas. The accompanying temporary amplification
of the flux from the source typically produces a simple

symmetrically peaked light curve (e.g., Paczyński 1996).
Lenses with multiple components produce a higher number of
images and lead to a greater diversity of light curves, which peak
anytime the source crosses or approaches the caustic of the lens.
Any simple caustic crossing leads to the appearance or
disappearance of a pair of unresolved images at positions
defining the critical curve of the lens. The caustic and the critical
curve thus are key characteristics of the lens. They depend
sensitively on the lens parameters: the masses and positions of
the components. Understanding the range of possible critical-
curve and caustic geometries is a prerequisite for successful
analysis and interpretation of observed microlensing light
curves.
Microlensing by a two-component lens, such as a binary star

or a star with a planet, is well described by the two-point-mass
lens model. Such a lens has only two relevant parameters: the
mass ratio, and the projected component separation. The model
has been analyzed in detail by Schneider & Weiss (1986), Erdl
& Schneider (1993), and Witt & Petters (1993); its limiting
cases were studied by Dominik (1999). For any mass ratio the
critical curve was shown to have three different topologies. In
order of decreasing component separation these are: “wide”
with two separate loops, “intermediate” (or resonant) with a
single loop, and “close” with an outer plus two inner loops.
Each regime has a corresponding caustic geometry with the
same number of separate non-overlapping loops: wide has two
four-cusped loops, intermediate a single six-cusped loop, and
close has one four-cusped plus two three-cusped loops. A
source positioned outside the caustic has three images, while a
source positioned inside the caustic has five images.
Microlensing by triple lenses can be described analogously

by the three-point-mass lens model. There are five lens
parameters: two relative masses, and three relative positions
defining the two-dimensional configuration of the components
in the plane of the sky. In comparison with the two-point-mass
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lens, the model has a number of qualitative differences. For
example, varying the lens parameters may lead to a change in
the cusp number of the caustic without any accompanying
change in the topology of the critical curve. Such changes in
the caustic structure occur via swallow-tail or butterfly
metamorphoses (Schneider et al. 1992). In addition, loops of
the caustic may overlap, and individual loops may self-
intersect. As a result, the caustic may have inner multiply
nested regions. All caustics separate the outer four-image
region from an inner six-image region. Only caustics with
overlapping loops or self-intersections have additional eight-
image regions, in case of double nesting even ten-image
regions.

However, unlike in the two-point-mass lens case, the full
range of critical-curve topologies and caustic structures of the
three-point-mass lens has not been explored yet. Such a study
would require a systematic mapping of the five-dimensional
parameter space, detecting changes in the critical curve and
caustic of the corresponding lens. Nevertheless, a range of
published works have explored different specific regimes of
triple lenses. The first studies explored binary lenses with an
additional external shear (Grieger et al. 1989; Witt &
Petters 1993), with caustics already displaying swallow tails
and butterflies. Most numerous are the studies involving a
stellar lens with two (or more) planets. Some of them
demonstrate effects on the light curve; others for example
place constraints on the presence of a second planet in observed
single-planet events. Without claiming completeness, we refer
here to the works of Gaudi et al. (1998), Bozza (1999), Han
et al. (2001), Han & Park (2002), Rattenbury et al. (2002),
Han (2005), Kubas et al. (2008), Asada (2009), Ryu et al.
(2011), Song et al. (2014), and Zhu et al. (2014).

Lensing by a binary star with a planet has been explored less
frequently (Bennett et al. 1999; Lee et al. 2008; Han 2008a;
Chung & Park 2010). In view of the two recently detected
systems, this is bound to change. The close and far limits of
triple-star lensing were investigated by Bozza (2000a, 2000b).
Finally, lensing by a star with a planet with a moon was studied
by Han & Han (2002), Gaudi et al. (2003), Han (2008b), and
Liebig & Wambsganss (2010), with prospects for detecting
such systems remaining open.

Here we set out to systematically study the critical curves
and caustics of triple lenses. Based on the work of Erdl &
Schneider (1993) and Witt & Petters (1993), we develop
methods for efficient mapping of critical-curve topologies and
caustic geometries in the parameter space of n-point-mass
lenses. We then apply the methods to the analysis of simple
triple-lens models. Initial steps of this research appeared in
Daněk (2010), and Daněk & Heyrovský (2011, 2014).

We start in Section 2 by introducing the basic concepts of n-
point-mass lensing. In particular, we concentrate on the
Jacobian and its properties, such as the equivalence of its
contours with critical curves of re-scaled lens configurations
(Daněk & Heyrovský 2015). Analytical and numerical
methods for mapping critical-curve topologies in the lens
parameter space are introduced in Section 3. In Section 4 we
discuss the caustic and its metamorphoses, and show how to
track changes in cusp number using the cusp and morph curves
(Daněk & Heyrovský 2015). We apply the methods to triple
lenses in Section 5, starting with a brief overview of their
properties in Section 5.1. Sections 5.2–5.5 include a full
analysis of four symmetric two-parameter triple-lens models,

with an overview of the found critical curves and caustics in
Section 5.6. We end by summarizing the main results and
highlights in Section 6.

2. THE n-POINT-MASS LENS AND ITS JACOBIAN

Galactic gravitational microlensing events can be described
using a simple n-point-mass lens model, consisting of n
components (stars, planets) in a single lens plane with no external
shear and no convergence due to continuous matter. Following
Witt (1990) we describe positions in the plane of the sky as points
in the complex plane, with separations measured in units of the
Einstein radius corresponding to the total mass of the lens.
The relation between the position of a background source ζ

and the position z of its image formed by the lens is expressed
by the lens equation

z
μ

z z¯ ¯
, (1)

j

n
j

j1

∑ζ = −
−=

where zj and μ j are the positions and fractional masses,
respectively, of the individual components of the lens, and bars
over variables denote their complex conjugation. The complex
plane of the image positions z is called the image plane, and the
complex plane of the source positions ζ is called the source
plane. The fractional masses are normalized to the total mass of
the lens, so that μ 1j

n
j1∑ == .

The positions of individual components zj generally change
with time as they orbit around the center of mass of the lens. In
this work we study the lensing properties of a “snapshot” n-
body configuration at a given instant. The case when the
change of lens parameters is non-negligible on the timescale of
the microlensing event can be described by a corresponding
sequence of such snapshot configurations.
The n-point-mass lens with n 1> components produces

between n 1+ and n5 ( 1)− images (in steps of two) of any
point in the source plane (Rhie 2003; Khavinson & Neu-
mann 2006). In the image plane images appear and disappear in
pairs along the critical curve of the lens. The critical curve can be
expressed as the set of all points zcc for which the sum

μ

z z
e

( )
, (2)

j

n
j

j

i

1 cc
2

2∑
−

= ϕ

=

−

lies on the unit circle (Witt 1990). Here ϕ is a phase parameter
spanning the interval π[0, )ϕ ∈ . In the source plane the image
number changes when the source crosses the caustic cζ of the
lens. The caustic is obtained by tracing critical-curve points
back to the source plane using Equation (1), i.e.,

z
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In mathematical terms, the critical curve is the set of points
in the image plane with zero Jacobian of the lens equation. The
Jacobian

J z
μ

z z
det ( ) 1

( )
(4)

j

n
j

j1
2

2

∑= −
−=

is discussed in detail in Daněk & Heyrovský (2015). Here we
only summarize its properties important for the following
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analyses. As seen from Equation (4), the Jacobian is a real
function defined over the complex plane, running from −∞ at
the positions of all components z z j= to 1 at complex infinity
and at the positions of all Jacobian maxima. These can be
found as the roots of the polynomial obtained from

μ

z z( )
0. (5)

j

n
j

j1
2

∑
−

=
=

The degree of the corresponding polynomial indicates the
Jacobian has up to n2 2− different maxima. The number may
be lower if there are any degenerate roots; these correspond to
higher-order maxima. A doubly degenerate root corresponds to
a double maximum, a root with degeneracy 3 corresponds to a
triple maximum, etc.

The saddle points of the Jacobian can be found similarly
among the roots of the polynomial obtained from

μ

z z( )
0. (6)
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j

j1
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=
=

The corresponding polynomial has up to n3 3− different roots.
First we need to sort out any common roots of Equations (5)
and (6), those correspond to higher-order maxima instead of
saddles. All remaining roots are Jacobian saddle points. The
number of different saddles may be reduced further if there are
any degenerate roots; these identify higher-order saddles. A
non-degenerate root corresponds to a simple saddle, a doubly
degenerate root corresponds to a monkey saddle, etc.

Studying the contours of the Jacobian, Daněk & Heyrovský
(2015) pointed out a remarkable correspondence. While the
zero-Jacobian contour is the critical curve zcc of the lens, any
other Jacobian contour zλ with J zdet ( ) λ=λ is a re-scaled
critical curve of a lens with the same components in re-scaled
positions. Denoting by z μ z( , )j jcc and z μ z( , )j jλ the critical
curve and Jdet λ= contour, respectively, of a lens with masses
μ j and positions zj, we can express this correspondence by

( ) ( )z μ z z μ z, , 1 1 . (7)j j j jcc
4 4λ λ= − −λ

For 0λ = we get the critical curve of the original configuration.
Close to the original positions, the λ → −∞ contours are
shrunk versions of the wide-limit critical curves. At the other
limit, the highest-Jacobian 1λ → contours are expanded
versions of the close-limit critical curves. A single Jacobian
contour plot thus yields the critical curves for all scalings of the
given lens configuration, from the close to the wide limit.

3. CRITICAL-CURVE TOPOLOGY REGIONS IN
PARAMETER SPACE AND THEIR BOUNDARIES

3.1. Critical-curve Topology and Its Changes

Here we summarize general properties of n-point-mass lens
critical curves following Daněk & Heyrovský (2015). Varying
the phase parameter ϕ in the critical curve Equation (2), we
obtain n2 continuous line segments, which may connect to
form N n1 2loops⩽ ⩽ closed loops2 of the critical curve
(Witt 1990). Individual loops may lie in separate regions of

the image plane, or they may lie nested inside other loops. The
total number and mutual position of loops define the topology
of the critical curve.
In the wide limit, all lenses have a critical curve with

N nloops = separate loops, corresponding to n Einstein rings of
the individual components. In the close limit, the critical curve
has N N1loops max= + loops, where Nmax is the number of
different Jacobian maxima. One loop corresponds to the
Einstein ring of the total mass, plus there is a small loop
around each maximum of the Jacobian. In view of the
discussion following Equation (5), N n2 2max ⩽ − , so that in
the close limit N n2 1loops ⩽ − . The equality holds if the
Jacobian has only non-degenerate (simple) maxima. Any
degenerate (higher-order) maximum reduces the number of
loops. For example, the two-point-mass lens always has two
different maxima, thus its critical curve always has three loops
in the close limit.
When varying the parameters of the lens such as its scale, the

topology may undergo changes when individual loops merge or
split. This occurs at Jacobian saddle points when the critical
curve passes through them (e.g., Erdl & Schneider 1993). Two
loops come into contact at a simple saddle, three at a monkey
saddle, and more loops at gradually higher-order saddles. As
shown by Equation (6), the Jacobian may have up to n3 3−
different saddle points, with the highest number occurring
when there are no higher-order saddles and no higher-order
maxima. The number of different Jacobian contours passing
through the set of saddles identifies the total number of changes
in critical-curve topology encountered when varying the scale
of the lens from the wide to the close limit. This can be seen as
a consequence of the Jacobian-contour/critical-curve corre-
spondence expressed by Equation (7). Therefore, the critical
curve of an n-point-mass lens may undergo no more than
n3 3− changes in topology between the wide and close limits.
In the case of the two-point-mass lens, there are always three

simple saddles. One lies on the axis between the components,
while an off-axis pair of saddles lies on a different Jacobian
contour. The two distinct saddle contours imply that the two-
point-mass lens critical curve always undergoes two changes
when varying the component separation s, and thus has exactly
three topologies. The wide topology has two separate loops, the
intermediate topology has a single merged loop, and the close
topology has an outer loop plus two small inner loops around
the Jacobian maxima. The topology sequence is independent of
the second lens parameter, the mass ratio of the lens
components.
Proceeding to lenses with more than two components, we

note that the shape of the critical curve depends on n3 4− lens
parameters (e.g., Daněk & Heyrovský 2015). Following the
preceding discussion, boundaries between regions in parameter
space with different critical-curve topology can be found by
identifying parameter combinations, for which the critical
curve passes through a saddle point of the Jacobian (e.g., Erdl
& Schneider 1993). The search for these boundaries is thus
mathematically reduced to finding the conditions for the
occurrence of a common solution of Equations (2) and (6).
The usual analytical approach described in the following

Section 3.2 is based on rewriting both equations in polynomial
form and computing their resultant. This step is then followed
by a second resultant constructed from the first. However, this
approach often yields unwieldy expressions. In addition, one
has to check the results for spurious solutions. These do not

2 We note that at least for n 3< the sharp upper bound is n2 1− , and even
for triple lenses we have found no more than five loops so far.
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occur in the two-point-mass lens, but they do appear in all the
triple-lens models studied further below.

As an alternative, we present in Sections 3.3 and 3.4 two
efficient numerical methods for mapping the boundaries. These
can be used in models with at least one scale-defining
parameter, such as the component separation s in the two-
point-mass lens. In the first method we find the roots of the first
resultant condition, while in the second we utilize the Jacobian
scaling properties described by Daněk & Heyrovský (2015).
Both methods are free of spurious solutions.

3.2. Analytical Boundaries Computed by Resultant Method

The method described here was pioneered in the context of
critical-curve topology mapping by Erdl & Schneider (1993)
and Witt & Petters (1993). Multiplying the saddle-point
Equation (6) by the product of its denominators yields

p z μ z z( ) ( ) 0, (8)
j

n

j
k k j

n

ksadd
1 1,

3∑ ∏= − =
= = ≠

a polynomial of degree n3 3− . In a similar manner we convert
the critical-curve Equation (2) to

p z z z e

μ z z

( ) ( )

( ) 0, (9)

k

n

k
i

j

n

j
k k j

n

k

crit
1

2 2

1 1,

2

∏

∑ ∏

= − −

× − =

ϕ

=

= = ≠

a polynomial of degree n2 for any value of the parameter ϕ.
The analytical condition for the existence of a common root of
p z( )sadd and p z( )crit is

p pRes ( , ) 0, (10)z sadd crit =

where the resultant f gRes ( , )z of two polynomials f g, is a
function of their coefficients. It may be computed by evaluating
the determinant of the Sylvester or Bézout matrices, as
described in Appendix A.

