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The explicit Robinson–Trautman solution with a minimally coupled free scalar field is derived and
analyzed. It is shown that this solution contains curvature singularity, which is initially naked but later
enveloped by the horizon. We use the quasilocal horizon definition and prove its existence in later retarded
times using sub- and supersolution method combined with growth estimates. We show that the solution is
generally of algebraic type II but reduces to type D in spherical symmetry.
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I. INTRODUCTION

Solutions to Einstein equations with a scalar field source
provide a very useful tool for understanding relativity due
to the simplicity of the source. Recently, it has become
progressively plausible that such fields might really exist
(LHC) and potentially play a fundamental role in physics.
In classical general relativity, they were used to study
counterexamples to black hole no-hair theorems and in
many other areas. These results were mostly based on
highly symmetric solutions, and it is therefore important to
provide solutions with fewer or no symmetries to sub-
sequently analyze if those results hold in more generic
situations and are not tied to a specific symmetry.
Robinson–Trautman spacetimes represent an important

class of expanding nontwisting and nonshearing solutions
[1–3] describing nonspherical generalizations of black
holes. In general, they do not posses any Killing vectors,
thus providing important solutions devoid of symmetry.
Many properties of this family in four dimensions have
been studied, especially in the last 25 years. In particular,
the existence, asymptotic behavior and global structure of
vacuum Robinson–Trautman spacetimes of type II with
spherical topology were investigated by Chruściel and
Singleton [4–6]. Robinson–Trautman solutions were
shown to exist for generic, arbitrarily strong smooth initial
data for all positive retarded times and to converge
asymptotically to the corresponding Schwarzschild metric.
Extensions across the “Schwarzschild-like” future event
horizon can only be made with a finite order of smoothness.
These results were generalized in Refs. [7,8] to Robinson–
Trautman vacuum spacetimes with a cosmological con-
stant. These cosmological solutions settle down to a
Schwarzschild–(anti-)de Sitter solution at large times u.
Finally, the Chruściel–Singleton analysis was extended to
Robinson-Trautman spacetimes including matter, namely,
pure radiation [9,10], showing that they approach the

spherically symmetric Vaidya–(anti-)de Sitter metric.
Generally, the solutions of this family settle down to
physically important solutions. The location of the horizon
together with its general existence and uniqueness for the
vacuum Robinson–Trautman solutions has been studied by
Tod [11]. Later, Chow and Lun [12] analyzed some other
useful properties of this horizon and made numerical study
of both the horizon equation and Robinson–Trautman
equation. These results were later extended to the non-
vanishing cosmological constant [13]. The anisotropy of
the Robinson-Trautman horizon and its associated asymp-
totic momentum was also used in the analytic explanation
of an “antikick” appearing in numerical studies of binary
black hole mergers [14].
Robinson–Trautman spacetimes (containing aligned

pure radiation and a cosmological constant) were also
generalized to any dimension [15]. Existence of horizons
was subsequently analyzed in Ref. [16]. Finally, Robinson–
Trautman solutions with p-form fields in arbitrary dimen-
sion were derived recently [17]. One of the results
mentioned therein rules out the existence of aligned scalar
field (in which alignment refers to the gradient of the field)
for the generic Robinson–Trautman case.
The solutions for “stringy” Robinson–Trautman space-

time corresponding to the Einstein–Maxwell–dilaton sys-
tem were obtained in Ref. [18]. Recently, scalar field
solutions for the Einstein–Maxwell–Lambda system with
a conformally coupled scalar field belonging to the
Plebański–Demiański family (containing type-D solutions
of the Robinson–Trautman class) were derived in Ref. [19].

II. VACUUM ROBINSON–TRAUTMAN METRIC
AND FIELD EQUATIONS

The general form of a vacuum Robinson–Trautman
spacetime can be given by the line element [1–3,20]

ds2 ¼ −2Hdu2 − 2dudrþ r2

~P2
ðdy2 þ dx2Þ; ð2:1Þ*tahamtan@utf.mff.cuni.cz
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where 2H ¼ Δðln ~PÞ − 2rðln ~PÞ;u − 2m=r − ðΛ=3Þr2,

Δ≡ ~P2ð∂xx þ ∂yyÞ; ð2:2Þ

and Λ is the cosmological constant. The metric depends
on two functions, ~Pðu; x; yÞ and mðuÞ, that satisfy the
nonlinear Robinson–Trautman equation

ΔΔðln ~PÞ þ 12mðln ~PÞ;u − 4m;u ¼ 0: ð2:3Þ

The function mðuÞ might be set to a constant by suitable
coordinate transformation for the vacuum solution.
The spacetime admits a geodesic, shearfree, twistfree,

and expanding null congruence generated by l ¼ ∂r. The
coordinate r is an affine parameter along this congruence, u
is a retarded time coordinate, and x; y are spatial coor-
dinates spanning transversal 2-space with their Gaussian
curvature (for r ¼ 1) being given by

Kðx; y; uÞ≡ Δðln ~PÞ: ð2:4Þ

For general fixed values of r and u, the Gaussian curvature
is K=r2 so that, as r → ∞, they become locally flat.

