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Resonant states in electron molecule collisions mediate a variety of energy transfer processes in the plasma
edge region, such as vibrational excitation, dissociative recombination, dissociative attachment, associative de-
tachment etc. Here we show that the resonance parameters, in general difficult to obtain, can be computed from
standard bound-state ab initio data by means of analytical continuation in the coupling constant. The procedure
uses artificial neural network and statistical Pade approximation to extrapolate from the bound-state region to that
of the resonant state by varying the strength of the attractive potential term added. We present benchmark data
for the ethylene molecule and demonstrate a reasonable stability of the results over the quantum chemical basis
sets employed.
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1. Introduction
Electron-molecule collisions belong among the im-

portant processes taking place in fusion edge plasma
through which the energy is distributed in the divertor re-
gion of fusion reactors. We are interested in the processes
of dissociative attachment (electron-impact induced disso-
ciation of a target molecule accompanied by electron at-
tachment) and the reverse process of associative detach-
ment (formation of a bond among a target colliding with an
anion accompanied by electron detachment into the con-
tinuum). These processes are mediated by a resonant state.
This resonant state is the key mediator of the dynamical
processes such as the associative detachment (AD) and dis-
sociative attachment (DA), which involve anions temporar-
ily formed during the collision process. The parameters of
the resonant state are the essential input parameters to the
dynamical models that allow the subsequent determination
of the AD and DA cross sections [1]. One approach to
determination of the location and the lifetime of the res-
onance is an ab-initio calculation using an extra attractive
potential, coupling term,

V(r)→ V(r) + λU(r), (1)

which renders the resonant state to the bound-state regime.
The strength of the extra attractive term, i.e. the cou-

pling constant λ, is the key parameter for the method of
analytical continuation that determines the resonance pa-
rameters. In practice, the coupling term is usually an extra
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charge on a Coulomb center in the molecule. The resonant
state is extrapolated from the series of the bound-state val-
ues in the limit of λ = 0 [2]. Taking E = κ2, we obtain
a series of bound-state values from the ab initio calcula-
tion, results of which are sampling the function κ(λ) for
λ ∈ {λi}, i = 1 . . .N. This is an increasing function, and
thus its inverse, λ(κ) exists. Both functions, λ(κ) and κ(λ),
will be utilized in the method of analytical continuation.

2. Theoretical Method
In order to explain the method of the analytical con-

tinuation in the coupling constant λ, we now introduce the
basic tools - statistical Pade approximation [2] and the ar-
tificial neural network (ANN) [3]. Pade approximation to
a function f (x) is a rational polynomial function,

f (x) � Pn(x)
Qm(x)

, Pn(x) =
n∑

i=0

aixi, (2)

Qm(x) = 1 +
m∑

i=1

bixi.

In order to obtain the coefficients ai and bi of the polyno-
mials, one has to solve the nonlinear least square problem,

N∑

i=1

∣∣∣∣∣ fi −
Pn(xi)
Qm(xi)

∣∣∣∣∣
2

→ min. (3)

In order to initialize the procedure of the iterative solution,
we can first minimize

N∑

i=1

| fiQm(xi) − Pn(xi)|2 ,
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which in turn results in a linear system of equations for
z = {a0, a1, . . . an, b1, . . . , bm}. We denote the matrix of the
coefficients as M. This over-determined linear system,

s∑

j=1

mi, jz j = yi, i = 1 . . .N, N > s (4)

can be solved by the singular value decomposition (SVD)
of the coefficient matrix M,

M = UΣV∗, (5)

where U is an N × N unitary matrix, Σ an N × s diagonal
matrix of rectangular shape (with non-negative values on
the diagonal), V an s × s unitary matrix, s = n + m + 1,
and the asterisk denotes its conjugate transpose. By means
of the matrix pseudoinverse based on Eq. (5), the unique
solution of Eq. (4) is routinely obtained, subject to

N∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
s∑

j=1

Mi jz j − yi

⎞⎟⎟⎟⎟⎟⎟⎠
2

→ min, (6)

which is the linear least square form for the residues. For
the nonlinear solution, this initial guess is further iterated.
The solution is obtained from the weighted least square
problem, where the weights εi for each residue are given as
1/ε(t)i = Q(t−1)

m (xi) (t denotes the index of iteration). To sta-
bilize the rate of convergence, we also modify the iteration
scheme by a standard relaxation technique, averaging the
last two results to obtain the new iterand.

2.1 Analytical continuation in the coupling
constant

In order to compute the complex value of κ(0), and
thus obtain the resonance parameters, there are two ap-
proaches possible. We first perform the direct statistical
Pade approximation for the function λ(κ),

λ(κ) � Pn(κ)
Qm(κ)

, (7)

and solve for the roots of the polynomial in the numerator,
i.e.

