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ABSTRACT
The dynamical system studied in previous papers of this series, namely a bound time-like
geodesic motion in the exact static and axially symmetric space–time of an (originally)
Schwarzschild black hole surrounded by a thin disc or ring, is considered to test whether
the often employed ‘pseudo-Newtonian’ approach (resorting to Newtonian dynamics in gravi-
tational potentials modified to mimic the black hole field) can reproduce phase-space properties
observed in the relativistic treatment. By plotting Poincaré surfaces of section and using two
recurrence methods for similar situations as in the relativistic case, we find similar tendencies
in the evolution of the phase portrait with parameters (mainly with mass of the disc/ring and
with energy of the orbiters), namely those characteristic to weakly non-integrable systems.
More specifically, this is true for the Paczyński–Wiita and a newly suggested logarithmic po-
tential, whereas the Nowak–Wagoner potential leads to a different picture. The potentials and
the exact relativistic system clearly differ in delimitation of the phase-space domain accessible
to a given set of particles, though this mainly affects the chaotic sea whereas not so much
the occurrence and succession of discrete dynamical features (resonances). In the pseudo-
Newtonian systems, the particular dynamical features generally occur for slightly smaller
values of the perturbation parameters than in the relativistic system, so one may say that the
pseudo-Newtonian systems are slightly more prone to instability. We also add remarks on
numerics (a different code is used than in previous papers), on the resemblance of dependence
of the dynamics on perturbing mass and on orbital energy, on the difference between the
Newtonian and relativistic Bach–Weyl rings, and on the relation between Poincaré sections
and orbital shapes within the meridional plane.

Key words: black hole physics – chaos – gravitation.

1 IN T RO D U C T I O N

Newton’s theory of gravity is still being used in treating many
astrophysical systems, because general relativity is (i) often not
necessary in weak-field problems, while (ii) often practically inap-
plicable (or only applicable numerically) in strong-field ones. Under
both circumstances, various approximation methods have been de-
veloped, including, above others, ‘linearized theory of gravity’ and
post-Newtonian or post-Minkowskian expansions, as well as ad hoc
effective descriptions like those based on ‘pseudo-Newtonian’ po-
tentials. The well-justified small-parameter expansions are typically
reliable in weak-field cases, but in strong field they are inaccurate
unless brought to higher expansion orders. The ad hoc formulas,
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though not derived by any sound approximation scheme, may be
quite simple yet still work well in strong field, but much caution is
in place, because they often mimic certain features of the problem
accurately, while badly misrepresenting the others. Depending on
particular approach, it may be difficult to specify which kinds of
errors and of what sizes it brings, the more so if one does not know
the stability properties of the exact general relativistic solution or if
such a solution is not even available at all.

One of thorough ways to assess the practical quality of a given
description of a given gravitational field, or at least its general
difference from another description, is to study the motion of free
test particles by methods used in the theory of dynamical systems.
Though it is problematic to directly compare trajectories of different
dynamical systems and hence to quantify their relative deviation, it
is still possible to compare the systems’ overall ‘dynamical portraits’
and the latter’s dependence on parameters. Needless to say, the
same methods can reveal the effect of various physical perturbations
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imposed on a given system within the same theory or approximation;
similarly, they can also be employed to test and compare numerical
codes.

In the previous three papers of this series (Semerák & Suková
2010, 2012; Suková & Semerák 2013, below referred to as
papers I, II, and III, respectively), we studied the field of a
Schwarzschild-like black hole surrounded by a concentric thin disc
or ring, as described by exact static and axially symmetric solu-
tion of Einstein equations. Motivated by astrophysical black holes
surrounded by accretion (or galactic ‘circumnuclear’) structures,
we analysed the gravitational influence of the additional matter
on a long-term dynamics of time-like geodesics and showed, by
several different methods, that it can make the dynamics chaotic.
In this paper we compare the previous relativistic results with a
similar analysis carried out within pseudo-Newtonian description.
More specifically, we emulate the Schwarzschild gravitational field
by several simple ‘pseudo-Newtonian’ potentials, while the disc
or ring are described by their Newtonian potential (which equals
the first of the two metric functions appearing in the relativistic
description).