III. SOLUTION COUPLED TO A SCALAR FIELD

We consider the following action, describing a scalar
field minimally coupled to gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ∇μφ∇μφ�; ð3:1Þ

whereR is the Ricci scalar for the metric gμν. The massless
scalar field φ is supposed to be real, and we use units in
which c ¼ ℏ ¼ 8πG ¼ 1. By applying the variation with
respect to the metric for the action (3.1), we get Einstein
equations

Rμν −
1

2
gμνR ¼ Tμν: ð3:2Þ

The energy-momentum tensor generated by the scalar field
is given by

Tμν ¼ ∇μφ∇νφ −
1

2
gμνgαβ∇αφ∇βφ; ð3:3Þ

and the scalar field must satisfy corresponding field
equation

□φðu; rÞ ¼ 0; ð3:4Þ

where □ is a standard d’Alembert operator for our
metric (3.5).
For the matter of convenience, we will be looking for the

metric in the following form:

ds2 ¼ −2ðHðu; rÞ þ Kðu; x; yÞÞdu2 − 2dudr

þ Rðu; rÞ2
Pðx; yÞ2 ðdx

2 þ dy2Þ: ð3:5Þ

The scalar field is assumed to be function of u and r only
[φðu; rÞ]. The dependence on r means that the scalar field
is not aligned and thus is not ruled out by the results of
Ref. [17]. The nontrivial components of the Ricci tensor
corresponding to the metric (3.5) are

Ruu ¼ 2

�
2
R;r

R
H;r þH;rr

�
ðH þ KÞ þ 2

R;r

R
ðH þ KÞ;u

−
2

R
ðR;uH;r þ R;uuÞ þ

P2

R2
ðK;xx þ K;yyÞ

Rrr ¼ −2
R;rr

R

Rru ¼ Rur ¼ 2
R;rH;r − R;ru

R
þH;rr

Rxx ¼ Ryy ¼ −
1

P2
fkðx; yÞ þ 2ðH þ KÞðRR;rÞ;r

þ2RR;rH;r − 2ðRR;uÞ;rg; ð3:6Þ

where as usual ðÞ;xi ¼ ∂
∂xi ðÞ and

kðx; yÞ ¼ ΔðlnPðx; yÞÞ; ð3:7Þ

where Δ is still given by expression (2.2) with ~P replaced
by P.
Wewill use the following form of equations equivalent to

Einstein equations (3.2) coupled to energy-momentum
tensor (3.3)

Rμν ¼ φ;μφ;ν ¼

0
BBB@

φ2
;u φ;uφ;r 0 0

φ;uφ;r φ2
;r 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð3:8Þ

From the above equations describing the gravitational field
and field equation for the scalar field (3.4), we obtain the
expressions for the unknown metric functions and scalar
field,
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Hðu; rÞ ¼ r
2UðuÞ

∂UðuÞ
∂u

Rðu; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðuÞ2r2 − C2

0

UðuÞ

s

Kðu; x; yÞ ¼ kðx; yÞ
2UðuÞ

φðu; rÞ ¼ 1ffiffiffi
2

p ln

�
UðuÞr − C0

UðuÞrþ C0

�
Δkðx; yÞ ¼ α2

UðuÞ ¼ γeω
2u2þηu; ð3:9Þ

in which C0 ≠ 0; α; η; γ;ω are constants and ω ¼ α
2C0

. In the
following, we will assume C0 > 0; α > 0; η > 0; γ > 0 for
simplicity of discussion.