Pn(κc) = 0. (8)

In this approach, there are n complex roots, and the stable
solution is selected by tracking the results for different or-
ders of Pade approximation. Since the numerical problem
of the multipoint, or statistical, Pade approximation is ill-
conditioned, some care must be taken in the selection of
points, suitable order of the Pade approximation, and over-
all numerical precision of the calculation. The complex
energy of the resonance is obtained as Ec = κ

2
c .

Next, we proceed to the inderect approach, making
better use of the analytical structure of the problem. First,
we determine the value of λ0 ≡ λ(0) for κ = 0, i.e. the
threshold value for which a bound state still exists. It is

Fig. 1 Artificial neural network in the feed-forward configura-
tion with a single hidden layer and scalar output y. Each
synaptic connection denoted by an arrow has an associ-
ated weight parameter. Input aggregation is denoted with
the symbol Σ whereas σ stands for the nonlinear activa-
tion function. The bias value for each neuron is repre-
sented by the constant input 1.

known that κ is analytical in terms of
√
λ − λ0 [4]. For the

purpose of analytical continuation, we can now adopt e.g.
Pade approximation anew as

κ
( √
λ − λ0

)
� P′n(

√
λ − λ0)

Q′m(
√
λ − λ0)

(9)

(here P′ and Q′ denotes polynomials different from those
of the direct method). Alhough being sensitive to the preci-
sion level of λ0, this Pade approximation is otherwise quite
stable, and the resonance parameter κc is obtained directly
as a single value from the straightforward substitution,

κc =
P′n(
√−λ0)

Q′m(
√−λ0)

. (10)

2.2 Artificial neural network
In order to obtain λ0 we could have used the value

of a0 from the direct method. It is, however, preferrable
to extrapolate this value by an independent method. We
opt for the feed-forward artificial neural network with a
single-hidden layer [5] to learn the function λ(κ) and to de-
termine λ0. A single hidden layer with a sufficient number
of hidden neurons suffices as a universal approximator of
arbitrary analytical function [3]. The output of the neural
network is known to represent the statistical mean value
in regard to the noise hidden in the data [5]. Last but not
least, neural networks are known from practice to repre-
sent rather well data not covered in the training samples,
provided sufficient care is taken to avoid data overfitting.
The ANN architecture adopted in this paper is schemati-
cally depicted in Fig. 1. Correspondingly, the propagation
of input data through the neural network is described by
the formula

ŷ(θ) = σ2

⎡⎢⎢⎢⎢⎢⎢⎣
nh∑

i=1

w2
i σ

1

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

w1
i, j x j + b1

i

⎞⎟⎟⎟⎟⎟⎟⎠ + b2

⎤⎥⎥⎥⎥⎥⎥⎦ , (11)
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where ŷ is the output value computed by the network, θ
denotes collectively all the parameters, i.e. the biases of
the hidden neurons b1

i , i = 1 . . . nh, the bias of the output
neuron b2, weights among the input values x j, j = 1 . . . n
and the hidden neurons, w1

i, j, and the weights among the
hidden and output neurons, w2

i . σi stands for the neuron
activation function in layer i. Notice that the number of
the input values for the network is n = 1. The input value
x1 corresponds to κ whereas the output value y represents
λ. Computational flow of the neural network is shown in
Fig. 1. The inputs are weighted, aggregated, subjected to
the activation function of hidden neurons, and forwarded
to the output layer. The activation functions of the hidden
neurons are nonlinear, σ1

i (z) = tanh(z), whereas the output
activation function is commonly an identity, σ2(z) = z [5].
The first selection promotes the speed of convergence of
the neural network whereas the second one is suitable for
the unscaled output [5]. It is convenient to denote the ag-
gregate input of the hidden neuron i as s1

i , and the aggre-
gate input of the output neuron as s2. We also absorb the
bias term by setting an extra input, x0 = 1, and interpret
the bias term as the weight coefficient (index zero) for this
constant input. Then we have for the output of the neurons
in the hidden layer,

hi = σ
1

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=0

w1
i, j x j

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1 . . . nh, (12)

and for the output of the neural network,

ŷ = σ2

⎛⎜⎜⎜⎜⎜⎜⎝
nh∑

i=0

w2
i hi

⎞⎟⎟⎟⎟⎟⎟⎠ . (13)

The maximum number of hidden neurons is set as nh = 25
in the calculation. The set of parameters θ is determined
from non-linear optimization of the objective function us-
ing the least square method for

J(t) =
1
2

[
ŷ(t) − y(t)

d

]2
, (14)

where t is an index of the training instance {x(t), y(t)
d }, and

ŷ(t) is the corresponding output of the neural network for
the input {x(t)}. The value y(t)

d represents the prescribed out-
put in the training instance t. We now summarize the back-
propagation algorithm that determines the weight update
from the residual error (Eq. (14) as described in [6]). Since
the function represented by the neural network is analyti-
cal, we obtain by the chain rule for the derivatives the ex-
pression for the gradient of the objective function with re-
spect to the generalized weights. First for the set of weights
connecting to the output layer,