Besides describing the gravitational field and the free test-particle
motion in a different way, we also use a different numerical code to
follow the trajectories: whereas the relativistic geodesic-equation
system was solved, in previous papers, by the Runge–Kutta (or
rather the Hut’a) sixth-order method with variable proper-time step,
here we solve the Newtonian equations of motion by appropriate
geometric integrators (see Hairer, Wanner & Lubich 2006); specifi-
cally in the thin-disc case we have developed an integrator inspired
by Seyrich & Lukes-Gerakopoulos (2012) and endowed with a spe-
cial treatment of the field jump across the disc. In spite of these
significant differences, we have arrived at a similar dynamical pic-
ture, which justifies the observations made in either of the ways.
However, there still occur differences with respect to the exact
Schwarzschild picture, and mainly between the different pseudo-
Newtonian potentials; some of the latter even do not seem to be
reasonably applicable.

After a short note on previous results that have appeared in the
literature, we specify the pseudo-Newtonian description of our grav-
itational fields in Section 2 and review basic properties of motion in
their backgrounds in Section 3. Then in Section 4 we give a basic
information about the codes employed. The main Section 5 brings
the comparison between exact relativistic and pseudo-Newtonian
results, using Poincaré surfaces of section and two recurrence meth-
ods. We add there special notes (i) on the link between the depen-
dence on perturbing mass and on orbital energy; (ii) on a different
character of the relativistic Bach–Weyl ring and of its Newtonian
counterpart; and (iii) we also point out (and illustrate) that the
Poincaré sections represent only partial information about the or-
bits. Concluding remarks then close the paper.

1.1 Previous results from the literature

A similar system we consider here was studied by Vokrouhlický
& Karas (1998) within Newtonian description and with motivation
stemming from a long-term evolution of stars orbiting the black
holes (with accretion discs) in galactic nuclei. The authors repre-
sented the central body by the −M/r potential and the thin disc by
the Kuzmin potential −M/

√
ρ2 + (A + |z|)2, denoting by M the

disc mass, by ρ and z cylindrical coordinates, and by A a free con-
stant, while also taking into account mechanical effect of the disc
on the test orbiter (hydrodynamical drag). The main conclusion was
that ‘any consistent model of the star–disc interaction has to take

the influence of the disc gravity into account, in addition to the
effects of direct collisions with gaseous material’. The long-term
dynamics was found to be sensitive to a particular model of the disc,
especially to the radial profile of its surface density, whereas much
less to the total mass of the disc.

The pseudo-Newtonian potentials have been employed in many
papers on accretion flows around black holes, but only a few
times in studying the chaotic regimes of motion in perturbed
black hole fields. Guéron & Letelier (2001) compared the free-
motion dynamics around a Schwarzschild black hole and around
a Newtonian point centre, when superposed with a dipolar field.
They observed that the black hole system became more chaotic
(than the exact case) when the centre was simulated by the
Paczyński–Wiita pseudo-potential, mainly if incorporating special
relativistic equation of motion. Şelaru et al. (2005) studied the New-
tonian circular Hill’s restricted three-body problem while describ-
ing the primary by the Schwarzschild-type potential A/r + B/r3.
Similarly, Steklain & Letelier (2006) compared the Hill problem
involving the Paczyński–Wiita pseudo-potential with the original
Newtonian version, concluding that the pseudo-Newtonian case
is usually – but not always – more unstable than its Newtonian
counterpart.

Several papers have also tried to incorporate, within the pseudo-
Newtonian approach, dragging effects due to rotation of the centre.
Steklain & Letelier (2009) thus found that the orbits counter-rotating
with respect to the centre are more unstable than the corotating ones.
Wang & Wu (2011) superposed a rotating ‘pseudo-black hole’ with
a quadrupole halo in order to analyse the emission of gravitational
waves from orbiting particles; the radiated amplitude and power
were observed to be closely related to the degree of orbital chaotic-
ity. The same authors (Wang & Wu 2012) also used their model in
order to discuss how the geodesic dynamics responds to the centre’s
spin and to quadrupole perturbation; they found, in particular, that
the centre’s rotation rather attenuates the instability. The dynamics
of charged particles in the field of a magnetized compact object de-
scribed in a pseudo-Newtonian manner was then studied by Wang,
Wu & Sun (2013) and instabilities were identified using the ‘fast
Lyapunov indicator’.