The expression obtained from Equation (10) is a polynomial
in terms of e i2 ϕ. If we denote w e i2= ϕ, we can write the result
as

p w a w( ) 0, (11)
j

m

j
j

res
0

∑= =
=

where the degree of the polynomial m n3 3⩽ − . The
boundary condition is now equivalent to the condition for pres
to have a root on the unit circle.

In order to obtain the condition purely in terms of the lens
parameters, Witt & Petters (1993) suggested the following
approach for the two-point-mass lens. For a root along the unit
circle w wj j= − , so that if we take the complex conjugate of
Equation (11) and multiply it by wm, we get another
polynomial equation

p w a w( ) ¯ 0. (12)
j

m

m j
j

conj
0

∑= =
=

−

Along the boundary in parameter space, polynomials pres and
pconj must have a common root, thus

( )p pRes , 0 (13)w res conj =

yields the sought condition in terms of lens parameters. We
point out that Equation (13) presents a single constraint in
parameter space. Hence for two-parameter models (such as the
two-point-mass lens or the triple-lens models described in
Sections 5.2–5.5) it generally describes a set of curves, for
three-parameter models a set of surfaces, etc.
We illustrate the approach here on the case of the two-

point-mass lens (Erdl & Schneider 1993; Witt & Pet-
ters 1993), parameterized by the fractional mass of one
component μ (0, 1)∈ and the separation between the
components s 0> . If we align the lens with the real axis
and place the components symmetrically about the origin,
their positions and masses are z z s s{ , } { 2, 2}1 2 = − and
μ μ μ μ{ , } { , 1 }1 2 = − . The polynomial equations for psadd
and pcrit are

(14)p z z s μ z s z s μ( )
3
2

(1 2 )
3
4

1
8

(1 2 ) 0sadd
3 2 2 3= + − + + − =

and

( )
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p z z s e z s μ

e z s s e

( )
1

2
(1 2 )

1

16
4 0. (15)
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i i
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4 2 2 2

2 2 2 2
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ϕ
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Using them in Equation (10) leads to

( )
p p s μ μ e

s μ μ e s e s

Res ( , ) (1 )

3 1 9 9 3 0. (16)

z
i

i i

sadd crit
6 2 2 6

2 2 4 4 2 6

= − −

− − + + − =

ϕ

ϕ ϕ

⎡⎣
⎤⎦

The factors in front of the square brackets are non-zero for any
genuine two-point-mass lens. If we set e wi2 =ϕ , the term in the
brackets yields the polynomial equation

( ) (17)p w w s μ μ w s w s( ) 3 1 9 9 3 0.res
3 2 2 2 4 6= − − + + − =

Following Equation (12) we construct

( )
p w s w s w s

μ μ w

( ) 3 3

1 9 9 1 0. (18)

conj
6 3 4 2 2

2

= − + −

× − + + =

The resultant obtained from Equation (13) can be factorized as
follows:

( )
( )

( )

s μ μ s s

s μ μ s s

s s μ μ s

1 3 1 9 9 3

1 3 1 9 9 3

1 3 3 1 9 9 0. (19)

2 2 4 6

2 2 4 6

4 8 2 12
2

− − + + −

× + − + + +

× − + − + − =

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

At least one of these three square brackets thus has to be equal
to zero.
The first bracket in Equation (19) is equal to p (1)res , with

w = 1 corresponding to 0ϕ = . Therefore, it must include any
transitions occurring on the critical curve along the real axis, in
this case the passage of the critical curve through the central

4
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saddle point. Taken as a polynomial in s, the first bracket has a
single real positive root (Erdl & Schneider 1993)

s μ μ1 , (20)w
3 2

3 3= + −⎡⎣ ⎤⎦

which is the boundary between the wide and intermediate
topologies.

The second bracket is equal to p ( 1)res− − , with w 1= −
corresponding to π 2ϕ = . There is only a single zero point of
this expression in parameter space, μ s[ , ] [0.5, 0.5 ]= , which
corresponds to the intermediate–close splitting along the
imaginary axis of the critical curve of an equal-mass lens.

The third bracket corresponds to topology transitions that
occur at any other values of ϕ on the critical curve. Here they
describe the passage of the critical curve through the pair of
saddle points off the real axis. Taken as a polynomial in s, the
third bracket has a single real positive root (Erdl &
Schneider 1993; Rhie & Bennett 1999)

s μ μ s1 , (21)c w
3 4 1 23 3= + − =− −⎡⎣ ⎤⎦

which is the boundary between the intermediate and close
topologies. This boundary in fact passes through the single zero
point of the second bracket in Equation (19) at μ 0.5= as well.
The two curves given by Equations (20) and (21) thus fully
describe the division of the two-point-mass lens parameter
space according to critical-curve topology.

Applying the same procedure to two-parameter models of
triple lenses leads to the following problem. The method yields
not only all the sought boundaries, but also curves correspond-
ing to no change in critical-curve topology. These spurious
results are additional solutions of Equation (13), which
correspond to common roots of p w( )res and p w( )conj lying
off the unit circle. In Appendix B we describe how this occurs
and why it does not occur in the two-point-mass lens. All
curves corresponding to specific values of w that can be
factored out of the final Equation (13), such as p (1)res and
p ( 1)res − in the case of Equation (19), are genuine boundaries.
Parameters satisfying the remaining parts of Equation (13)
should be verified either by computing sample critical curves,
or by confirming the existence of a root of p w( )res on the unit
circle.

Alternatively, instead of computing the second resultant,
one may solve the polynomial from Equation (11) directly by
re-substituting w icos 2 sin 2ϕ ϕ= + . By taking the real
and imaginary parts of pres separately, Equation (11) may be
treated as a set of two real equations. In case all the
coefficients aj are real, such as in the two-point-mass lens or
all the triple-lens models described in Sections 5.2–5.5, the
imaginary part of Equation (11) instantly yields the 0ϕ =
and π 2ϕ = solutions. The corresponding real parts then
yield the p (1) 0res = and p ( 1) 0res − = boundaries, respec-
tively. The other boundaries can be found by substituting
cos 2 ϕ ξ= and solving the two obtained real polynomial
equations in ξ. Finding all roots [ 1, 1]0ξ ∈ − of one of the
polynomials and substituting them into the other polynomial
yields the remaining boundary conditions.

3.3. Numerical Boundaries Computed Using the First
Resultant

For any particular n-point-mass lens model the lens masses μ j
and positions zj depend on a given set of parameters. Mapping
the boundaries in parameter space numerically can be a tedious
task. If we can compute analytically at least the first resultant and
the polynomial pres given by Equation (11), the task is reduced
to keeping track of the roots of pres as one scans through
parameter space. Positions at which the absolute value of any of
the roots crosses unity correspond to points on the boundary.
However, even this can be a very time-consuming exercise.
In case at least one of the parameters of the lens model defines

an angular scale in the plane of the sky (such as the separation s
in the two-point-mass lens), it is possible to reduce the
dimension of the space to be scanned by one. At the same time
this approach directly yields all boundary points for each
reduced parameter combination. In case there are several
angular-scale parameters, we select one of them (further denoted
by s) and instead of the others we use their ratio to s. We can now
assume that all masses are independent of s and all lens positions
are directly proportional to s. All the models discussed in this
paper satisfy these requirements.
If we divide Equation (8) by s n3 3− , we obtain a polynomial

equation of exactly the same form with z z s′ = and re-scaled
lens positions z z sk k′ = ,

( )

( )

p z s μ z s z s

μ z z
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0. (22)
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The equation is thus explicitly independent of s. If we similarly
divide Equation (9) by s n2 we obtain

( )
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p z z z e s
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j
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1 1,

2

∏

∑ ∏

′ ′ = ′ − ′ −

× ′ − ′ =

ϕ

=

−

= = ≠

a polynomial of exactly the same form as p z( )crit but with

e si2 2ϕ − instead of e i2 ϕ. Setting the resultant of p z( )sadd′ ′ and
p z( )crit′ ′ equal to zero, we obtain a polynomial in terms of

w e si2 2′ = ϕ − ,

p w a w( ) 0, (24)
j

m

j
j

res
0

∑′ ′ = ′ ′ =
=

in which all coefficients a j′ are independent of s, and the degree
of the polynomial m n3 3⩽ − . Finding the boundaries now
requires a scan of the reduced parameter space (skipping s),
with the boundaries directly given by all roots of p w( )res′ ′ . Any
such root wroot′ yields the value of s at the boundary,

s wroot
1 2= ∣ ′ ∣− . At the same time it also yields the position

along the critical curve, warg( ) 2rootϕ = ′ , at which the critical
curve splits.
Furthermore, if all coefficients a j′ are real (such as in all the

models discussed in this paper), all roots of p w( )res′ ′ either are
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real or they occur in complex–conjugate pairs. A complex–
conjugate pair of roots yields the same boundary value of s,
corresponding to a simultaneous split at complex–conjugate
positions along the critical curve. It is thus useful to keep track
of the discriminant of p w( )res′ ′ in the reduced parameter space.
Its change of sign corresponds to a transition from a pair of real
roots (two boundaries) to a pair of complex–conjugate roots
(one boundary). Zero discriminant corresponds to a multiple
root of p w( )res′ ′ , describing a single boundary point and a single
ϕ value along the critical curve.

For illustration, for the two-point-mass lens we obtain

( )p w w μ μ

w w

( ) 3 1 9 9

3 1 0, (25)

res
3 2

2

′ ′ = ′ − − +

× ′ + ′ − =

and its discriminant

( )p μ μ μ3 (1 ) (1 2 ) 0. (26)res
9 2 2 2Δ ′ = − − − ⩽

The only non-degenerate configuration with zero discriminant
has μ 1 2= , for which there is a double real root plus another
real root: w { 2, 2, 1 4}root′ = − − . These correspond to bound-
ary points s { 1 2 , 1 2 , 2}= . For all other μ (0, 1)∈ the
discriminant is negative. Thus, p w( )res′ ′ has one real root and a
complex–conjugate pair of roots, resulting in two boundary
values of s for any μ.

3.4. Numerical Boundaries Computed Using
Jacobian-contour Correspondence

We return here to the method mentioned briefly in
Section 3.1. Instead of computing the resultant, we can map
the boundaries in parameter space utilizing the correspondence
between Jacobian contours and critical curves of re-scaled lens
configurations (Daněk & Heyrovský 2015), described here at
the end of Section 2. Just like in the previous case, even this
method requires having a single angular-scale defining
parameter s, with all lens positions directly proportional to it,
and all masses independent of it.

For a given set of the remaining parameters plus an arbitrary
non-zero scale parameter s0 we compute the positions of the
Jacobian saddle points zsadd by finding all roots of p z( )sadd from
Equation (8). For each root we evaluate J zdet ( )sadd from
Equation (4), which identifies the contour passing through the
saddle point. Now the Jacobian-contour/critical-curve corre-
spondence tells us that in order for the critical curve to pass
through the saddle point, we need to re-scale the lens positions

by J z1 det ( )sadd
4 − , as shown in Equation (7). Hence, the

boundary value of the parameter s is s J z1 det ( )0 sadd
4 − .

Recalling the polynomial degree of p z( )sadd , this approach
yields up to n3 3− different boundaries for any given point of
the reduced parameter space.
For illustration we refer to Figure 1 from Daněk & Heyrovský

(2015), which shows a Jacobian contour plot of a binary lens
with μ 0.8= and s 10 = . The real saddle point lies on the

Jdet 11.0≈ − contour, and the complex–conjugate saddle-point
pair lies on the Jdet 0.711≈ contour. The corresponding
boundary separations are thus s 1 11 1.8614= + ≈ and
s 1 0.711 0.7334= − ≈ , respectively.

4. MAPPING THE NUMBER OF CUSPS OF THE CAUSTIC
IN PARAMETER SPACE

The caustic of the lens, defined here by Equation (3),
consists of the same number of closed loops as the critical
curve. We refer to Daněk & Heyrovský (2015) for an overall
discussion of the properties of the n-point-mass lens caustic and
its cusps. Here we are interested in tracking changes in the
number of cusps in the parameter space of the lens.
Since individual loops or parts of the caustic may overlap in

lenses with three or more components, we specify that we
count the number of cusps encountered as we trace along each
loop of the caustic. This means that a cusp superimposed over a
fold is still a cusp, or that two or more cusps along different
parts of the caustic that happen to lie at the same position in the
source plane are still counted as two or more cusps.
The cusp number changes in caustic metamorphoses. The

simplest of them is the beak-to-beak metamorphosis, in which
two tangent folds reconnect and form two facing cusps (see
Figure 5 in Daněk & Heyrovský 2015). In the image plane this
always corresponds to a change in critical-curve topology at a
saddle point. The corresponding boundaries in parameter space
are thus identical to those studied in Section 3.
While the beak-to-beak metamorphosis already occurs in

two-point-mass lenses, two additional types occur in triple
lenses: the swallow-tail and butterfly metamorphoses. They are
discussed in more detail and illustrated in Daněk & Heyrovský
(2015). Both occur on the caustic without any change in
topology or other significant effect on the critical curve. The
lens-parameter conditions for the occurrence of these additional
metamorphoses form new boundaries in parameter space,
which subdivide the critical-curve topology regions discussed
in Section 3.

Figure 1. Configurations of the analyzed triple-lens models. Lens components are marked by numbered circles and labelled by their masses; black circles indicate
equal mass. Model parameters: Linear Symmetric—central mass μ, separation s of neighbors; Linear Asymmetric—relative position p of central component, half-
separation s of outer components; Triangular Equilateral—mass μ of component 1, side length s; Triangular Isosceles—vertex angle θ, leg length s.
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For the following analysis we will use the cusp curve and
morph curve introduced by Daněk & Heyrovský (2015). The
parametric form of the cusp curve is

μ

z z

μ

z z( ) ( )
, (27)

j

n
j

j j

n
j
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3

2

1
2

3

∑ ∑
−
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−= =

⎡
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where 0Λ ⩾ is a real parameter. The intersections of the cusp
curve with the critical curve in the image plane identify the
positions of cusp images along the critical curve. Since the
curve is scale-invariant, its intersections with other Jacobian
contours identify the positions of cusp images for all arbitrarily
shrunk or expanded lens configurations.