IV. PROPERTIES OF THE SOLUTION

First, we should ensure that our solution really belongs to
the Robinson-Trautman family. This is simply confirmed
by studying the properties of a null congruence generated
by vector l ¼ ∂r. Such congruence is geodesic, nontwist-
ing, and nonshearing, and its expansion is given by

Θl ¼ 2
R;r

R
¼ 2UðuÞ2r

UðuÞ2r2 − C2
0

: ð4:1Þ

Evidently, the above expression is positive only for
r > C0

UðuÞ, which may seem not satisfactory. However, by

inspecting the Kretschmann scalar

κ ∼
1

Rðu; rÞ8 ð4:2Þ

and using (3.9), we immediately see that the geometry has
singularities for r ¼ �r0 ¼ � C0

UðuÞ. Naturally, we are led to

constrain the range of coordinates to r ∈ ð C0

UðuÞ ;∞Þ. In this

range, the expansion (4.1) is everywhere positive, diverges
at the singularity, and approaches zero at infinity (as
r → ∞). Also, one can check from the line element that
the singularity is a standard pointlike one. Because of the
asymptotic behavior of function UðuÞ [see (3.9)], the
singularity tends to r0 ¼ 0 as u → ∞. The singularity
appears due to the divergence of the scalar field and its
energy-momentum tensor.
Asymptotically (u → ∞), the scalar field itself is vanish-

ing everywhere outside the singularity [see (3.9)], while it
diverges at r ¼ 0. So there would be no scalar hair left
outside when the spacetime settles down to the final state.
Indeed, our geometry approaches the original Robinson–
Trautman form (2.1) for u → ∞ when we define
~Pðu; x; yÞ ¼ Pðx; yÞ=UðuÞ. In this case, one can apply
the Chruściel–Singleton analysis [4–6] of asymptotic

behavior to recover the spherical symmetry of the final
state, which necessarily points to Schwarzschild solution.
When the singularity is present in our solution, we will

investigate if it is covered by a horizon. Because of the
dynamical nature of the spacetime, it is preferable to use the
quasilocal definitions of horizon—apparent horizon [21],
trapping horizon [22], or dynamical horizon [23]. The
basic local condition is shared by all the standard horizon
definitions: these horizons are sliced by marginally trapped
surfaces with vanishing expansion of outgoing (ingoing)
null congruence orthogonal to the surface. We will be
looking for the horizon hypersurface in the form

r ¼ Mðu; x; yÞ ð4:3Þ

and study the expansion of compact slices of such a
hypersurface given by u ¼ u0 ¼ const. [withMðu0;x;yÞ¼
Mðx;yÞ]. The requirement of compactness necessarily
means that the 2-spaces spanned by x and y are compact
as well. We construct null vector fields orthogonal to
surface r ¼ Mðx; yÞ,

l ¼ ∂r ð4:4Þ

k ¼ ∂u þ
�
P2

2R2
ðM2

x þM2
yÞ − ðH þ KÞ

�
∂r

þ P2

R2
ðMx∂x þMy∂yÞ; ð4:5Þ

that satisfy normalization condition l · k ¼ −1. From the
geometry of the situation, one can deduce that congruence l
is outgoing while k is ingoing. The expansion of the
congruence generated by l is always positive [see (4.1) and
the discussion beneath], so we are looking for the vanishing
of expansion related to the other congruence k. These two
conditions (Θl > 0 and Θk ¼ 0) mean that we are looking
for the past horizon according to the definition given by
Ref. [22]. The second expansion is given by

Θk ¼ 1

R2
½ΔM − ðlnRÞ;rð∇M · ∇MÞ

−ðK þHÞðR2Þ;r þ ðR2Þ;u�; ð4:6Þ

where the Laplace operator and scalar product denoted by a
dot correspond to the metric hijdxidxj¼ 1

Pðx;yÞ2 ðdx2þdy2Þ
on the space Σ spanned by x; y. So the horizon is given by
the solution of the following quasilinear elliptic partial
differential equation

fΔM − ðlnRÞ;rð∇M · ∇MÞ − ðK þHÞðR2Þ;r
þðR2Þ;ugjr¼Mðx;yÞ&u¼u0 ¼ 0; ð4:7Þ

where all dependence on r is replaced by the function
Mðx; yÞ and u is evaluated to arbitrary constant value u0.
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It is impossible to solve this equation generally, but
fortunately we can get some useful information about the
existence of the solution using the technique developed for
the case of Robinson–Trautman spacetime in higher dimen-
sions [16]. The proof of the existence of the solution to the
same type of quasilinear equation [Δu ¼ Fðx; u;∇uÞ] was
given there by combining several steps motivated by
Ref. [24] and using results from Refs. [25–27]. The main
issues were to provide an estimate for the function F of the
form jFj ≤ BðuÞð1þ j∇uj2Þ [where BðuÞ is increasing
function on Rþ] and to show the existence of a sub- and
a supersolution [28] u− ≤ uþ, u� ∈ C1;βðΣÞ∩L∞ðΣÞ [here,
C1;βðΣÞ are Hölder continuous functions of some suitable
index β]. Then, we know there is a solution u ∈ C2;ιðΣÞ (for
some ι) satisfying u− ≤ u ≤ uþ.
In our case, to provide an estimate of the form jMj ≤