The advance to the pseudo-Newtonian imitation of spinning fields
mainly followed the proposal by Artemova, Björnsson & Novikov
(1996) of two simple potentials for the Kerr black hole. Recently,
these have been checked against a slightly different formula (as well
as against the ‘benchmark’ of the Paczyński–Wiita potential) on the
behaviour of circular-orbit acceleration by Karas & Abramowicz
(2015). A more elaborate pseudo-Newtonian ‘fit’ of Kerr was pre-
sented by Chakrabarti & Mondal (2006). Ivanov & Prodanov (2005)
found a pseudo-potential for circular motion of a weakly charged
particle in the Kerr–Newman space–time. Another extension was
suggested by Stuchlı́k & Kovář (2008) who derived a generalization
of the Paczyński–Wiita prescription for the Schwarzschild–de Sitter
black hole.

In order to properly involve rotational dragging, velocity-
dependent potentials have also been considered. Semerák & Karas
(1999) tested one such idea against the exact solution on long-term
behaviour of the difference between the respective free-particle dy-
namics. Recently Ghosh, Sarkar & Bhadra (2014) suggested a new
pseudo-potential which reasonably reproduces the Kerr space–time
features for moderate centre’s angular momentum and moderate
energy of the orbiter (see also the overview given in the introduc-
tion of that paper, including previous results of its authors). But
even in the Schwarzschild case the difference between Newtonian
and relativistic dynamics suggests the usage of velocity-dependent
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expressions; in a thorough study of the pseudo-Newtonian descrip-
tions of the Schwarzschild field, Tejeda & Rosswog (2013) brought
such a more advanced possibility (see Tejeda & Rosswog 2014 for
its further development).

2 B L AC K H O L E W I T H D I S C O R R I N G : A
PSE UDO-NEWTO NIAN DESCRIPTION

Exact superpositions of a vacuum static axisymmetric (originally
Schwarzschild) black hole with a concentric thin disc or ring are de-
scribed by formulas which were given in the previous papers of this
series (see mainly section 1.1 of paper III for a compact summary),
so rather than repeating them again, let us only specify that we
will again choose the inverted first member of the counter-rotating
Morgan–Morgan thin-disc family (iMM1 disc) and the Bach–Weyl
linear ring (BW ring) as the external sources, approximating a thin
accretion disc or ring, respectively. Let us also remind that (t, ρ, z, φ)
stand for the Weyl coordinates and (t, r, θ , φ) for the Schwarzschild-
type coordinates, with t and φ being Killing time and azimuth and
ρ, z or r, θ covering the meridional two-space. Geometrized units
are used in which c = G = 1, cosmological constant is (necessarily)
set to zero, and index-posed commas mean partial differentiation.

Newtonian analogue of the relativistic black hole–disc/ring pic-
ture studied in previous papers is given by function ν which deter-
mines the gtt metric component, in Weyl coordinates satisfies the
Laplace equation and represents a direct counterpart of Newton’s
gravitational potential. We will thus use the metric functions ν iMM1

and νBW of the disc and of the ring directly as the disc or ring New-
tonian potentials, respectively. The Schwarzschild-centre potential
νSchw, on the other hand, will be just emulated by a certain effective
pseudo-potential. We will test three simple cases:

VPW = − M
r−2M

, (1)

VNW = −M
r

(
1 − 3M

r
+ 12M2

r2

)
, (2)

Vln = 1
3 ln

(
1 − 3M

r

)
. (3)

The first was proposed by Paczyński & Wiita (1980), the second by
Nowak & Wagoner (1991), and the logarithmic one represents an-
other possibility we are submitting for comparison. The Paczyński–
Wiita potential is a default benchmark, very simple yet behaving
surprisingly well in many situations. The logarithmic potential is
simply included because we newly suggest it here. And the Nowak–
Wagoner potential is chosen for it has yet another form which will
be seen to result in a rather different character of the accessible
phase-space region; at the same time, it has turned out to be the
best of ‘simple’ possibilities in some studies (e.g. Crispino, da Cruz
Filho & Letelier 2011).