Another scale-invariant curve in the image plane is the
morph curve, defined in parametric form by

(28)
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where Γ is a real parameter. Its intersections with the cusp
curve away from the lens positions and higher-order maxima
identify the positions of metamorphosis-point images. Inter-
sections at saddles correspond to beak-to-beaks, simple
intersections away from special points correspond to swallow
tails, and intersections at two-branch self-intersection points of
the cusp-curve correspond to butterflies if the critical curve is
tangent to either of the branches (Daněk & Heyrovský 2015).

In order to find conditions for the occurrence of swallow-tail
and butterfly metamorphoses, we first locate all intersections of
the cusp curve and morph curve, and leave out the lens
positions, saddle points, and higher-order maxima. We use the
parametric polynomial forms of the curves obtained by
multiplying Equations (27) and (28) by all their denominators.
We then employ a method analogous to the one used in
Section 3.2 for finding the topology boundaries in parameter
space. We compute the resultant of the two polynomials and
express the result as a polynomial in the morph-curve
parameter Γ. Since we seek solutions with Γ real, we compute
a second resultant of the obtained polynomial with its complex
conjugate.

The result can be factorized to obtain several conditions
involving the non-scaling parameters of the lens, each as a
polynomial in the cusp-curve parameter Λ. For any combina-
tion of the non-scaling parameters we look for real non-
negative roots Λ. Equation (27) then yields a set of zʼs on the
cusp curve: those that satisfy Equation (28) and lie on the
morph curve are the sought intersections. The final check is
important, since the second resultant condition may introduce
additional spurious solutions. In case the second resultant
cannot be simply factorized or generally is too unwieldy, one
can find the intersections numerically by gradually varying Λ
and tracing the branches of the cusp curve, checking each point
z with the morph-curve Equation (28).

We then compute the Jacobian at the metamorphosis points
to identify the critical curve passing through each of them. The
corresponding scaling factor J1 det4 − determines the
separation of the lens components, just like in the saddle-point
case in Section 3.4. The obtained parameter combinations form
additional curves in parameter space, leading to its final
division into subregions with different combinations of cusps
on the loops of the caustic.

5. TRIPLE-LENS MODELS

5.1. General Properties

The general triple lens is described by five parameters:
typically two relative masses and three spatial-configuration-
defining parameters. Among these three it is advantageous to
select a single scale parameter, such as the separation of two of
the components, or the perimeter of the triangle connecting the
components. The remaining two parameters can be for example
angles or relative lengths. With such a choice one may utilize
the methods from Sections 3 and 4 for studying critical curves
and caustics based on the scaling properties of the Jacobian.
The Jacobian surface has three poles at the lens positions,

hence the critical curve has three loops in the wide limit.
There are up to four different Jacobian maxima, therefore in
the close limit the critical curve has up to five loops: an
Einstein ring corresponding to the total mass, plus up to four
small loops around the maxima. The surface has up to six
different saddle points. As a consequence, the critical curve of
any triple-lens configuration may undergo up to six topology
changes when varying the scale parameter from the close to
the wide limit.
The critical-curve polynomial p z( )crit from Equation (9) is

of sixth degree, implying that the critical curve and caustic may
each have no more than six loops. We point out here in advance
that the models discussed further in Sections 5.2–5.5 have only
up to five loops.
A compact expression for p z( )crit can be obtained in terms of

symmetric moments of the lens configuration. In general, five
such moments are sufficient:

c
j

z
1

(29)j

k
k
j

1

3

∑=
=

for j 1 3= … , and the mass-weighted

d μ z (30)j

k
k k

j

1

3

∑=
=

for j 1, 2= . With these definitions d1 is the center of mass of
the lens and c 31 is its geometric center. In equal-mass models
(μ 1 3k = ) the two centers coincide, so that d c 31 1= , and
d c2 32 2= .

If we set the origin of the complex plane at the geometric
center (c 01 = ), we arrive at a simpler form of Equation (9)
than if we used the center of mass. The critical-curve
polynomial equation can then be written using the four other
complex moments:
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In a similar manner we may re-write the Jacobian saddle-
point polynomial Equation (8) in terms of the same four
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moments:

( )
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For any specific triple-lens model it is sufficient to express the
moments in terms of the model parameters and use them in
Equations (31) and (32). The transitions between different
critical-curve topologies can then be mapped using the methods
described in Sections 3.2–3.4.

In the following Sections 5.2–5.5 we illustrate the nature of
triple lenses by performing the analysis described in Sections 3
and 4 on four simple two-parameter models. We chose the most
symmetric models with a single scale parameter, sketched in
Figure 1. Two of the models are linear (symmetric with
variable central mass, general asymmetric with equal masses),
and two are triangular (equilateral with variable mass in one
vertex, isosceles with variable vertex angle and equal masses).
Each of the models, seen as 2D cuts through the full 5D triple-
lens parameter space, intersects at least one other model. For
example, the isosceles model includes equal-mass equilateral
and equal-mass symmetric linear configurations. As a combi-
nation, these models form a reference set for further studies of
the triple lens.

For all the models we present parameter-space maps of
critical-curve topologies and cusp numbers, together with
galleries of all different topologies. In the accompanying text
we pay particular attention to interpreting the wealth of
information contained in the figures. We point out any
particularly interesting features of the critical curves and
caustics. For better orientation, the text for each model is
structured under the following headings: Model description,
Jacobian surface character, Topology boundaries, Critical-
curve topologies, Caustic structure, Jacobian contour plots,
Planetary limits, Close limit, and Wide limit. For the first
model, the linear symmetric configuration in Section 5.2, we
additionally include the equations of the topology boundaries
obtained from the resultant method, a gallery of all transition
topologies with merging critical-curve loops, the polynomial
expressions for the cusp and morph curves, and a gallery of
caustics from all subregions of the parameter space subdivided
by swallow-tail and butterfly boundaries.

5.2. LS Model: Linear Symmetric Configuration

Model description—in the LS model, sketched in the first
panel of Figure 1, the three lens components lie equidistantly
along a line, spaced by separation s. The second parameter is
the fractional mass μ of the central component. Placing the
origin at the geometric center and the lenses along the real axis,
the positions and masses of the components are z z z{ , , }1 2 3 =

s s{ , 0, }− and μ μ μ{ , , }1 2 3 = μ μ μ{(1 ) 2, , (1 ) 2}− − , with
parameter ranges μ (0, 1)∈ and s (0, )∈ ∞ .

The μ 0= limit describes an equal-mass binary with
components 1 and 3 separated by s2 . The μ 1= case
corresponds to a single central lens represented by component
2. The three-equal-masses case with μ 1 3= is identical to
special cases of two other models discussed further below: the

p 1 2= configurations of the LA model in Section 5.3, and the
πθ = configurations of the TI model in Section 5.5.

Jacobian surface character—for μ 1 9, 1 5≠ : four simple
maxima + six simple saddles; for μ 1 9= : two double maxima
+ four simple saddles; for μ 1 5= : four simple maxima + two
simple saddles + two monkey saddles.
For μ 1 9⩽ all maxima lie in complex–conjugate pairs

along the imaginary axis; for μ 1 9> there are two complex–
conjugate pairs of simple maxima symmetrically displaced
from the imaginary axis.
Two simple saddles lie along the real axis between

neighboring lens components. The remaining saddles for
μ 1 5⩽ lie in complex–conjugate pairs along the imaginary
axis; for μ 1 5> they lie in complex–conjugate pairs
symmetrically displaced from the imaginary axis.
Topology boundaries—due to the high degree of symmetry

of the LS model, two of the moments defined by Equations (29)
and (30) are zero, c d 03 1= = . This leaves only two non-zero
moments, c s2

2= and d μ s(1 )2
2= − . The critical-curve

polynomial is reduced to

( )
(33)
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and the saddle-point polynomial to

p z z μ s z μ s z μs( ) 3 (1 2 ) 3 0, (34)sadd
6 2 4 4 2 6= + − + − =

both in the form of cubic polynomials in z2. Hence they can be
solved analytically, yielding bulky explicit formulae for the
critical curve and Jacobian saddle points. We proceed to
identify the boundaries of parameter-space regions with
different critical-curve topologies using the resultant method
described in Section 3.2, applied here to the two cubic
polynomials.
The first resultant yields the polynomial equation

( )p w μ w μ μ s w

μ s w s

( ) (1 9 ) 6 1 15 18

3 (5 3 ) 8 0, (35)

res
3 2 2 2

4 6

= − + − +

− + + =

where w e i2= ϕ. The second resultant can be factorized to yield
three independent conditions,

( )s μ s μ μ

s μ

8 3 (5 3 ) 6 1 15 18

1 9 0 (36)

6 4 2

2

− + + − +

× + − =

( )s μ s μ μ

s μ

8 3 (5 3 ) 6 1 15 18

1 9 0 (37)

6 4 2

2

+ + + − +

× − + =

( )s μ μ s μ

μ s μ

64 48 1 15 18 3 (5 3 )

(1 9 ) (1 9 ) 0, (38)

12 2 8

4 2

− − + − +

× − − − =

each defining a curve in parameter space. The left-hand side of
Equation (36) is equal to p (1)res , hence it describes the
splitting of the critical curve at 0ϕ = . Similarly, the left-hand
side of Equation (37) is equal to p ( 1)res − , hence it describes
the splitting of the critical curve at π 2ϕ = . These parameter-
space curves thus are genuine boundaries between regions with
different critical-curve topology. Due to the form of Equa-
tion (33) any splitting points of the critical curve along the real
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or imaginary axes correspond to parameter combinations lying
on one of these two boundaries.

The third Equation (38) describes the splitting of the critical
curve at off-axis points with any other value of ϕ. Checking the
third curve following Appendix B, we find that for μ 1 5< it is
a spurious solution of the resultant method. Only the μ 1 5⩾
part of the curve defines a genuine parameter-space boundary
between different topologies.

A closer inspection of Equations (36) and (37) reveals that
both are of third degree in s2, while Equation (38) is of third
degree in s4. Hence, the scale parameter s of all the boundaries
can be expressed analytically as a function of μ. Instead, we
present the results graphically in the parameter-space plot in the
left panel of Figure 2. The boundaries described by
Equations (36), (37), and (38) are illustrated by the black,
orange, and cyan curves, respectively. The boundaries reach
the limits of the plot at μ s[ , ] = [0, 8 ]1 2− , [0, 1], [1 9, 0], and
[1, 1]. At the [1 5, 5 ]1 2− triple point the critical curve passes
through the monkey saddles.

Critical-curve topologies—the plot of the parameter space in
the left panel of Figure 2 identifies regions with different
critical-curve topology. The right panel and its blown-up detail
in Figure 3 include further subdivision by total cusp number, as
discussed further below. For better orientation we mark the six
topology regions in the left panel by letters A–F from top to
bottom and left to right. Starting from the widest regime we
proceed gradually to lower values of the separation s and mark
regions in order of appearance. In case several regions appear at
the same value of s, we mark them in order from lowest to
highest central mass μ.

The critical-curve topologies corresponding to all regions are
illustrated by the examples in Figure 4, where they are shown
together with their caustics. Figure 5 includes examples of
critical curves and caustics for transitions along the topology
boundaries, marked by the letters of adjacent topology regions.
The last two examples correspond to the boundary-intersection
points seen in Figure 2.

As shown in Figure 4, the critical curve of the LS model
consists of one (region B), three (regions A, C, E), or five
loops (regions D, F). Not all the regions have a unique critical-
curve topology: regions C+E, as well as D+F have the same
topology. The linear symmetric triple lens thus has four distinct
topologies: a single loop (B), three independent loops (A), an
outer loop with two inner loops (C, E), or an outer loop with
four inner loops (D, F). The topologies are summarized in the
LS row of Table 1.
We inspect the curves in Figure 4 together with the parameter-

space map in the left panel of Figure 2, in order to understand the
occurrence of the different topologies and transitions between
them. In the wide limit (region A) the three independent loops

Figure 2. LS model parameter-space division. Left panel: by critical-curve topology (marked by letters), with black boundary given by Equation (36), orange by
Equation (37), cyan by Equation (38). Right panel: by total number of cusps on caustic [ 8 cusps—gray; 12—red; 16—cyan; 20—brown]. Region near lower left
corner of right panel is blown up in Figure 3.

Figure 3. LS model: detail of parameter-space division by total cusp number
from Figure 2.
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correspond to Einstein rings of the three components. Reducing
the separation first leads to a simultaneous merger of all three
loops at the real-axis saddles forming a single loop in region B,
as shown by transition AB in Figure 5.

Further development with decreasing s depends on the value
of μ. For μ 0.0753< the next transition BC leads to region C,
splitting off inwards two loops around the inner pair of Jacobian
maxima along the imaginary axis, followed by transition CF to

Figure 4. LS model: gallery of topologies of critical curves (blue) and corresponding caustics (red) with lens positions marked by black crosses. Letters correspond to
regions marked in Figure 2. Caustic subregions and lens parameters μ s[ , ] of examples: A1 [0.1, 1.5], B2 [0.2, 0.5], C1 [0.04, 0.5], D2 [0.2, 0.4], E3 [1/9, 0.35], F1
[0.07, 0.35].

Figure 5. LS model: gallery of critical curves (blue) and corresponding caustics (red) in transitions between the regions marked in Figure 2. Letters denote all adjacent
regions. Lens parameters μ s[ , ] of examples: AB [1/3, 1.6777], BC [0.05, 0.53075], BD [1/3, 0.54593], BE [0.1, 0.38852], CF [0.05, 0.36951], DE [0.15, 0.33], EF
[0.08, 0.34866], BCEF [0.07530, 0.37866], BDE [1/5, 5−1/2].

Table 1
Critical-curve Topology Occurrence in Triple-lens Models

Model

Linear Symmetric (LS) B L L A L C, E L L D, F
Linear Asymmetric (LA) D B L C L E A L F
Triangular Equilateral (TE) C B D A L E, H L I, J F, G
Triangular Isosceles (TI) G C F D B E, J A I, L H, K

Note. Topology regions of the model parameter spaces are marked by letters, as defined in Figure 2 for the LS model, Figure 8 for the LA model, Figure 11 for the TE
model, and Figure 15 for the TI model.
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region F, splitting from the outer loop another pair of loops
around the outer pair of maxima along the imaginary axis. For
μ (0.0753, 1 9)∈ and μ (1 9, 1 5)∈ the transition BE to
region E splits off inwards two loops along the imaginary axis,
each of which encloses two maxima. For μ (0.0753, 1 9)∈ the
next transition EF to region F splits each of the inner loops into a
vertical pair along the imaginary axis, while for μ (1 9, 1 5)∈
transition DE to region D splits the inner loops into horizontal
pairs bracing the imaginary axis. Finally, for μ 1 9> transition
BD to region D splits off simultaneously four loops from four
different points along the outer loop.