BðMÞð1þ j∇Mj2Þ (the norm is taken with respect to the
two-dimensional metric hij) for the horizon equation (4.7)
when considered in the form ΔM ¼ Fðx; y;M;∇MÞ where

F ¼ ðlnRðu0;MÞÞ;rj∇Mj2 þ kðx; yÞM −
C2
0U;uðu0Þ
U2ðu0Þ

;

ð4:8Þ

one has to deal with the singular behavior of ðlnRÞ;r at

r ¼ C0

UðuÞ. We can do this either by removing the vicinity of

singularity from our domain r ∈ Rþnð C0

UðuÞ ð1 − δÞ;
C0

UðuÞ ð1þ δÞÞ or by continuing (with some appropriate

smoothing) the divergent function on the problematic
interval ð C0

UðuÞ ð1 − δÞ; C0

UðuÞ ð1þ δÞÞ with a constant value

it attains on the boundary of the interval. Now, with all the
coefficients of the equation finite, one can construct the
bounding function BðuÞ easily, and thus we can proceed to
the construction of sub- and supersolutions M�.
First, we note that, due to the selection of sign for the free

constants made at the end of previous section (C0 > 0; α >
0; η > 0; γ > 0), we obtain U;u > 0 if we restrict our
attention to retarded time region u ∈ ð− η

2ω2 ;∞Þ. We can
then understand our solution as being given by initial
conditions specified at uin ¼ − η

2ω2, which corresponds to
the usual understanding of Robinson–Trautman solution.
As usual, we are looking for constant sub- and super-
solutions, but we are unable to provide them independently
of the value of u0. Generally, we can find the sub- and
supersolutions in the following cases:

(i) u0 < u1 ¼ minðkðx;yÞÞ−maxðkðx;yÞÞδ−C0η
2C0ω

2

M− ¼ 0 ð4:9Þ

Mþ ¼ C0

Uðu0Þ
ð1 − δÞ ð4:10Þ

(ii) u0 > u2 ¼ maxðkðx;yÞÞð1þδÞ−C0η
2C0ω

2

M− ¼ C0

Uðu0Þ
ð1þ δÞ ð4:11Þ

Mþ ¼ C2
0U;uðu0Þ

minðkðx; yÞÞU2ðu0Þ
: ð4:12Þ

Both bounds u1 and u2 are in the restricted range of
coordinate u. Evidently, the first case would provide
existence of the solution only beneath the position of
singularity (or, in other words, inside the singularity),
which is irrelevant, and moreover we have already
restricted the range of r ∈ ð C0

UðuÞ ;∞Þ. In the second case,

one can easily check that the necessary condition M− ≤
Mþ is indeed satisfied for u0 > u2, and we certainly have a
horizon given by r ¼ Mðx; yÞ whereM− ≤ Mðx; yÞ ≤ Mþ.
Note that we suppose that minðkðx; yÞÞ > 0 for the last
estimate Mþ to be valid.
If we allow kmin ≡minðkðx; yÞÞ ≤ 0 [we define accord-

ingly kmax ≡maxðkðx; yÞÞ], we are unable to provide the
constant supersolution in the case u0 > u2. Instead, we can
use the knowledge of how a Laplace operator acts on
kðx; yÞ (3.9) and the observation that the first term of the
definition of function F (4.8) is always positive to provide
the nonconstant supersolution

Mþ ¼ c½kmax − kðx; yÞ� þ C0

Uðu0Þ
ð1þ δÞ; ð4:13Þ

where

c ¼ C0½C0U;uðu0Þ − kminUðu0Þð1þ δÞ�
U2ðu0Þðα2 þ kmaxkmin − k2minÞ

: ð4:14Þ

This estimate works if ðα2 þ kmaxkmin − k2minÞ > 0.
Even though our solution possesses singularity at any

retarded time u, this singularity appears to be initially
naked, and the horizon develops only in later time.