Other major simple pseudo-Newtonian substitutes for
Schwarzschild were provided by Artemova et al. (1996) and quite
recently by Wegg (2012). Artemova et al. (1996) used several
pseudo-potentials in studying disc accretion on to black holes; in
the non-rotating case, they considered expressions (we number them
according to the original paper)

VABN3 = −1 +
√

1 − 2M
r

, (4)

VABN4 = 1
2 ln

(
1 − 2M

r

)
. (5)

The second one (just equal to the Schwarzschild potential νSchw) is
similar in form to our logarithmic expression (3), but we will see

that the latter is actually more similar to the PW potential (see Figs 2
and 3). A comparison of the two ABN potentials with the PW and
NW ones was performed by Crispino et al. (2011) on the motion of
a particle emitting scalar radiation. More recently, several serious
options have been presented by Wegg (2012, original marking by
A, B and C is kept again),

VWA = −M
r

(
1 + 3M

r

)
, (6)

VWB = −M
r

(
3r

3r−5M
+ 4M

3r

)
, (7)

VWC = −M
r

1+ 4M
r (3−√

6)+ 20M2

r2 (5−2
√

6)

1− M
r (4

√
6−9)

, (8)

and shown to yield better results for the apsidal precession of low-
energy (about parabolic) orbits than the Paczyński–Wiita potential.
Recently we have included, with a surprisingly good result, VWA in
a comparison of light-ray approximations in the Schwarzschild field
(Semerák 2015). However, this potential turns out to be unsuited
for our present purposes as shown in the next section (equation 21
and below). All the other four potentials, VABN3, VABN4, VWB, and
VWC, are included in Figs 2 and 3 in order to at least illustrate their
basic nature against those we are going to study in more detail in
this paper.

2.1 Issue of comparison in coordinates

When preparing to superpose the centre-describing potentials with
ν iMM1 or νBW, one encounters the main query, however. How ex-
actly to perform the Newtonian superposition in order to get a
plausible counterpart of the relativistic system? Which coordinates
covering the curved relativistic space–time are adequate counter-
parts of Euclidean coordinates of the Newtonian description? The
Newtonian pseudo-potential for the black hole is usually given in
Euclidean spherical coordinates and simulates the hole represented
in Schwarzschild coordinates, while the disc/ring potentials are nat-
urally taken over from relativity in cylindrical coordinates. In the
relativistic description, the linear superposition holds in Weyl coor-
dinates ρ, z which are of cylindrical type and where the black hole
horizon appears as a finite line singularity at ρ = 0, |z| ≤ M. Af-
ter transformation to Schwarzschild-like coordinates of spheroidal
type,

ρ =
√

r(r − 2M) sin θ, z = (r − M) cos θ, (9)

the black hole horizon becomes spherical, while the disc/ring keeps
its shape but has a slightly bigger coordinate radius.

The spheroidal character of the black hole is clearly not well
represented in the Weyl coordinates. However, since the relativistic
superposition is performed in them, one should probably reproduce
it in the Newtonian approach in the following way: (i) take the
pseudo-Newtonian potential (in spherical coordinates) and trans-
form it into the Weyl coordinates; (ii) add the disc or ring potential
expressed in the Weyl coordinates; (iii) transform the result to the
Schwarzschild-type coordinates. Since the Newtonian fields super-
pose linearly in any coordinates, one can summarize this without
the intermediate step: take the black hole pseudo-potential and add
to it the disc or ring potential transformed from cylindrical to spheri-
cal/spheroidal coordinates in a Weyl-like manner, i.e. by substituting
equation (9).