The three remaining special cases, μ 0.0753≈ , μ 1 9= , and
μ 1 5= , are illustrated and discussed together with their
caustic structure under the “Jacobian contour plots” heading
further below.

Caustic structure—the number of cusps on the caustic
changes in beak-to-beak, butterfly, and swallow-tail metamor-
phoses. These can be found by studying the intersections of the
cusp and morph curves, as discussed in Section 4. The
polynomial form of both curves for the LS model is provided in
Appendix C.

The butterfly and swallow-tail metamorphoses introduce
additional boundary curves that lead to a finer division of
parameter space by total cusp number. The number is color-
coded in the right panel of Figure 2 and in Figure 3. Topology
regions A and D are divided into two, B into three, and E into
four subregions, with regions C and F undivided. For better
orientation we mark each subregion by the letter of the region
and a subscript number assigned similarly within the region
from top to bottom and left to right.

A gallery of caustics corresponding to all 13 subregions can
be found in Figure 6 together with transition caustics BCEF
and BDE. For each marked subregion there is a pair of panels
showing the full caustic plus a blown-up detail. Already at first
inspection we can identify a range of local features that do not
occur in two-point-mass lens caustics, such as self-intersecting
loops (e.g., A2, E2), nested (C1), or overlapping (D2, F1) loops.
The caustic structures generated in butterfly metamorphoses
can be seen in A2, B2, D1, E1, E2; swallow-tail-generated
structures in B3, E4.

Inspecting the caustic changes along parameter-space
boundaries, we find there are two types of beak-to-beak
metamorphoses. The transition from two tangent folds to two
facing cusps may lead to the formation of an additional loop.
This is always the case in two-point-mass lenses, and it occurs
here in transitions B-A (B1-A1, B2-A2), B-D (B2-D1), B-E (B2-
E1, B1-E3, B3-E4) and C-F (C1-F1). However, we find the
transition may just as well result in the opposite, i.e., the merger
of two loops. This can be seen here in transitions C-B (C1-B3),
D-E (D2-E2), and F-E (F1-E4), always starting from over-
lapping loops and ending in a self-intersecting loop. Hence, in
the triple lens the formation of a cusp pair in the beak-to-beak
metamorphosis may either increase or decrease the number of
caustic loops.

Studying the new boundaries in the right panel of Figure 2,
we note they are formed by three curves, all ending at
μ s[ , ] [1 9, 0]= . The curve leading from [1, 2 1]+ through
regions A, B, E, and the curve leading from [1, 2 1]−
through regions D, E are both associated with butterfly
metamorphoses. The specific transitions include A1-A2, B1-
B2, E3-E1 along the first, and D2-D1, E1-E2 along the second
curve. The third curve leads from [0,1] and shadows the

adjacent topology boundary from the right side through regions
B and E, as seen better in Figure 3. This curve is associated
with swallow-tail metamorphoses (B1-B3, E3-E4).
The total cusp number in the LS model varies from 8

(subregion B1 marked gray in Figures 2 and 3) via 12 (A1, B2,
C1, E3—red) and 16 (A2, B3, D2, E1, F1—cyan) to 20 (D1, E2,
E4—brown). Due to the high symmetry of the model, single
metamorphoses never occur—always at least two occur
simultaneously. As a result, the total cusp number in this case
always changes in multiples of four, with the largest number of
cusps appearing in the local transition from B1 (8 cusps) to E4

(20 cusps) just to the right of boundary intersection BCEF.
There is more diversity in cusp numbers of individual caustic
loops, which have 3, 4, 6, 8, 12 (B2) or 16 (B3) cusps. The
occurrence of different loop combinations is summarized in
column LS of Table 2.
Jacobian contour plots—following the examples given by

Daněk & Heyrovský (2015), we present in Figure 7 Jacobian
contour plots for three special cases: μ 0.0753≈ , μ 1 9= , and
μ 1 5= . The panels in the upper row illustrate the critical-
curve sequences along vertical μ const.= cuts in the
parameter-space plots. In each panel we mark the s 0.5=
critical curve in bold for orientation. We recall that for lower s
values the critical curves correspond to the outer contours plus
the inner loops around the Jacobian maxima, while for higher s
values they correspond to the inner contours around the lens
positions. Note that the central (μ 1 9= ) and right (μ 1 5= )
columns are the only cases of the LS model with four saddles
instead of the generic six, as discussed above.
The panels in the lower row include the corresponding cusp

(orange) and morph (green) curves, which identify the number
and distribution of cusps on the corresponding caustics. In all
cases the contours closest to the lenses have four intersections
with the cusp curve around each lens, corresponding to three
four-cusped caustic loops in the wide-limit subregion A1. The
outermost contours corresponding to the close-limit Einstein
ring have four cusp-curve intersections too. Hence, the central
caustic loop has four cusps as well, whether in subregion F1
(left), E3 (central), or D2 (right column).
At μ 0.0753≈ (left column) the critical-curve sequence is

A-B-F, and the caustic sequence is A1-B1-B3-F1. The transition
from B via the boundary intersection BCEF directly to region F
splits off simultaneously all four inner loops along the
imaginary axis. The tiny loops around the inner pair of maxima
are barely discernible just interior of the inner pair of saddles
along the imaginary axis (see also Figure 5). Each of the small
contours around the maxima has three cusp-curve intersections,
implying a set of four three-cusped caustic loops in the
corresponding region F1. Inspecting the morph curve, note the
somewhat hard-to-see four simultaneous B1-B3 swallow-tail
metamorphoses. These are indicated by the four simple
intersections of the small figure-eight parts of the
morph curve with the small loops of the cusp curve.
In the μ 1 9= case (central column), the critical-curve

sequence is A-B-E, and the caustic sequence is A1-B1-E3. Here
there are only two double maxima, so that the critical curve
stays in region E even in the limit s 0→ . For this value of μ the
close-limit topology of the critical curve has an outer Einstein
ring with only two small loops inside. In the lower panel we see
that either of these loops has four intersections with the cusp
curve. This means that the corresponding caustic loops have
four instead of three cusps in the s 0→ limit in subregion E3.
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This configuration is an example of the “multiple caustics” case
studied by Bozza (2000b).

The μ 1 9= case is generally the only case with neither
butterfly nor swallow-tail metamorphoses, as seen also from the
right panel of Figure 2. The cusp and morph curves intersect
only at the positions of the lenses, saddles, and higher-order
maxima. The higher-order maxima are isolated solutions of the
morph-curve Equation (28). When perturbed to lower μ values,
these points turn into the horizontal figure-eight loops of the
morph curve, as seen in the left μ 0.0753≈ column. Similarly,
when perturbed to higher μ values, they turn into vertical
figure-eight loops that eventually merge with the outer part of
the morph curve at the μ 1 5= monkey saddles.

At μ 1 5= (right column) the critical-curve sequence is A-
B-D, and the caustic sequence is A1-B1-B2-D2. Here the
transition from B to D via the pair of monkey-saddle points at
BDE splits off simultaneously all four inner loops around off-
axis maxima, with the splitting occurring pairwise from the two
monkey saddles (see also Figure 5). The small contours around

the maxima each have three cusp-curve intersections, hence
they correspond to four three-cusped caustic loops in subregion
D2. Inspecting the morph curves in the lower panel, we first
notice the characteristic structure at the monkey saddles. In
each of them the cusp curve arrives from four perpendicular
directions, while the morph curve arrives from six symmetric
directions. The corresponding caustic has two beak-to-beak
metamorphoses with each involving three beaks. These can be
seen in the BDE case triple-loop contact in the last panel of
Figure 6. Note also the additional tangent intersections of the
cusp and morph curves on the imaginary axis closer to the
origin. These correspond to two simultaneous B1-B2 butterfly
metamorphoses, as expected from Figure 2.
Note that yet another LS-model Jacobian plot (for the

μ 1 3= equal-mass case) can be found further in the right
column of Figure 10, where it corresponds to the LA model
with position parameter p 1 2= . Its LS-model sequence of
caustic subregions is A1-B1-B2-D1-D2.

Figure 6. LS model: gallery of caustics with blown-up details from 13 subregions of right panel of Figure 2, plus two transition caustics. Labels mark cusp-number
subregions, with numbers assigned within the given region from top to bottom and left to right in Figure 2. Lens parameters μ s[ , ] of examples: A1 [0.1, 1.5], A2 [0.95,
1.45], B1 [0.2, 0.8], B2 [0.2, 0.5], B3 [0.04, 0.6], C1 [0.04,0.47], D1 [0.7,0.65], D2 [0.2, 0.4], E1 [0.15, 0.36], E2 [0.155, 0.35], E3 [1/9, 0.35], E4 [0.08, 0.35], F1 [0.07,
0.36]; BCEF [0.07530, 0.37866], BDE [1 5, 5 ]1 2− .
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Planetary limits—the LS model has two different planetary-
mass limits. In the μ 0→ case we have an equal-mass binary
with separation s2 and a planet of mass μ placed exactly
between its components (at the L1 Lagrangian point). In order
of decreasing s the caustic sequence is A1-B1-B3-C1-F1. At
both limits, the planet merely adds tiny extra loops to the binary
caustic: the central loop in A1, and the pair of extra three-
cusped loops in C1 and F1. The planet perturbs primarily the
s = 1 wide—intermediate binary transition, which occurs at the
position of the planet. Here, in the single-loop subregions B1

and B3 the planet adds extra cusps to the caustic perpendicu-
larly to the binary axis.

In the μ 1→ case we have a star with two equal-mass
planets at opposite sides at a separation s. Here the caustic
sequence is A1-A2-B2-D1-D2. In the limiting subregions A1 and
D2 the planets perturb the point-like single-lens caustic to form
the central four-cusped loop (Chang & Refsdal 1984), adding
two (A1) or four (D2) extra tiny loops. However, in subregions

A2, B2, D1 covering the separation range
s [ 2 1, 2 1]∈ − + the planets generate extra cusps on
the central loop at positions perpendicular to the orientation of
the system. The planets affect the caustic most prominently
when they lie in the vicinity of the s = 1 Einstein radius,
causing all loops to merge and form the single-loop caustic B2.
Close limit—for μ 1 9≠ (subregions F1, D2): critical

curve = Einstein ring + four small loops around Jacobian
maxima; caustic = central four-cusped loop + four three-
cusped loops escaping to ∞. For μ 1 9= (E3): critical
curve = Einstein ring + two small loops around Jacobian
maxima; caustic = central four-cusped loop + two four-cusped
loops escaping to ∞ (see also Bozza 2000b).
Wide limit—for any μ (subregion A1): critical curve = three

independent Einstein rings with radii
μ μ μ{ (1 ) 2 , , (1 ) 2 }− − ; caustic = three four-cusped

weak-shear Chang–Refsdal loops.

Table 2
Caustic Structure Occurrence in Triple-lens Models

Cusps Triple-lens Model Parameter-space Subregions [sample parameter combination]

Total/By Loop LS [μ s, ] LA [p s, ] TE [μ s, ] TI [ π s,θ ]

8/8 B1[0.2,0.8] D1[0.45,1.2] L G1[0.95,1.5]

10/10 L L C1[0.6,1.35] G2[0.7,1.2]
10/6+4 L B1[0.3,1.5] B1[0.05,1.5] C1[0.1,3]

12/12 B2[0.2,0.5] D2[0.45,0.7] C3[0.95,0.95] G4[0.95,0.8]
12/9+3 L L D1[0.33,1.2] F1[0.33,1]
12/6+6 L L B2[0.13,1.73],B5[0.05,1.13] L
12/6+3+3 C1[0.04,0.5] E1[0.35,0.65] L E1[0.05,1]
12/5+4+3 L L L B1[0.08,2.38]
12/4+4+4 A1[0.25,1.75],E3[0.09,0.36] C1[0.45,1.95] A1[0.25,3] D1[0.3,3],D3[0.9,3]

14/14 L L C2[0.6,0.95] G3[0.4,1.3]
14/10+4 L L B4[0.09,1.58] C2[0.2,2]
14/8+3+3 L L E2[0.7,0.7],H1[0.05,0.69] E2[0.15,1],J2[0.7,0.55]
14/7+4+3 L L L B3[0.11,1.83]
14/6+4+4 L L A2[0.6,2],A3[0.25,2.1] D2[0.5,2.5],D5[0.32,2.5]
14/4+4+3+3 L A1[0.1,1.5] J7[0.768,0.14] A1[0.01,2.1],A4[0.05,3.1],L7[0.7,0.34]

16/16 B3[0.04,0.6] L L L
16/10+6 L L B3[0.25,1.45] C3[0.25,1.6]
16/10+3+3 L E2[0.35,0.75] E1[0.85,0.7] J3[0.84,0.55]
16/9+4+3 L L L B2[0.1,1.98]
16/8+4+4 A2[0.95,1.45] L A5[0.995,1.1] L
16/7+3+3+3 L L I1[0.6,0.67] I1[0.5,0.6]
16/6+6+4 E1[0.15,0.36] L L D4[0.25,2.3]
16/6+4+3+3 L L J3[0.77,0.6],J6[0.772,0.158] A2[0.05,2.1],L4[0.7,0.4],L6[0.76,0.39]
16/4+3+3+3+3 D2[0.7,0.4],F1[0.04,0.36] F2[0.5,0.45] F3[0.95,0.15],G1[0.05,0.34],G3[0.6,0.1] H1[0.1,0.5],H3[0.65,0.2],K3[0.85,0.25]

18/12+3+3 L L E3[0.69,0.67] J1[0.62,0.52]
18/8+4+3+3 L L J5[0.773,0.16],J8[0.764,0.155] A3[0.08,2.24],L5[0.77,0.37],L8[0.67,0.33]
18/6+6+6 L L A4[0.3,1.7] D6[0.33,2]
18/6+6+3+3 L L J1[0.8,0.45] L1[0.78,0.44]
18/6+3+3+3+3 L L F2[0.95,0.35],G2[0.25,0.6] H2[0.33,0.5],K2[0.88,0.48]

20/8+8+4 E2[0.15,0.34],E4[0.09,0.29] L L L
20/8+6+3+3 L L J2[0.8,0.4],J4[0.7,0.6] L2[0.81,0.44],L3[0.66,0.36]
20/8+3+3+3+3 D1[0.7,0.65] F1[0.5,0.53] F1[0.99,0.85] K1[0.94,0.52]

Notes. Caustic-structure subregions of the model parameter spaces are marked by letters and numerals. The sample parameter combinations in square brackets identify
their position in Figures 2 and 3 for the LS model, Figure 8 for the LA model, Figures 11 and 12 for the TE model, and Figures 15 and 16 for the TI model.
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5.3. LA Model: Linear Asymmetric Configuration

Model description—in the LA model three equal-mass lens
components lie along a line with a variable separation of the
outer two components, marked s2 to conform with the previous
LS model. Here the second parameter is the relative separation p
of the central component from the left component in units of the
outer component separation (see second sketch in Figure 1).
Placing the origin at the geometric center and the lenses along
the real axis, the positions and masses of the components
are z z z{ , , }1 2 3 = p p p s{ 1, 2 1, 2 } 2 3− − − − and
μ μ μ{ , , }1 2 3 = {1 3, 1 3, 1 3}, with parameter ranges

p (0, 1)∈ and s (0, )∈ ∞ .
The parametrization is symmetric about p 1 2= , so that the

configurations, critical curves, and caustics for p and p1 − are
mutual mirror images. In the p 0→ limit components 1 and 2
merge, so that the lens is reduced to a binary lens with masses
{2 3, 1 3}. Similarly, in the p 1→ limit components 2 and 3
merge. For p 1 2= the components are spaced symmetrically,
hence these configurations are identical to the μ 1 3=
configurations of the LS model and with the πθ = configura-
tions of the TI model discussed further in Section 5.5.