V. ALGEBRAIC TYPE OF THE SOLUTION

Now, we would like to see if the geometry of our
spacetime is sufficiently general. Since vacuum Robinson–
Trautman spacetime is generally of algebraic type II, we
would like our solution to be at least of the same type
and not more special. Our preferred tetrad for determining
the Weyl scalars of our solution is given by different null
vectors compared to (4.4)
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~l ¼ ∂r

~k ¼ ∂u − ðH þ KÞ∂r

m ¼ Pffiffiffi
2

p
R
ð∂x þ I∂yÞ; ð5:1Þ

where I is a complex unit. The Weyl spinor computed from
this tetrad has only the following nonzero components:

Ψ0 ¼
1

4UR2

�
1

2
Pðk;yy − k;xx þ Ik;xyÞ

−ðk;x − Ik;yÞðP;x − IP;yÞ
�

Ψ1 ¼
ffiffiffi
2

p
PR;r

UR2
ðk;x − Ik;yÞ

Ψ2 ¼
1

6UR2
½Uk − ðU;urþ kÞðRR;rrR;r

2Þ
−2URR;ru þ ðRU;u þ 2UR;rÞR;r�: ð5:2Þ

Now, we can easily determine the type irrespective of
possible nonoptimal choice of tetrad by using the review
of explicit methods for determining the algebraic type in
Ref. [29] that are based on Ref. [30]. Namely, when we use
invariants

I ¼ Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2;

J ¼ det

0
B@

Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

1
CA;

we can immediately confirm that I3 ¼ 27J2 is satisfied
so that we are dealing with type II or more special. At the
same time, generally IJ ≠ 0, so it cannot be just type III.
Moreover, the spinor covariant RABCDEF has nonzero
components

R000000 ¼ Ψ1ð3Ψ0Ψ2 − 2Ψ2
1Þ ð5:3Þ

R000001 ¼
1

2
Ψ2ð3Ψ0Ψ2 − 2Ψ2

1Þ; ð5:4Þ

which means that generally the spacetime cannot be of type
D. So indeed our scalar field solution is of the most general
type possible for the Robinson-Trautman vacuum class,
which does not mean that there cannot be a scalar field
solution of type I. Moreover, inspecting the components of
the Weyl spinor (5.2), one concludes that in the special case
of kðx; yÞ ¼ const > 0 (constant positive Gaussian curva-
ture of compact 2-space spanned by x; y) the algebraic type
becomes D consistent with spherical symmetry. Finally,

since Ψ1 ¼ 0 implies Ψ0 ¼ 0, we cannot have all compo-
nents of spinor covariant QABCD (see Refs. [29,30]) van-
ishing while having a nonvanishing Weyl spinor. This
means that our family of solutions does not contain type N
geometries.

VI. CONCLUSION AND FINAL REMARKS

We have derived a Robinson–Trautman spacetime with
minimally coupled free scalar field. We have shown that it
has a singularity for all retarded times created by the
divergence of the scalar field therein. This singularity is
initially (with respect to retarded time) naked and only later
becomes covered by the quasilocal horizon. Note that the
energy-momentum tensor of the free minimally coupled
scalar field trivially satisfies the null energy condition (as
well as weak and strong ones), and the naked singularity at
the beginning of the evolution is probably caused by a slow
buildup of effective energy density caused by the scalar
field at the singularity position, which is enough to form the
singularity but not enough to envelop it in horizon initially.
This behavior suggests similarity with the appearance of a
naked curvature singularity in Vaidya spacetime with a
linear mass function. The naked singularity appears there
initially depending on the speed of growth of the mass [31]
and later becomes covered by the horizon as well. From the
properties of both null congruences orthogonal to the
horizon, we deduced that we are dealing with the past
horizon, which is natural for standard (retarded) form of
Robinson–Trautman spacetime.
Our solution is asymptotically flat, contains a black hole

(at least in the later stage of development), and has a scalar
field, so one is naturally interested in its connection with
the no-hair theorems (see Ref. [32] for current review). As
recently shown [33], for stationary black hole spacetimes,
there are no scalar hairs (even for the time-dependent scalar
field), which means that the dynamical nature of the
Robinson–Trautman family is truly needed for our solution
to be feasible. Also, we have shown that the scalar field
vanishes outside the black hole in the infinite retarded time
limit when the geometry settles down to the final state—
Schwarzschild black hole.
Finally, we have proved that our geometry is of algebraic

type II (the most general type for vacuum Robinson–
Trautman spacetimes), and if we restrict to the spherically
symmetric case, it is of type D. However, the type N
subcase is not possible for our solution.
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