Alternatively, rather than to take over the transformation between
the Weyl and Schwarzschild coordinates to the Newtonian descrip-
tion, one could assume that the relativistic disc/ring potential in
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Weyl coordinates corresponds to the Newtonian one in common
cylindrical coordinates, connected with the spherical ones (in which
the pseudo-potential for the centre is given) by the Euclidean rela-
tion ρ = r sin θ , z = r cos θ . However, since the pseudo-potentials
should imitate the black hole, which means mainly to imitate the
occurrence of the horizon, it is reasonable to demand that the
spheroidal–cylindrical transformation have in both cases similar
effect on the central source: if it shrinks the relativistic source
into a rod, it should not leave the Newtonian source intact (as the
Euclidean-type relation). We have anyway tested this second possi-
bility too and learned that if the external source is not very close to
the centre (below 10 M, say), the results are almost identical.

However, carefully as one may try to consider the correspon-
dence between the relativistic and pseudo-Newtonian systems, they
inevitably remain different, the more so that not only the space(–
time) backgrounds differ, but also the dynamics (equations of mo-
tion), so one should at least expect a quantitative discrepancy, unless
employing some more sophisticated velocity-dependent potential.

3 M OT I O N IN M O D I F I E D N E W TO N I A N
POTENTIALS

The motion of test particles in the velocity-independent axially
symmetric Newtonian potential V(r, θ ) is described, in spherical
coordinates (r, θ , φ) and with obvious notation, by equations

r̈ = −V,r + r (θ̇2 + φ̇2 sin2 θ ), (10)

r2θ̈ = r2φ̇2 sin θ cos θ − 2rṙ θ̇ − V,θ , (11)

r2φ̈ = −2rφ̇ (ṙ + rθ̇ cot θ ). (12)

If the field is even spherically symmetric, V = V(r), the V, θ term in
the equation (11) vanishes and the motion gets confined to a plane.
The orbital plane is usually identified with θ = π/2, so one is left
with equations

r̈ = −V,r + rφ̇2, rφ̈ = −2φ̇ ṙ . (13)

These have energy and angular-momentum integrals

E = m

2
(ṙ2 + r2φ̇2) + mV , L = mr2φ̇ , (14)

which invert for velocities as

φ̇ = �

r2
, ṙ2 = 2mr2(E − mV ) − L2

m2r2
≡ 2 (E − Veff ) , (15)

where1

Veff := V + �2

2r2
, E := E

m
, � := L

m
. (16)

Circular orbits exist where

Veff,r = 0 ⇔ �2 = r3V,r , (17)

so their linear speed amounts to

rφ̇ = √
rV,r , (18)

their energy is given by the corresponding potential value

E(�2 =r3V,r ) = Veff (�
2 =r3V,r ) = V + 1

2
rV,r , (19)

1 As noted in figures and their captions, we actually shift the specific energy
E by 1 so that a particle at rest at infinity has E = 1 in accord with the
relativistic case.

and their stability is determined by the sign of

Veff,rr (�2 =r3V,r ) = V,rr + 3V,r

r
. (20)

The character of radial motion and its response to perturbations
are thus governed by shape of the potential well (given by V and
�) and by the particle’s specific energy E . Most importantly, the
shape of Veff and the value of E determine the properties of the
region accessible to the particle within the (r, ṙ) diagram. A well-
known crucial point is whether this region is closed or open towards
the centre, which, for a given energy, depends on the height of
the centrifugal barrier �2/r2. In the marginally closed state, the
accessible domain is bounded by a separatrix which corresponds
to a homoclinic orbit, winding – in infinite past and infinite future
– from and on the unstable circular periodic orbit residing at the
potential saddle-point vertex. Homoclinic orbits, a salient feature of
black hole fields, represent an infinite-whirl limit of the zoom-whirl
type of motion (a strong-field bound motion with extreme pericentre
advance), and are familiar to mark the frontiers of chaotic regime –
their perturbation leads to the occurrence of a ‘homoclinic tangle’,
through which the original circular orbit breaks up into a fractal set
of periodic orbits.