Jacobian surface character—for any p: four simple maxima
+ six simple saddles.

Topology boundaries—due to the components having equal
masses, we get the center of mass d 01 = , and the remaining
three moments are c s p p4 (1 ) 32

2 2= − + , d c2 32 2= , and

c s p p p8 ( 1)(2 1)(2 ) 273
3= − − − − . The critical-curve

polynomial
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generally cannot be solved analytically. We proceed to identify
the boundaries of parameter-space regions with different
critical-curve topologies using the resultant method described
in Section 3.2 applied directly to polynomials pcrit and psadd.
The first resultant yields the polynomial equation
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where w e i2= ϕ and the parameter p p27 (1 )2 2ν ≡ − /
p p(1 )2 3− + . The equation depends on s through the moment

Figure 7. LS model: Jacobian contour plots for BCEF boundary intersection at μ 0.0753≈ (left column), for double maxima at μ 1 9= (central column), and for
BDE monkey saddles at μ 1 5= (right column). Lower row includes cusp curves (orange) and morph curves (green). Contour values differ from column to column.
Bold black contour: critical curve for s 0.5= ; crosses: lens components; pluses: Jacobian saddle points.
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c2. The second resultant can be factorized to yield three
independent conditions. The first, p (1) 0res = , describes the
splitting of the critical curve at 0ϕ = as a 6th degree
polynomial in s2. The second, p ( 1) 0res − = , would describe
the splitting of the critical curve at π 2ϕ = . However, this
condition has no solution in our parameter space, hence such
splitting does not occur in the LA model. The third condition
describes the splitting of the critical curve at any other value of
ϕ. It has the form of a 15th degree polynomial in s4, which we
do not present here explicitly. An inspection following
Appendix B reveals an entire spurious branch of the
corresponding curve in parameter space.

The p (1) 0res = and the 15th degree polynomial boundaries
are marked in the parameter-space plot in the left panel of
Figure 8 by the black and cyan curves, respectively. The curves
meet the p 0, 1= limits at s ( 2 1) 2 0.9811 23= − ≈− and
s ( 2 1) 2 0.3571 43= − ≈ , respectively.

Critical-curve topologies—the division of parameter space
by critical-curve topology is shown in the left panel of Figure 8.
In view of the p p(1 )↔ − symmetry, we use letters to mark
the six different regions within the left half of the parameter
space (from top to bottom and left to right), and mark their
symmetric counterparts by the same letters.

The topologies corresponding to all regions are illustrated by
the examples presented in Figure 9 together with their caustics.
The LA model permits a greater range of critical-curve
topologies than the LS model, with each region having a
unique topology. In addition to all the topologies seen
previously in the LS model (Figure 4), there is a two-loop
(region B) and a four-loop (region A) topology. In region B
one of the two independent loops contains two lens
components, while in region A there is a simple loop plus a
close-binary set of loops (two small loops within an outer
loop). Neither of these can be achieved in the symmetric LS
model. Note also that the single-loop topology (region D)
occurs only for p (0.239, 0.761)∈ . In other cases with
decreasing s the loop around the pair of components undergoes
the intermediate–close binary transition (B-A) before

connecting with the third-component loop (A-E). All topolo-
gies are summarized in the LA row of Table 1.
Caustic structure—the further subdivision of parameter

space according to total cusp number is shown in the right
panel of Figure 8. The number of cusps on the caustic
changes primarily in beak-to-beak metamorphoses. Unlike in
the case of the LS model, all are of the standard type with
cusp formation accompanying the splitting of caustic loops.
Other metamorphoses occur only in the limited range
p (0.292, 0.708)∈ , as seen from the extent of the additional
duck-foot-shaped boundary in Figure 8. The curve corre-
sponds to a pair of swallow-tail metamorphoses, with the
exception of its two points on the p 1 2= midline. The
higher symmetry at these points leads to a pair of butterfly
metamorphoses at each. The new boundary divides regions D,
E, and F into two subregions each, while the other regions
remain undivided. In comparison with the other models, each
of the nine subregions has a unique caustic structure, as seen
from column LA of Table 2.
The LA model has a lower degree of symmetry than the LS

model, so that beak-to-beak metamorphoses along the real axis
may occur singly and the total cusp number thus may change
by 2. The total cusp number varies from 8 to 20 in steps of two,
with one exception: there is no eighteen-cusped caustic in the
LA model. The newly occurring totals are 10 cusps (subregion
B1 marked blue in Figure 8) and 14 cusps (A1—green). In
comparison with the LS model, there are caustic loops with 10
cusps (B1), but there are no loops with 16 cusps.
Jacobian contour plots—in Figure 10 we present Jacobian

contour plots for three cases: p 0.18, 0.45, 1 2= . The latter
two were used by Daněk & Heyrovský (2015) to illustrate the
swallow-tail and butterfly metamorphoses, respectively. The
p 1 2= caustic sequence from wide to close limit is C1-D1-D2-
F1-F2, with transitions D1-D2 and F2-F1 each involving a pair of
simultaneous butterfly metamorphoses. The p 0.45= caustic
sequence is C1-B1-D1-D2-E2-E1-F2, with transitions D1-D2 and
E1-E2 each involving a pair of simultaneous swallow-tail
metamorphoses.

Figure 8. LA model parameter-space division. Left panel: by critical-curve topology (marked by letters), with black boundary given by p (1) 0res = , cyan by 15th
degree polynomial in s4 (see Section 5.3). Right panel: by total number of cusps on caustic [ 8 cusps—gray; 10—blue; 12—red; 14—green; 16—cyan; 20—brown].
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The p 0.18= case in the left column illustrates a hierarchical
triple system, with components 1 and 2 forming a binary and
component 3 as a distant companion. The structure of the
contours and curves near the first two components resembles a
simple equal-mass binary (see Daněk & Heyrovský 2015) with
its wide, intermediate, and close regimes. If we ignore the local
structure around components 1 and 2, on the large scale the

contours and curves again resemble a binary system with its
three regimes, here with a 2:1 mass ratio since components 1 &
2 act as a single body. The caustic sequence C1-B1-A1-E1-F2
undergoes no swallow-tail, no butterfly, and no single-loop
topology.
Planetary limits—the LA model has no planetary limit.
Close limit—for any p (subregion F2): critical

Figure 9. LA model: gallery of topologies of critical curves (blue) and corresponding caustics (red) with lens positions marked by black crosses. Letters correspond to
regions marked in Figure 8. Caustic subregions and lens parameters p s[ , ] of examples: A1 [0.2, 1.2], B1 [0.4, 1.5], C1 [0.5, 1.725], D2 [0.5, 0.75], E1 [0.7, 0.75], F2
[0.5, 0.45].

Figure 10. LA model: Jacobian contour plots in the regime of binary lens with distant companion at p 0.18= (left column), for the nearly symmetric p 0.45=
(central column), and the symmetric case p 0.5= (right column). Lower row includes cusp curves (orange) and morph curves (green). Contour values differ from
column to column. Notation as in Figure 7.
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curve = Einstein ring + four small loops around Jacobian
maxima; caustic = central four-cusped loop + four three-
cusped loops escaping to ∞.

Wide limit—the wide limit is more interesting, with three
different regimes for arbitrarily large separation s → ∞. In this
limit the model behaves as an equal-mass binary lens plus an
independent single lens. The three regimes are simply the close
(subregion A1), intermediate (B1), and wide (C1) regimes of
the binary lens. The wide regime, which eventually dominates,
leads to three independent single lenses with Einstein radii

1 3 .
This behavior can be proved by the s → ∞ asymptotic form

of the boundaries in Figure 8: in the p 1 2< part the A-B
boundary is given by p s2 1 3= , and the B-C boundary by

p s2 8 3= . Noting that p s2 is the separation between lens
components 1 and 2 (see Figure 1), if we divide the two values
by the Einstein radius of the binary ( 2 3 ), we get the close–
intermediate and intermediate–wide boundaries of the equal-
mass binary lens. To summarize: critical curve = binary critical
curve + Einstein ring with radius 1 3 ; caustic = binary
caustic + four-cusped weak-shear Chang–Refsdal loop.

It is worth noticing that the presence of the distant third body
along the binary axis has no effect on the critical curve
topology or caustic structure of the binary lens, it merely adds a
distant loop. Similarly, the structure of the plots in Figure 8
near the left boundary indicates that a tiny separation of
components 1 and 2 along the axis to component 3 has no
effect on the critical curve topology or caustic structure of the
2:1 mass-ratio binary lens, it merely adds two tiny loops.

5.4. TE Model: Triangular Equilateral Configuration

Model description—in the TE model the lens components lie
at the vertices of an equilateral triangle with side length s (see
third sketch in Figure 1). We use the fractional mass μ of
component 1 as the second parameter. Placing the origin at the
geometric center and aligning the real axis with the median
passing through component 1, the positions and masses of the
components are z z z e e s{ , , } { 1, , } 3i π i π

1 2 3
3 3= − − and

μ μ μ μ μ μ{ , , } { , (1 ) 2, (1 ) 2}1 2 3 = − − , with parameter
ranges μ (0, 1)∈ and s (0, )∈ ∞ .

The μ 0= limit corresponds to an equal-mass binary formed
by components 2 and 3, while the μ 1= limit corresponds to
component 1 as a single lens. The μ 1 3= case is the most
symmetric triple lens: three equal masses in an equilateral
configuration. It is identical to the π 3θ = case of the TI model
discussed further in Section 5.5.

Jacobian surface character—for μ 0.768, 8 9≠ : four
simple maxima + six simple saddles; for μ 0.768≈ : two
simple maxima + one double maximum + five simple saddles;
for μ 8 9= : four simple maxima + four simple saddles + one
monkey saddle. In addition, note that the μ 1 3= equal-mass
case is unique due to its global three-fold symmetry.

Topology boundaries—due to the equilateral configuration
c 02 = , the center of mass d μ s(1 3 ) 121 = − ,
c s 273

3= − , and d μ s(1 3 ) 62
2= − − . The critical-curve
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cannot be solved analytically for a general μ. We use the
resultant method described in Section 3.2 applied to poly-
nomials pcrit and psadd to identify the boundaries of regions with
different critical-curve topologies.
The first resultant yields the polynomial equation
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where w e i2= ϕ and the parameter μ(3 1) 2τ ≡ − is equal to
zero for an equal-mass lens. The second resultant can be
factorized to yield four independent conditions. The first two,
p (1) 0res = and p ( 1) 0res − = , describe the splitting of the
critical curve at 0ϕ = and π 2ϕ = , respectively, in the form
of 6th degree polynomials in s2. The other two conditions
describe the splitting of the critical curve at other values of ϕ.
Both have the form of polynomials in s4 (3rd and 12th degree,
respectively), which we do not present here explicitly. An
inspection following Appendix B reveals that only a segment
of the 3rd degree polynomial curve corresponds to topology
transitions, the rest is spurious.
The p (1) 0res = , p ( 1) 0res − = , the 3rd, and 12th degree

polynomial boundaries are marked in the parameter-space plot
in the left panel of Figure 11 by the black, orange, cyan, and
green curves, respectively. The boundaries reach the μ 0= side
of the plot at s 1 2= and s = 2, the μ 1= side at s = 1, and
the s = 0 side at μ π1 (4 3)sin ( 18) 0.768= − ≈ . At the
μ s[ , ] [8 9, 1 2 ]= triple point the critical curve passes
through a monkey saddle.
Critical-curve topologies—the division of parameter space

by critical-curve topology is shown in the left panel of
Figure 11. The right panel and its blown-up details in Figure 12
include the further subdivision according to total cusp number.
The four curves identified above carve the parameter space in
the left panel into ten different topology regions, marked by
letters from top to bottom and left to right.
For each region examples of critical curves with their

corresponding caustics are presented in Figure 13. We see that
the critical curve may have anywhere from one to five loops.
In comparison with the previous models, there are two new
topologies: a small loop within an outer loop (region D), and
three small loops within an outer loop (I, J). Only one of the
previous models’ topologies does not occur here: the simple
loop plus a close-binary set of loops (model LA region A). As
seen from the TE row of Table 1, this model permits
altogether seven different critical topologies, since the pairs of
regions E+H, F+G, and I+J each share the same topology.
The beak-to-beak metamorphoses along most of the

topology boundaries increase the number of critical-curve
loops, with a decrease occurring only for the D-C, I-E, G-J, and
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F-J transitions. In addition, the TE model has the special case
of the D-B transition, in which two simultaneous beak-to-beaks
convert an outer-plus-inner loop combination to two separate
loops, thus preserving the total number of loops.

Caustic structure—the subdivision of parameter space by
number of cusps on the caustic is shown in the right panel of
Figure 11 and in Figure 12. As seen in both figures, many
additional metamorphoses change the cusp number. There are
four curves corresponding to butterfly and one curve
corresponding to swallow-tail metamorphoses.