∂J
∂w2

i

= −(yd − ŷ)σ′2(s2)hi ≡ −δ2hi, (15)

then for the set of weights connecting to the hidden layer,

∂J
∂w1

i, j

= −δ2w2
i σ
′1(s1

i )x j. (16)

This can be finalized in the same form as above,

∂J
∂w1

i, j

= −δ1i x j, δ
1
i = σ

′1(s1
i )δ2w2

i . (17)

Here σ′i denotes the derivative of the activation function in
layer i with respect to the argument. The above equations,
Eq. (15) and (17), provide the gradient of all the weights in
the neural network, the essential component of the back-
propagation algorithm. The gradient vector can then be
used directly in the steepest descent method or applied
more efficiently using the conjugate gradient method for
the nonlinear optimization problem of the ANN architec-
ture parameters. We apply the sequential learning method,
in which for every training instance, the input data propa-
gate forward through the neural network, the output value
is computed, the difference between the desired and ob-
tained output determined, and the value of this residue then
propagates backward through the network updating all of
its parameters.

3. Results and Discussions
Having outlined the theoretical method, we now

benchmark the above algorithm computationally and
present the results for ethylene molecule. The resonant
state is the 2B2 g shape resonance of the C2H4 molecule.
This is the lowest located resonant state that plays the cru-
cial role for the processes such as AD and DA. Since the
ethylene molecule belongs among hydrocarbons that can
be formed in the divertor region of tokamak devices, this
system is of interest for the plasma fusion community. The
stability of the resonance results obtained by the above
method is investigated with respect to the quantum- chem-
ical basis sets employed, namely the cc-pvDZ, cc-pvTZ,
cc-pvQZ, cc-pv5Z and cc-pv6Z. These are the Dunning’s
correlation consistent basis sets [7] (and references therein)
used in the calculations of electron affinities by the molpro
software package [8]. First, we show the curve of E(λ)
for the largest basis in Fig. 2. The differences of input data
with respect to the smaller basis sets employed is shown
in Fig. 3. It can be seen from Fig. 3 that pronounced dif-
ferences arise when λ is small, since more and more basis
functions are necessary to capture the delocalized charac-
ter of the resonant state.

Table 1 shows the results for the direct method. The
resonance location varies less than the resonance width.
All data were obtained with the Pade(2,2) approximation.

Table 2 shows the values of λ0 as extrapolated by the
artificial neural network, and the overal results for the en-
ergy and width of the resonance. With the exception of the
resonance width for the cc-pvQz basis, the results are in
good accord and demonstrate the good applicability of the
indirect method for ethylene molecule, and of the analyti-
cal continuation in the coupling constant in general.

Since the location of the resonance varies at the third
significant digit, with the exception of the cc-pvDz ba-
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Fig. 2 Electron affinity as a function of coupling constant λ for
the cc-pv6z basis.

Fig. 3 Electron affinity relative to the cc-pv6z basis value as a
function of coupling constant λ.

sis, and the resonance width variation does not exceed
10%, with the exception of cc-pvQz basis, these results
are considered quite satisfactory. All values in Table 2
have been obtained with the Pade(n,m) approximation tak-
ing n = 2 and m = 2. In fact, for the cc-pvDz basis, we
can obtain a more consistent value Eres = 1.8997 eV and
Γ = 0.39113 eV within the Pade(4,4) approximation. Sim-
ilarly, for cc-pvQz, Γ = 0.39725 eV within the order of
Pade(3,4). These diffences may be attributed in part to the
noise in the data, and in part to the existence of Froissart
doublets, in which case the roots of P′ and Q′ are located
very close to each other, thus presenting a sharp step be-
tween zero and a pole of the Pade approximant [9]. We
conclude here that the accuracy of the result data within a
fixed order of Pade approximation suffices for their appli-
cation in the nonlocal resonance model of Čížek, Horáček

Table 1 Resonance parameters for the direct method.

Basis set Energy (eV) Width (eV)
cc-pvDz 1.957 0.365
cc-pvTz 1.881 0.371
cc-pvQz 1.864 0.410
cc-pv5z 1.844 0.435
cc-pv6z 1.820 0.436

Table 2 Resonance parameters for the indirect method.

Basis set λ0 Energy (eV) Width (eV)
cc-pvDz 0.016133 1.9434 0.39875
cc-pvTz 0.015148 1.8795 0.36737
cc-pvQz 0.014911 1.8167 0.47298
cc-pv5z 0.014715 1.8703 0.38795
cc-pv6z 0.014677 1.8734 0.35461

and Domcke [1], and may be used in the boomerang model
describing vibrationally inelastic cross sections [10]. This
is because the uncertainty in the input ab initio parameters
for most previous works has been comparable with that of
the present results, which typically translates to the uncer-
tainty in scattering phase shifts of up to 10%. The present
work is not only of practical significance for the particu-
lar molecular system studied, but also generally relevant
to the resonance parameter determination in a variety of
electron-molecule collision processes, and thus believed to
be of interest for the plasma fusion community.
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