The homoclinic orbit is infinite, but the length of its trail in
reasonable coordinates (r, ṙ in our case), i.e. of the accessible re-
gion bounding separatrix, indicates the size of a phase-space region
which turns chaotic under perturbation. This does not provide any
plausible (‘covariant’) measure of what fraction of the phase space
will be affected, but still can be used to compare different potentials.
A similar suggestion (only given by ṙ2 rather than by ṙ) is contained
in the length of the potential valley Veff (�circ) below the energy level
of the unstable circular orbit or in this valley’s area.

Let us now briefly check the basic properties of effective po-
tentials given by the gravitational potentials (1)–(3), in particular
whether and how they reproduce circular periodic orbits, decisive
for the response of the dynamical system to perturbation. However,
consider first the Wegg’s expression (6) in order to realize why it is
not suitable this time. For the corresponding effective potential,

Veff = −M

r

(
1 + 3M

r

)
+ �2

2r2
, (21)

the condition for circular orbits �2 = r3V, r yields Mr = �2 − 6M2

for the radius, so �2 > 6M2 must hold in order that such radii really
exist. But for the Wegg potential one has Veff,rr = (�2 − 6M2)/r4,
so all the �2 > 6M2 circular orbits sit at the potential minimum,
hence they are all stable and not interesting for us. Therefore, rather
than mimicking the occurrence of unstable circular orbits, so char-
acteristic to the black hole fields, the Wegg’s A-potential behaves
like Newtonian −M/r, just with the critical value of �2 shifted from
zero to 6M2. (This is no wonder, since Wegg suggested the potential
specifically for near-parabolic orbits at larger radii.)

The shapes of the effective potentials resulting from the
Paczyński–Wiita, Nowak–Wagoner, and our logarithmic potentials
is compared in Fig. 1. All the three potentials host both stable
and unstable circular orbits and are clearly quite similar. They all
yield the correct radius r = 6M for the marginally stable circular
orbit (ISCO). The Paczyński–Wiita potential also does so for the
marginally bound orbit (IBCO, r = 4M), reproducing besides the
angular-momentum Schwarzschild value � = 4M there. On the other
hand, the logarithmic potential gives the correct value of angular
momentum at the ISCO (� = 2

√
3 M). The latter is a consequence
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Figure 1. Comparison of effective potentials resulting from the pseudo-Newtonian gravitational potentials (1), (2), and (3) (enlarged by 1) with the exact
Schwarzschild effective potential

√
(1 − 2M/r)(1 + �2/r2) . Several profiles with different � are plotted, with the values of � adjusted (differently for different

potentials) so that the curves be similar; particular curves involving the marginally stable and marginally bound circular orbits are shown for all the potentials
and are easily recognizable. (For the NW potential, the � = 0 case does not differ much from �/M = 1, so it is not included.) All the three potentials look
similar and not far from the actual Schwarzschild one. Our logarithmic potential is clearly very close to the PW one, having its maxima at slightly larger radii;
the NW-potential profiles, on the contrary, are shifted to smaller radii with respect to the PW ones. The main difference is that the slopes of Schwarzschild
curves are less steep. Also notice the differences in the values of � corresponding to roughly same heights of the potentials: (i) those required for the NW
potential are considerably lower; (ii) at the high-� end, those required by the Schwarzschild potential grow faster.

of a more general tuning: circular orbits of the logarithmic potential
satisfy

�2 = Mr2

r − 3M
, (22)

which is exactly the same expression as would be obtained in the
exact Schwarzschild field. This means, in particular, that a Keplerian
disc in the ln potential would have exactly the same distribution of
angular momentum as in the Schwarzschild case.

Fig. 2 emphasizes what may not be evident from Fig. 1: that
although the shapes of the potentials seem similar to the actual
Schwarzschild one, they may differ significantly or just fail in some
important aspects like the relations between the energy and angular
momentum for the unstable circular periodic orbits. Specifically, a
particle with E , � located below the respective curve in Fig. 2 will
orbit in an allowed region open towards the centre and will thus be
prone to black hole infall; on the other hand, particles from above
the curve will orbit in two distinct regions, the exterior one being
closed-off from the centre by the centrifugal barrier. However, if one
picks E(+1) < 1 (hoping for bound motion later harbouring chaos)
and � too far above the curve, there might be no bound particles
orbiting the black hole because of a too high centrifugal barrier.
Hence, in the E(+1) < 1 range the PW, Wegg B and C, and log
potentials are expected to exhibit satisfactory behaviour in terms
of the overall nature of the allowed region, whereas the NW and
Artemova potentials will not show a good correspondence.