Two of the butterfly curves start from [0, 1 2 ]: one leading
down through G to [1 3, 0], returning back through G, J, and F
to s 1 3 2 3 0.214= − + − − ≈ at the right edge;
the second goes up through B and A to

s 1 3 2 3 4.66= + + + ≈ at the right edge. The other
two butterfly curves rise monotonically from [0.768, 0] toward
the right side: the third through J and F to s 1 3= + −

2 3 0.800+ ≈ ; the fourth through J, E, C, and A to

s 1 3 2 3 1.25= − + + − ≈ .
Finally, the swallow-tail curve starts from [0, 1 2 ] and

leads up through B with a small sharp peak at μ 0.084≈ to A,
where it peaks sharply when it meets the butterfly curve at
μ 1 3= , dropping down through A, C, E, and J to [0.768, 0].
The curve corresponds to a complex–conjugate pair of
swallow-tail metamorphoses everywhere except at the two
sharp peaks. At the μ 1 3= peak three symmetric butterfly
metamorphoses occur simultaneously, while at the μ 0.084≈

Figure 11. TE model parameter-space division. Left panel: by critical-curve topology (marked by letters), with black boundary given by p (1) 0res = , orange by
p ( 1) 0res − = , cyan by 3rd degree and green by 12th degree polynomials in s4 (see Section 5.4). Right panel: by total number of cusps on caustic [10 cusps—blue;
12—red; 14—green; 16—cyan; 18—yellow; 20—brown]. Region near lower right corner of right panel is blown up in Figure 12.

Figure 12. TE model: parameter-space division by total cusp number. Left panel: detail from Figure 11. Right panel: detail from left panel near close limit of double-
maximum configuration.
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peak there is a complex–conjugate pair of butterfly
metamorphoses.

The additional set of curves in the right panel of Figure 11
(with details better seen in Figure 12) divides regions C, E, F,
and G into three subregions each, regions A and B into five
subregions, and region J into eight subregions. Regions D, H,
and I remain undivided. The parameter space of the TE model
is thus divided into 33 subregions, corresponding to 24
different loop combinations. These are sorted by cusp number
and listed in column TE of Table 2. The total cusp number
varies from 10 to 20 in steps of two; i.e., there is no eight-
cusped caustic. Caustics with 18 cusps that appear newly in this
model occur in seven different subregions (see Table 2).
Individual caustic loops have 3, 4, 6, 7, 8, 9, 10, 12, or 14
cusps. In comparison with the previous models there is no
sixteen-cusped loop (B3 in LS model), while seven-cusped (I1
shown in Figure 13) and nine-cusped loops (D1 in Figure 13)
are new here.

Jacobian contour plots—Figure 14 includes contour plots for
three special cases: μ 1 3= , μ 0.768≈ , and μ 8 9= . In the
symmetric μ 1 3= case the caustic sequence from wide to
close limit is A1-A4-D1-G2, with the A1-A4 three simultaneous
butterfly metamorphoses at s 2 3 2.752 3 1 2= ≈ . The D1-A4

three simultaneous beak-to-beaks occur at
s [(5 5 11) 2] 1.491 6= + ≈ , and the D1-G2 three simulta-
neous beak-to-beaks occur at s [(5 5 11) 2] 0.6701 6= − ≈ .
There is no single-loop topology, but with the slightest

perturbation to a higher μ the sequence would visit the C2

single-loop region with a fourteen-cusped caustic.
The double-maximum case in the central μ 0.768≈ column

has a caustic sequence A1-A2-C1-E2-J3-J7 with two butterfly
metamorphoses along the real axis. The plot requires a larger
scale due to the close-limit J7-J3 butterfly point near the right
edge of the inset.
The same holds also for the μ 8 9= monkey-saddle case in

the right column. The caustic sequence A1-A2-C1-C3-E1-F2-F3
starts out similarly, but differs once the components get closer.
The three butterfly points all lie on the real axis.
Planetary limits—the TE model has two different planetary-

mass limits, similar to those of the LS model. The μ 0→ limit
describes an equal-mass binary separated by s with a planet of
mass μ offset perpendicularly at the vertex of an equilateral
triangle (at the L4 Lagrangian point for a face-on coplanar
orbit.3) In order of decreasing s, the caustic undergoes a
sequence of seven metamorphoses: A1-B1-B5-B3-D1-H1-G2-
G1. The two widest regimes, A1 and B1, correspond to a wide
and intermediate binary caustic, respectively, each with an
additional four-cusped loop due to the planet. Similarly, G1

corresponds to a close binary caustic with two additional three-
cusped loops due to the planet.

Figure 13. TE model: gallery of topologies of critical curves (blue) and corresponding caustics (red) with lens positions marked by black crosses. Letters correspond
to regions marked in Figure 11. Caustic subregions and lens parameters μ s[ , ] of examples: A4 [1/3, 1.55], B3 [0.15, 1.3], C1 [0.7685, 1.0], D1 [1/3, 1.2], E2 [0.7685,
0.68], F2 [0.9, 0.68], G2 [1/3, 0.65], H1 [0.15, 0.68], I1 [0.6, 0.68], J3 [0.7685, 0.64].

3 Note that in this case L4 is unstable, since μ μ2 3= .
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All six metamorphoses between B1 and G1 occur close to the
s 1 2= intermediate–close binary transition, since the planet
lies exactly at the location at which one three-cusped loop
would split off in the binary limit. The sequence begins with a
butterfly on the planetary loop leading to B5, followed by a pair
of swallow tails on the binary-caustic loop to B3. In the peculiar
transition to D1 both loops connect in a pair of reverse beak-to-
beaks, which simultaneously split off a three-cusped loop. A
second three-cusped loop is formed along the real axis in a
beak-to-beak to H1, and a third and fourth three-cusped loop
appear simultaneously in a pair of beak-to-beaks to G2. Finally,
the main caustic loop loses two cusps in a reverse butterfly
to G1.

The μ 1→ limit describes a single lens with two equal-mass
planets at the same distance s, an angle of π 3 apart. Even in
this case the caustic undergoes seven metamorphoses with
decreasing s: A1-A2-A5-C3-E1-F1-F2-F3. In the A1 wide limit,
the caustic consists of three four-cusped weak-shear Chang–
Refsdal loops (Chang & Refsdal 1984). In the F3 close limit,
the caustic has one four-cusped weak-shear Chang–Refsdal
loop for the star, plus two pairs of three-cusped strong-shear
Chang–Refsdal loops for the planets.

The butterfly metamorphosis from A1 to A2, found on the
caustic loop of the star at the cusp facing the planets, occurs
already at a large distance of the planets—approaching
s 4.66≈ for μ 1→ . The next butterfly to A5 near s 1.25≈
occurs on the caustic loop of the star at the tip of the first
butterfly feature. The three following beak-to-beak transitions

all occur near s = 1, the Einstein radius of the single lens. First,
the two planetary four-cusped loops connect with the starʼs
loop leading to C3, one pair of three-cusped planetary loops
then disconnects to E1, and another pair disconnects to F1. The
last two metamorphoses occur on the starʼs loop: reverse
butterflies near s 0.800≈ to F2, and s 0.214≈ to F3. We point
out that even though the planetary loops of the caustic connect
and disconnect when the planets lie close to the starʼs Einstein
ring, the starʼs loop of the caustic is affected by having extra
cusps for a much wider range of planetary distances,
s (0.214, 4.66)∈ .

Close limit—for μ 1 3, 0.768≠ (subregions F3, G1, G3):
critical curve = Einstein ring + four small loops around
Jacobian maxima; caustic = central four-cusped loop + four
three-cusped loops escaping to ∞. For μ 1 3= (G2): critical
curve = Einstein ring + four small loops around Jacobian
maxima; caustic = central six-cusped loop + three three-cusped
loops escaping to ∞ + one three-cusped loop staying at center.
For μ 0.768= (J7): critical curve = Einstein ring + three small
loops around Jacobian maxima; caustic = central four-cusped
loop + one four-cusped and two three-cusped loops escaping
to ∞.
The μ 1 3= equal-mass case exhibits a new close-limit

behavior: the central caustic loop has six instead of four cusps,
and one of the four three-cusped loops stays at the center
instead of escaping to ∞ (see Figure 13). The central caustic
loop is self-intersecting with a three-fold symmetry, so that a
pair of cusps points in the direction of each of the lens

Figure 14. TE model: Jacobian contour plots for equal masses μ 1 3= (left column), for double maximum at μ 0.768≈ (central column), and for monkey saddle at
μ 8 9= (right column). Lower row includes cusp curves (orange) and morph curves (green). Contour values differ from column to column. Insets in lower central
and right panels: zoomed-out plots of critical, cusp, and morph curves. Notation as in Figure 7.
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components. In the s 0→ limit each pair rapidly converges to a
point, so that the shape of the shrinking caustic loop
approaches a simple symmetric three-cusped loop, which is
traced twice as one follows the corresponding Einstein ring.
The nature of the central loop can also be seen from the contour
plot in the left column of Figure 14. The six branches of the
cusp curve extending symmetrically to the outer edges have six
intersections with the outer contours, which represent the
perturbed Einstein-ring loop in the close limit.

Wide limit—for any μ (subregion A1): critical curve = three
independent Einstein rings with radii μ μ{ , (1 ) 2 ,−

μ(1 ) 2 }− ; caustic = three four-cusped weak-shear
Chang–Refsdal loops.

5.5. TI Model: Triangular Isosceles Configuration

Model description—the final, topologically richest model
has three equal-mass lens components lying at the vertices of
an isosceles triangle, with legs of length s spanning a vertex
angle θ (see fourth sketch in Figure 1). If we place the origin
at the geometric center, align the axis of symmetry with the
real axis, and set component 1 at the vertex angle, the
positions and masses of the components are z z z{ , , }1 2 3 =

e e e{ ,i i i2 2 2− − −θ θ θ− + e e e s2 , 2 } 3i i i2 2 2−θ θ θ− − and
μ μ μ{ , , }1 2 3 = {1 3, 1 3, 1 3}, with parameter ranges

π(0, ]θ ∈ and s (0, )∈ ∞ .
In the 0θ = limit components 2 and 3 coincide, reducing the

system to a binary lens with masses {1 3, 2 3} and separation
s. We recall that in the LA model both p = 0 and p = 1 edges
correspond to a binary lens with the same mass ratio but with
separation s2 . The πθ = case corresponds to the collinear
limit with component 1 at the center. Hence, the corresponding
configurations are identical to the μ 1 3= case of the LS
model, as well as the p 1 2= case of the LA model. Similarly,
configurations with vertex angle π 3θ = are identical to the
μ 1 3= configurations of the TE model.
Jacobian surface character—for π π0.124 , 0.708 ,θ ≠

π0.847 : four simple maxima + six simple saddles; for
π0.708θ ≈ : two simple maxima + one double maximum +

five simple saddles; for π0.124θ ≈ and π0.847θ ≈ : four
simple maxima + four simple saddles + one monkey saddle. In
addition, the π 3θ = equilateral case has global three-fold
symmetry, as discussed in Section 5.4.

Topology boundaries—since the masses are equal, the center
of mass d 01 = , c s[1 4 sin ( 2)] 32

2 2θ= − , d c2 32 2= , and
c s2 cos( 2)[1 8 sin ( 2)] 273

2 3θ θ= − + . The critical-curve
polynomial
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cannot be solved analytically for a general θ. We use the
resultant method described in Section 3.2 applied to poly-
nomials pcrit and psadd to identify the boundaries of regions in
parameter space with different critical-curve topologies.

The first resultant yields the polynomial equation
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where w e i2= ϕ and the parameter 4 sin ( 2)2κ θ≡ is equal to
unity for an equilateral configuration. The second resultant can
be factorized to yield three independent conditions. The first
two, p (1) 0res = and p ( 1) 0res − = , describe the splitting of
the critical curve at 0ϕ = and π 2ϕ = , respectively, in the
form of 6th degree polynomials in s2. The third condition
describes the splitting of the critical curve at other values of ϕ.
It has the form of a 15th degree polynomial in s4, which we do
not present here explicitly. An inspection following
Appendix B reveals that two segments of the corresponding
curve have to be omitted, since they yield spurious solutions
with no change in the critical-curve topology.
The p (1) 0res = , p ( 1) 0res − = , and the 15th degree poly-

nomial boundaries are marked in the parameter-space plot in the
left panel of Figure 15 by the black, orange, and cyan curves,
respectively. The boundaries reach the 0θ = side of the plot at
s ( 2 1) 0.7141 43= − ≈ and s ( 2 1) 1.961 23= − ≈− , the

πθ = side at s 0.546≈ and s 1.68≈ , and the s = 0 side at
π0.708θ ≈ . At either of the s π[ , ] [0.124 , 1.76]θ ≈ and

π[0.847 , 0.478] triple points the critical curve passes through
a monkey saddle.
Critical-curve topologies—the division of parameter space

by critical-curve topology is shown in the left panel of
Figure 15. The cusp-number map in the right panel and its
blown-up details in Figure 16 include further subdivision by
cusp number. The three curves obtained from the resultant
analysis carve the parameter space into twelve different
regions, marked by letters A–L in the left panel, from top to
bottom and left to right.
For each region, examples of critical curves with their

corresponding caustics are shown in Figure 17. The critical
curve may have anywhere from one to five loops. The TI model
has all the topologies found in the three previous models, plus
one new topology: two separate loops, one of which contains a
small third loop (region B). As seen from the TI row of
Table 1, this model permits altogether nine different critical
topologies, since the pairs of regions E+J, I+L, and H+K each
share the same topology.
The beak-to-beak metamorphoses along most of the

topology boundaries increase the number of critical-curve
loops, with a decrease occurring only for the F-G, I-J, H-L, and
K-L transitions. Similarly to the D-B transition of the TE
model, the TI model has the special F-C transition, in which
two simultaneous beak-to-beaks convert an outer-plus-inner
loop combination to two separate loops, preserving the total
number of loops.
Caustic structure—the cusp-number maps in the right panel

of Figure 15 and in Figure 16 include subdivision due to
additional caustic metamorphoses. Four of the five additional
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curves define conditions for the butterfly and one for the
swallow-tail metamorphoses. Two of the butterfly curves
asymptotically approach 0θ → as s → ∞: one leads down
through A, E, and H to s π[ , ] [ 3, 0]θ = , rising back through
H, L, and K to s 0.502≈ at the right edge; the other leads down
through A, B, and C, rising up through C and D to s = ∞ at

π 2θ = , dropping down through D and G to s 1.20≈ at the
right edge. The second pair of butterfly curves rises from

π[0.708 , 0] to the right edge: one through L and K to
π[ , 0.502]; the other through L, J, and G to π[ , 1.20]. All the
butterfly metamorphoses defined by these four curves occur
along the symmetry axis of the lens.