One can judge from this that although the character of chaos in-
duced by perturbation of the pseudo-Schwarzschild fields is likely
to be similar to what is a common experience from weakly non-
integrable systems, its dependence on the relevant parameters will
be quantitatively different, in particular the parameter values criti-
cal for an occurrence of various features (resonances, separatrices,
chaotic layers) will be different. Also, as the potential valleys pro-
vided by the pseudo-potentials are generically deeper than the actual
Schwarzschild ones (see Fig. 3), it might be loosely anticipated that
the corresponding Newtonian motion will rather be more chaotic
than geodesic motion in the exact relativistic field. However, one
must remember that we are yet talking about the central black hole
only, and, also, that the relativistic dynamics is different from New-
tonian (already special-relativity effects make some difference), so
the centre’s effective-potential shape is just one part of the story.

3.1 Superposition of the black hole with a disc or ring

The second part is the gravitational potential of the additional source
which in our case will be represented by a thin annular disc or
a ring. If a static and axially symmetric source is placed around
the centre, the field is no longer spherically symmetric, hence a
generic motion is no longer plane-like and one must return to
equations (10)–(12). Their energy and angular-momentum integrals
now have the form

E = 1

2
(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ ) + V , � = r2φ̇ sin2 θ , (23)

MNRAS 451, 1770–1794 (2015)

 at U
niverzita K

arlova v Praze on July 24, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Chaos around black holes with discs or rings 1775

Figure 2. Values of the angular momentum � needed to raise the centrifugal
barrier to a given energetic level E (thus to establish an unstable circular
orbit with that energy), plotted for the potentials we compare (E is enlarged
by 1 for the potentials in order to match the relativistic case). The Nowak–
Wagoner potential yields the worst result and our logarithmic potential yields
the best one, yet none of them reproduces the Schwarzschild-field behaviour
properly. The curves provided by potentials (4) and (5) of Artemova et al.
(1996) are also shown in dashed grey and the potentials (7) and (8) of Wegg
(2012) are drawn in dotted brown.

and invert for velocities as

φ̇ = �

r2 sin2 θ
, ṙ2 + r2θ̇2 = 2 (E − Veff ) , (24)

where

Veff := V + �2

2r2 sin2 θ
. (25)

To obtain an effective potential for the motion in the complete
field of the (pseudo-) black hole surrounded by some external source
(which generates potential νext), one simply takes the above Veff

with

V = Vpseudo(r) + νext

(√
r(r − 2M) sin θ, (r − M) cos θ

)
.

We illustrate the possible outcome by adding the inverted first
Morgan–Morgan counter-rotating disc which was already involved
in previous papers of this series and whose gravitational potential
reads, in the Weyl-type cylindrical coordinates (9),

νdisc = − M
π (ρ2 + z2)3/2

[(
2ρ2+2z2−b2 ρ2−2z2

ρ2 + z2

)
arccotS

−1

2
(3	 − 3b2 + ρ2 + z2)S

]
(26)

(see e.g. Žáček & Semerák 2002), where

	 :=
√

(ρ2 − b2 + z2)2 + 4b2z2 ,

S :=
√

	 − (ρ2 − b2 + z2)