The swallow-tail curve starts asymptotically at s → ∞ as
0θ → , dropping down through A, B, and C, rising up through

C and D to a sharp peak at π0.220θ ≈ , bouncing back to
another sharp peak reaching the second butterfly curve at

π 3θ = , dropping finally through D, G, J, and L to
π[0.708 , 0]. Just as in the TE model, the curve corresponds

to a complex–conjugate pair of swallow-tail metamorphoses
everywhere except at the two sharp peaks. At the π 3θ = peak,
three symmetric butterfly metamorphoses occur simulta-
neously, while at the π0.220θ ≈ peak there is a complex–
conjugate pair of butterfly metamorphoses. These are the only
two cases within the TI model with butterflies occurring off the
symmetry axis.

Figure 15. TI model parameter-space division. Left panel: by critical-curve topology (marked by letters), with black boundary given by p (1) 0res = , orange by
p ( 1) 0res − = , cyan by 15th degree polynomial in s4 (see Section 5.5). Right panel: by total number of cusps on caustic [ 8 cusps—gray; 10—blue; 12—red; 14—
green; 16—cyan; 18—yellow; 20—brown]. Regions near the upper left and lower right corners of right panel are blown up in Figure 16.

Figure 16. TI model: parameter-space division by total cusp number. Left panel: detail from upper left part of Figure 15. Right panel: detail of lower right corner of
Figure 15.
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The additional set of curves divides region E into two
subregions, regions B, C, H, J, and K into three subregions
each, regions A and G into four, region D into six, and region L
into eight subregions, with regions F and I remaining
undivided. The parameter space of the TI model is thus
divided into 41 subregions, corresponding to 28 different
caustic-loop combinations. All are sorted by cusp number and
listed in column TI of Table 2. The total cusp number varies
from 8 to 20 in steps of two. Individual caustic loops have 3, 4,
5, 6, 7, 8, 9, 10, 12 or 14 cusps. In comparison with the
previous models there is no sixteen-cusped loop (B3 in LS
model), while five-cusped loops appear newly here (in
subregion B1).

Jacobian contour plots—Figure 18 includes contour plots for
three special vertical transects through the parameter space.
Vertex angle π0.220θ ≈ in the left column corresponds to the
left sharp peak of the swallow-tail curve in Figure 15. The
caustic sequence from wide to close limit is D1-D4-C2-C3-F1-
E2-H2-H1, with no single-loop topology and no swallow-tail
metamorphosis. The inset includes the H1-H2 butterfly
metamorphosis close to its right edge. Note the special F-C
pair of beak-to-beaks at the zRe[ ] 0.14≈ − saddle points, in
which two nested loops reconnect to form two separate loops.

The D1-D4 simultaneous complex–conjugate pair of butter-
flies is indicated by the morph curve passing through self-
intersection points of the cusp curve near zRe[ ] 0.15≈ . These
self-intersections disappear for any perturbation of θ. For lower
values the cusp curve at the upper point splits along a SW-NE
axis, for higher values along a NW-SE axis. In either case only
one of the two separated branches intersects the morph curve,
corresponding to a complex–conjugate pair of swallow tails.

The central π 2θ = column has the caustic sequence D2-G2-
G3-F1-I1-H2-H1. The G2-G3 pair of swallow tails occurs in the
image plane on the central small figure-eight loop of the
morph curve, and the H1-H2 butterfly can be seen at the left
edge of the inset. The peculiar feature occurring at this angle is
the six-cusped loop around the left component in the wide limit
(D2). In the double-maximum π0.708θ ≈ case in the right
column the caustic sequence D3-D2-G2-J2-L4-L7 ends with a
four-cusped caustic loop corresponding to the double-max-
imum critical-curve loop.
Two further transects of the TI model can be found in

contour plots of other models. The symmetric π 3θ = case
appears as the μ 1 3= left column of the TE-model Figure 14
(TI-model caustic sequence: D1-D6-F1-H2). The linear πθ =
case appears rotated by π 2 as the p 0.5= plot of the LA
model in Figure 10 (TI-model: D3-G1-G4-K1-K3).
Planetary limits—the TI model has no planetary limit.
Close limit—for π π3, 0.708θ ≠ (subregions H1, H3, K3):

critical curve = Einstein ring + four small loops around
Jacobian maxima; caustic = central four-cusped loop + four
three-cusped loops escaping to ∞. For π 3θ = (H2): critical
curve = Einstein ring + four small loops around Jacobian
maxima; caustic = central six-cusped loop + three three-cusped
loops escaping to ∞ + one three-cusped loop staying at center.
For π0.708θ = (L7): critical curve = Einstein ring + three
small loops around Jacobian maxima; caustic = central four-
cusped loop + one four-cusped and two three-cusped loops
escaping to ∞.
Wide limit—it is the wide limit that is particularly interesting

here. For any fixed θ the s → ∞ limit corresponds to three

Figure 17. TI model: gallery of topologies of critical curves (blue) and corresponding caustics (red) with lens positions marked by black crosses. Letters correspond to
regions marked in Figure 15. Caustic subregions and lens parameters s[ , ]θ of examples: A2 π[0.05 , 2], B2 π[0.1 , 2], C2 π[0.2 , 2], D6 π[ 3, 1.55], E2 π[0.1 , 1.2], F1

π[0.2 , 1.2], G2 π[0.7 , 1.2], H2 π[0.2 , 0.55], I1 π[0.55 , 0.55], J2 π[0.7 , 0.55], K2 π[0.9 , 0.5], L4 π[0.7 , 0.45].
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single lenses with Einstein radii 1 3 . However, for s 1θ ∼ −

the wide limit describes an equal-mass binary formed by
components 2 and 3 with a distant object offset perpendicularly
from the binary axis. This is analogous to the p s 1∼ − wide
limit in the LA model with a distant object lying along the
binary axis (see Section 5.3). The TI model has a total of nine
different caustic regimes for arbitrarily large leg length s → ∞.
In order of increasing vertex angle θ these are: A1, A2, A3, A4,
B1, C1, D1, D2, and D3. The regimes can be grouped by the
character of the binary lens formed by components 2 and 3:
close (topology region A), intermediate (C), and wide (D).
Topology B and the caustic subregion structure are the results
of perturbation of the binary by the distant companion—as well
as perturbation of the companion by the binary.

The additional topology B (see Figure 17) occurs at the close
—intermediate boundary. The influence of the companion
causes the opposite inner loop to connect with the outer loop
before the adjacent one, rather than both connecting simulta-
neously. In the asymptotic s → ∞ regime B becomes
negligible, as can be seen from the topology boundaries.
The separation of binary components 2 and 3 (see Figure 1)
along the A-B boundary is asymptotically s2 sin( 2)θ

s s(1 6 6) 32 3≃ + −− − , while along the B-C boundary we
get s2 sin( 2)θ s s(1 6 6) 32 3≃ + +− − . The two expres-
sions differ only at the s 3− order. For completeness, the
asymptotic C-D boundary yields s2 sin( 2) 8 3θ ≃ .

Normalizing the asymptotic separations by the 2 3 Einstein
radius of the binary, we recover the standard close—
intermediate A-(B)-C and intermediate—wide C-D boundaries
of an equal-mass binary.
The wide-limit caustic in regions A through C always has a

four-cusped weak-shear Chang–Refsdal loop for the distant
companion. The binary part of the caustic is dominated by the
close-binary structure in A1: three loops with 4 + 3 + 3 cusps.
Increasing the separation causes the main loop to undergo two
subsequent butterfly metamorphoses to A2 (6+3+3) and A3 (8
+ 3 + 3), followed by a pair of reverse swallow tails to A4 (4 +
3 + 3). One three-cusped loop merges with the main loop to B1

(5 + 3), followed by the other to reach the intermediate regime
C1 (6), which then splits into two in the wide-binary regime D1

(4 + 4). The structure of the binary part does not change further
in the D region.
At larger vertex angles in region D, it is the companion loop

of the caustic that undergoes an interesting transition. The
butterfly entrance to D2 turns the loop into a six-cusped self-
intersecting curve. This structure disappears in a reverse
butterfly when exiting to D3. While for any other angle an
increase in s would eventually return the six-cusped loop to the
regular four-cusped regime, for π 2θ = the peculiar shape
persists for s → ∞. In this limit each of the three pairs of cusps
converge to a point, so that the shape approaches a three-
cusped loop traced twice. The caustic loop is similar to the six-
cusped loop in the close limit of the equal-mass TE model.

Figure 18. TI model: Jacobian contour plots for off-axis butterflies at π0.220θ ≈ (left column), for Chang–Refsdal violating π 2θ = (central column), and for
double maximum at π0.708θ ≈ (right column). Lower row includes cusp curves (orange) and morph curves (green). Contour values differ from column to column.
Insets in lower panels: zoomed-out plots of critical, cusp, and morph curves. Notation as in Figure 7.
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We stress that in this regime all three components lie at
arbitrarily large separations. Still, the configuration alters the
caustic loop of the component at the vertex fundamentally. This
effect is caused by the gravitational fields of the other two
components, which combine so that they exactly cancel the
lensing shear term. Hence, the Chang–Refsdal limit is not valid
in this special case. Even though this occurs in the TI model for
s → ∞ only for π 2θ = , for any fixed not-too-large value of s
there is an interval of angles for which the simple Change-
Refsdal shape of the caustic loop cannot be assumed.

5.6. Overview of Critical-curve Topologies and
Caustic Structures

In Table 1 we summarize the occurrence of the nine different
critical-curve topologies in the parameter spaces of the four
studied triple-lens models. The topologies are listed first in
order of increasing total number of loops, then by decreasing
number of separate outer loops.

The total loop number ranges from one to five, with single 1-
loop and 5-loop topologies, two different 2-loop and 4-loop
topologies, and three different 3-loop topologies. The number
of outer separate loops ranges from one to three, and the
number of inner loops ranges from zero to four. Four of the
topologies occur in all studied models: single loop, three
separate loops (the generic wide limit), an outer loop with two
inner loops, and an outer loop with four inner loops (the typical
close limit). These four are the only topologies found in the LS
model. The LA model has six, the TE model seven, and the TI
model has all nine topologies.

The topologies found in the analyzed models are only
examples of the possible topologies of triple-lens critical
curves, so the list in Table 1 is by no means exhaustive. All of
the studied models are symmetric by their geometry and mass
combination; all have at least one reflection symmetry.
Breaking the symmetries of the models opens up the possibility
of additional critical-curve topologies. However, finding the
overall number of topologies of the triple lens is beyond the
scope of this work. Such a survey would require a detailed
investigation of the geometry of the Jacobian surface and the
positions and types of its maxima, saddles, and poles. The
correspondence with Jacobian contours may prove to be
another useful tool, which may identify the possible sequences
of topology changes when scaling the lens from the wide to the
close limit.

Finally, we point out that the topologies discussed here are
those that occur in two-dimensional areas of the parameter
space of their models. One may proceed further and classify
also the critical-curve topologies of all transitions between the
different marked topology regions, such as those shown in
Figure 5. While this would be a straightforward extension, we
do not include it here since the present work is extended
enough already.

Table 2 presents an overview of all 32 different caustic
structures in the parameter spaces of the four studied triple-lens
models. Here we identify the caustic structure purely by the
combination of cusp numbers on the individual loops. In the
notation used in the first column of the table, for example 16/10
+3+3 identifies a caustic with a total 16 cusps on three loops:
one with 10, and two with 3 cusps each. The caustics are
ordered in the table first by increasing total cusp number, then
in decreasing order by the number of cusps on individual loops.

The total cusp number runs from 8 to 20 in increments of 2.
The eight-cusped caustics have only a single-loop structure, the
ten-loop caustics have two, twenty-loop caustics three,
eighteen-loop caustics five, twelve- and fourteen-loop caustics
six each, and sixteen-loop caustics nine different structures.
Individual loops have 3–10, 12, 14, or 16 cusps. Least common
are the five-cusped loop (the 12/5+4+3 caustic in the TI/B1

subregion), and the sixteen-cusped loop (the 16/16 caustic in
the LS/B3 subregion). There are only four caustic structures
that occur in all four studied models: 12/12, 12/4 + 4 + 4
(includes the generic wide limit), 16/4 + 3 + 3 + 3 + 3 (includes
the generic close limit), and 20/8 + 3 + 3 + 3 + 3. The LS
model has 10, the LA model has only 9, the TE model has 24,
and the TI model has 28 different caustic structures, lacking
only four of all the found possibilities.
The list in Table 2 is based purely on the cusp numbers on

loops of the caustic. If we took into account the combination of
critical-curve topology and caustic structure, the list would
expand to 37 different cases. The reason for this is that a given
caustic structure may occur for different mutual positions of
critical-curve loops. For example, two four-cusped loops of the
caustic may correspond to two separate loops of the critical
curve, or to an outer and inner loop of the critical curve. An
inspection of the topologies in Table 1 shows that this is the
case for the 12/4 + 4 + 4 caustic in the LS model from the A
versus E regions; the 16/6 + 6 + 4 caustic in the TI model D
region versus LS model E region; the 14/4 + 4 + 3 + 3 caustic
in the LA and TI model A regions versus the TE model J region
and TI model L region; the 16/6 + 4 + 3 + 3 caustic in the TI
model A region versus the TE model J region and TI model L
region; and the 18/8 + 4 + 3 + 3 caustic in the TI model A
region versus the TE model J region and TI model L region.
The list in Table 2 does not include the caustics of lens

configurations at metamorphosis points. The classification
along subregion boundaries in parameter space would require
additional counting of beak-to-beak, swallow-tail, and butterfly
points. Even here we note that the caustic structures of the
analyzed models are only examples of triple-lens caustics, and
the list in Table 2 is not exhaustive. Analyzing less symmetric
systems reveals that the frequency of metamorphosis types is
different from most of the analyzed models, with swallow tails
occurring more frequently than butterflies (as seen here in the
LA model).

6. SUMMARY

We presented an initial exploration of the character of critical
curves and caustics of triple gravitational lenses. The topic is of
particular interest for the analysis of observed planetary
microlensing events. Already four published events involved
triple-lens systems: in two cases the lens was a star with two
planets (Gaudi et al. 2008; Han et al. 2013); in two cases a
binary lens with a planet (Gould et al. 2014; Poleski
et al. 2014). Moreover, even triple systems formed by a star
with a planet with a moon might be detectable by microlensing
(e.g., Liebig & Wambsganss 2010).
Our approach is based on analyzing the properties of the lens

in the image plane, with the main relevant results from Daněk
& Heyrovský (2015) introduced in Section 2. We describe in
detail in Sections 3 and 4 several analytical and numerical
methods for parameter-space mapping of the topology of the
critical curve and the number of cusps of the caustic. The
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methods are presented in a form applicable to any n-point-
mass lens.

In Section 5.1 we present the main relevant polynomial
equations for triple lenses in a compact form in terms of
moments of the mass distribution. In Sections 5.2–5.5 we apply
the described methods to the analysis of four simple two-
parameter models of triple lenses. For each of them in turn we
discuss separately the Jacobian surface character, topology
boundaries, critical-curve topologies, caustic structure, Jaco-
bian contour plots, planetary limits, close limit, and wide limit.
The combined results explain the properties of lenses on four
2D cuts through the full 5D parameter space of the general
triple lens. Since each of the studied models intersects at least
one other along a 1D set of parameter combinations, the
presented results may serve as a reference framework for
further studies.

The results include the description of a range of triple-lens
features, such as the occurrence of swallow-tail and butterfly
metamorphoses, Jacobian monkey saddles, or double maxima.
We demonstrated that the appearance of two new cusps in the
beak-to-beak metamorphosis is not always accompanied by the
splitting of critical-curve loops. It may lead to the opposite, the
merger of loops, as discussed in the caustic structure
paragraphs of Section 5.2. Finally, two simultaneous beak-to-
beaks may lead to a reconnection preserving the number of
loops. Within the studied models this occurs along the D-B
transition in the TE model, and along the F-C transition in the
TI model.

The planetary limits are particularly noteworthy in the
equilateral TE model. The μ 0→ limit shows that a planet
placed near the close–intermediate beak-to-beak point of a
binary lens may turn the single transition into a sequence of six
caustic metamorphoses. The μ 1→ limit demonstrates that a
pair of planets may form additional cusps on the Chang–
Refsdal four-cusped caustic of the star at a very broad range of
separations, in this case s (0.214, 4.66)∈ Einstein radii.

Unusual behavior in the close limit occurs in the presence of
double maxima (LS, TE, and TI models), and in the equal-
mass equilateral lens (TE and TI models). Any double
maximum causes the lens to have a four-cusped escaping
caustic loop instead of a pair of three-cusped loops
(Bozza 2000b). The symmetry of the equal-mass equilateral
lens causes it to have a self-intersecting six-cusped (asympto-
tically three-cusped) primary caustic loop, instead of the
generic four-cusped loop. In addition, one of the weak three-
cusped caustics stays at the origin instead of escaping away.

Very interesting wide-limit behavior was found in the TI
model with vertex angle π 2θ = . Here one of the caustic loops
retains a self-intersecting six-cusped shape approaching a three-
cusped shape for arbitrarily large separations of all compo-
nents. Such a lens violates the generic Chang–Refsdal limit
(Chang & Refsdal 1984). In this case the gravitational fields of
the two other components exactly combine to cancel the
lensing shear term. The shape is thus dominated by higher-
order terms, leading to its different geometry.

For smaller angles, the wide limit of the TI model
demonstrates the sensitivity of the binary caustic structure of
the two close components to a distant companion. Here the
presence of the third perpendicularly offset body perturbs
primarily the caustic structure near the close–intermediate
transition. As a result, the caustic undergoes a sequence of five
metamorphoses instead of a single one.

We compiled the results found for all four models in the
tables presented in Section 5.6. The critical curves have 9
different topologies, and the caustics have 32 different
structures, when identified by the combination of numbers of
cusps on individual loops. A joint classification of critical-
curve topologies and caustic structures increases the number
further to 37 different situations. The lists are just a sample of
the full range provided by the general triple lens.
In Table 2 we provided for each model the parameters of

examples of all different caustic structures. These can be used
to guide more detailed studies of critical-curve and caustic
metamorphoses, to generate examples for testing light-curve
fitting codes and algorithms, or as a starting point for exploring
the behavior of less symmetric triple lenses.

We thank the anonymous referee for suggestions that helped
improve the manuscript. Work on this project was supported by
Czech Science Foundation grant GACR P209-10-1318 and
Charles University grant SVV-260089.

APPENDIX A
COMPUTING THE RESULTANT OF TWO

POLYNOMIALS

A polynomial f x( ) or degree d 1⩾ with roots , d1ξ ξ… can
be written as

( )f x a x a x( ) , (48)
j

d

j
j

d

j

d

j

0 1

∑ ∏ ξ= = −
= =

where a 0d ≠ . Similarly, for another polynomial g x( ) of degree
e 1⩾ with roots , e1η η… we have

( )g x b x b x( ) (49)
j

e

j
j

e

j

e

j
0 1

∑ ∏ η= = −
= =

with b 0e ≠ . The resultant of the two polynomials is a function
of their coefficients that is proportional to the product of the
differences of all combinations of individual roots, specifically
(e.g., Escofier 2001),

( )f g a bRes ( , ) . (50)x d
e

e
d

j

d

k

e

j k
1 1

∏ ∏ ξ η= −
= =

Using Equations (48) and (49), we can also write the resultant
in the form (e.g., Sturmfels 2002)

( )f g a g b fRes ( , ) ( 1) ( ). (51)x d
e

j

d

j
d e

e
d

k

e

k
1 1

∏ ∏ξ η= = −
= =

It follows from Equation (50) that the condition for the two
polynomials to have at least one common root is equivalent to
the condition

f gRes ( , ) 0, (52)x =

an equation in terms of the coefficients of the polynomials.
A common way to compute the resultant is based on the

Sylvester matrix S f g( , ). This d e d e( ) ( )+ × + matrix is
formed by arranging the coefficients of f x( ) from highest to
lowest order, filling the sequence repeatedly in the first e rows
gradually staggered to the right, followed by d rows of
coefficients of g x( ) staggered in a similar manner, filling the
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rest with zeros (e.g., Petters et al. 2001). Explicitly,

S f g

a a a

a a a

a

b b b

b b b

b

( , )

0 0
0 0

0 0
0 0

0 0

0 0

. (53)

d d

d
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1 0

1 0

0

1 0

1 0

0
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⋯ ⋯
⋯ ⋯

⋮ ⋮
⋯

⋯ ⋯
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⋮ ⋮
⋯

−

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

The resultant is then obtained simply by computing the
determinant of the Sylvester matrix,

f g S f gRes ( , ) det ( , ). (54)x =

In some texts (e.g., Escofier 2001) the Sylvester matrix is
defined as the transpose of the matrix in Equation (53), i.e.,
with coefficients in staggered columns rather than rows.
However, this does not change the determinant, so that
Equation (54) remains valid. In other texts the form of the
matrix in Equation (53) remains the same, but the coefficients
are filled in reverse, from lowest to highest order (e.g., Erdl &
Schneider 1993; Sturmfels 2002). The determinant of such a
matrix is not always equal to the resultant defined by
Equation (50); it differs by a factor ( 1)de− . However, this
difference plays no role when seeking the null-resultant
condition given by Equation (52), which is equivalent to

S f gdet ( , ) 0= .
An alternative way to compute the resultant utilizes the

smaller n n× Bézout matrix B f g( , ), where n d eMax ( , )= .
The matrix is obtained by anti-symmetrizing the direct product
of the polynomials, dividing the result by the difference of their
variables, and ordering the terms according to the powers of the
variables. The elements of the matrix are thus defined by (e.g.,
Sturmfels 2002)

B f g x y
f x g y f y g x

x y
( , )

( ) ( ) ( ) ( )
. (55)

j k

n

jk
j k

, 0

1

∑ = −
−=

−

If we assume that the degree of the first polynomial d e⩾ ,
substituting the expressions from Equations (48) and (49) in
Equation (55) then yields B f g( , )jk in terms of the coefficients:

B f g x y x y a b

x y a b

( , )

.

(56)
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For polynomials of the same degree (d = e) the result
simplifies to directly yield

( )B f g a b a b( , ) . (57)jk

l j k

d j k

l j k l j k l l

Max( 1, 1)

Min( , 1)

1 1∑= −
= + +

+ +

+ − + + − +

Assuming the more general d e⩾ case, the resultant is
computed as the determinant of the Bézout matrix multiplied
by a non-zero factor:

f g a B f gRes ( , ) ( 1) det ( , ). (58)x
d d

d
e d( 1) 2= − − −

Hence, the condition for a common root from Equation (52) is
equivalent to setting B f gdet ( , ) 0= .
The Bézout matrix has the advantage of being smaller, while

the Sylvester matrix is usually sparser. If any particular
symbolic-manipulation software package fails to compute the
determinant of one of them, one can try using the other, before
resorting to numerical computations.

APPENDIX B
SPURIOUS RESULTS OF THE RESULTANT METHOD

The polynomial p w( )res defined by Equation (11) has a set
of roots w w, m1 … . The polynomial p w( )conj defined by

Equation (12) then has roots w w¯ , , ¯m1
1 1…− − . The search for a

common unit root using Equation (13) assumes that for at least
one of the roots w w̄j j

1= − , and hence it lies on the unit circle.
However, Equation (13) is satisfied even by a non-unit root wj

if it is equal to the inverse conjugate of a different root, i.e.,
w w̄j k

1= − for some other w wk j≠ . This implies that wk is
another non-unit root satisfying Equation (13). In case pres has
only real coefficients (e.g., in the case of the two-point-mass
lens or the triple-lens models from Sections 5.2–5.5) and wj lies
off the real axis, w̄j and w̄k are two more non-unit roots of pres.
The total number of such spurious solutions depends on the
degree of the polynomial pres, which is n3 3⩽ − , as discussed
in Section 3.2.
In the case of the two-point-mass lens, the polynomial given

by Equation (17) is of third degree and has real coefficients.
Spurious solutions off the real axis would require pres to have at
least four different roots w w w w w w{ , ¯ , ¯ , ¯ }1 2 1

1
1 2 1

1= =− − , hence
they do not occur. A spurious solution w1 along the real axis
would require pres to have a set of real roots
w w w w{ , , }1 2 1

1
3= − and pconj a corresponding set of roots

w w w{ , , }1
1

1 3
1− − . We could then write

p w w w w w w w( ) ( )( )( ). (59)res 1 1
1

3= − − −−

Expanding this expression and comparing it term-by-term with
Equation (17), we find that the only possible real solution is
w w 11 2= = , which lies on the unit circle and thus is not
spurious. Moreover, this double-root solution requires either
μ 0= or μ 1= , and thus it corresponds to the single-lens limit
rather than a genuine binary. The nonexistence of real spurious
solutions can also be seen from the discriminant of pres
computed from Equation (17). The result is always negative for
μ 0, 0.5, 1≠ . Therefore, except for these values pres has one
root on and two roots off the real axis. For the only other non-
degenerate case, μ 0.5= , the roots are s s s{ 2 , 2 , 4}2 2 2− − .
We see that even in this case there is no reciprocal pair of roots
and hence no spurious solution. For the two-point-mass lens all
solutions of Equation (13) thus correspond to topology changes
of the critical curve.
In all the triple-lens cases analyzed in Sections 5.2–5.5,

spurious solutions do occur. In the LS model the 6th degree
saddle-point and critical-curve polynomials in fact can be
studied as 3rd degree polynomials in z2. The first resultant then
leads to a 3rd degree p w( )res , which can be shown to have a

pair of real spurious roots w w1 2
1= − when the central mass

μ 0.2< . In the three other models p w( )res is of 6th degree.
Regions in parameter space with spurious solutions can be
found for each of them.
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APPENDIX C
CUSP AND MORPH CURVE POLYNOMIALS OF THE LS

MODEL

We present here the explicit form of the cusp and
morph curve polynomials for the simplest triple-lens model
studied in this work, the linear symmetric model from
Section 5.2.

The cusp curve is generally defined by Equation (27), with
n = 3 for the triple lens. We first multiply the equation by
z z z z z z( ) ( ) ( )1

6
2

6
3

6− − − . Next we substitute the positions
and masses of the LS-model components,
z z z s s{ , , } { , 0, }1 2 3 = − and μ μ μ{ , , }1 2 3 =

μ μ μ{(1 ) 2, , (1 ) 2}− − . We obtain the parametric polyno-
mial form of the cusp curve,

( )
( )

( )

p z z μ μ s z

μ μ μ μ s z

μ μ μ μ μ s z

μ μ μ μ s z

μ μ s z μ μ s

( ) (1 ) 3 [ 2 4 (3 1) ]

3 3 10 12 1 5 9

4 (4 9 ) 1 3 9 27

3 2 7 1 5 9

3[2 (1 3 )] (1 ) 0,

(60)

cusp
12 2 10

2 2 4 8

2 3 6 6

2 8 4

2 10 2 2 12

= − Λ + − + Λ −

+ − + − Λ − +

+ − − Λ − + −

− − + Λ − +

− + Λ − + − Λ =

⎡⎣ ⎤⎦
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⎡⎣ ⎤⎦

where 0Λ > is a real non-negative parameter.
In a similar manner we convert the morph-curve Equa-

tion (28) for n = 3, using exactly the same steps. After
multiplication by z z z z z z( ) ( ) ( )1

6
2

6
3

6− − − and substitution
of the LS model positions and masses, we obtain the parametric
polynomial form of the morph curve,

( )

p z

i z μ i μ s z

μ μ i μ μ s z

μ μ i μ μ s z

μ i μ μ s z

μ i μ μ s z i μ s

( )

[ 1 6 (1 2 ) ]

2 8 6 3 3 10 12

1 12 11 4 (4 9 )

[4 4 3 (2 7 )]

[1 6 ] 0,

(61)

morph

12 2 10

2 2 4 8

2 6 6

8 4

10 2 2 12

= − Γ + − − Γ −

− − + + Γ − +

+ − + − Γ −

+ − + Γ −
+ − + Γ − Γ =

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

where Γ is a real parameter.
We see that in the LS model both polynomials are of sixth

degree in z2. Intersections of the cusp curve given by
Equation (60) and the critical curve given by Equation (33)
identify cusp images along the critical curve. Intersections of
the morph curve given by Equation (61) and the cusp curve

identify the images of caustic-metamorphosis points in the
image plane, as discussed in Section 4.
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