2 (ρ2 + z2)
,

Figure 3. Top: one specific effective-potential profile plotted for all the
gravitational potentials considered, with the angular momentum � = 3.75M
(this value is chosen in most of the figures presented in next sections).
Like in Fig. 2, the Artemova et al. potentials VABN3 and VABN4 are also
shown in dashed grey and the Wegg potentials VWB and VWC are drawn in
dotted brown. Only the PW and the ln potentials (red and green) seem to
approximate the exact Schwarzschild shape in some way. Clearly the PW
potential is more open towards the centre, while the ln potential is more
closed than the actual Schwarzschild case. Bottom: similar plot, but with
the angular-momentum values chosen so that all the effective potentials have
the same maximum E + 1 = 0.987 746 at the unstable circular orbit (in the
Schwarzschild case, one takes just E). Concretely, this means � = 3.9M
for Schwarzschild, � = 3.9494M for Paczyński–Wiita, � = 2.7475M for
Nowak–Wagoner, � = 3.7805M for the logarithmic potential, �3 = 2.5739M
and �4 = 3.1028M for the Artemova et al. potentials VABN3 and VABN4, and
�B = 3.9651M and �C = 3.9735M for the Wegg potentials VWB and VWC.
The pseudo-potentials yield somewhat different radii of the unstable circular
orbit (only the PW and ln potentials have it very close to the correct value)
and their valley existing above this orbit is deeper than the Schwarzschild
one; the difference is especially large for the ABN potentials.

and M and b denote mass and Weyl inner radius of the disc. Fig. 4
shows the results obtained with different pseudo-potentials and
compares them with the one following from an exact relativistic
treatment which describes the problem (geodesic motion) by equa-
tions (see section 4 of paper I)

e2(λ−λSchw)
[
(ur )2 + r(r − 2M)(uθ )2

] = E2 − (Veff )2 , (27)

MNRAS 451, 1770–1794 (2015)

 at U
niverzita K

arlova v Praze on July 24, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1776 V. Witzany, O. Semerák and P. Suková

Figure 4. Meridional (φ = const) sections of the effective potentials for an originally Schwarzschild black hole surrounded by the first member of the
Morgan–Morgan counter-rotating thin-disc family. Exact relativistic superposition is shown (first row) together with those involving Paczyński–Wiita (second
row), logarithmic (third row), and Nowak–Wagoner (fourth row) imitations of the black hole. All the cases are determined by the value of specific energy
E(+1) = 0.987 746 at the unstable circular orbit as in Fig. 3 (so the values of � are also exactly as there). Within all of the four rows, the disc relative mass
M/M is chosen, from left to right, 0.0, 1.0, and 5.0. In all the plots, the contours shown are Veff (+1) = 0, 0.1, 0.2, 0.3,...,0.700, 0.705, 0.710, 0.715,...,0.990,
0.995, 1. (Veff + 1 is taken in the Newtonian cases, whereas just Veff in the Schwarzschild one.) Axes are scaled in the units of M.

(Veff )
2 :=

(
1 − 2M

r

)(
1 + �2e2νdisc

r2 sin2 θ

)
e2νdisc , (28)

where λ has to be computed by line integration of the gradient of
total potential ν, with λSchw denoting its pure-Schwarzschild form,
uμ is four-velocity of the test particle, and E := −ut and � := uφ

are constants of the geodesic motion following from the Killing
symmetries (they represent specific energy and specific azimuthal
angular momentum of a test particle with respect to infinity). The
figure confirms that the pseudo-potentials we consider here pro-
vide similar – but not the same – effective potentials as the exact
Schwarzschild-field description, with the Paczyński–Wiita and our
logarithmic formulas apparently being quite close to each other.

Superposition with the Bach–Weyl ring is acquired in the same
manner, just with νext represented by

νBW = − 2M
π

√
(ρ + b)2 + z2

K

(
2

√
ρ b√

(ρ + b)2 + z2

)
, (29)

where K(k) := ∫ π/2
0

dφ√
1−k2 sin2 φ

is the complete Legendre elliptic

integral of the first kind and M and b are mass and Weyl radius of
the ring.

4 N U M E R I C S

Trying to check our previous results also by using a different nu-
merical method(s), we turned to symplectic integrators, suitable for
conservative systems. However, the two outer sources we consider
differ in what to do when the particle hits them: the ring is a cur-
vature singularity, so it is appropriate to halt the trajectory if it
gets to its closest vicinity, whereas the thin disc is only singular at
its inner edge while cross transitions elsewhere are approximated as
non-collisional (pure gravitational effect). Hence, the disc case has
to be treated more carefully, regarding that there is a normal-field
jump across the equatorial plane (hence jump of the z component
of acceleration) above the disc inner radius.

More specifically, the geodesics in the fields given by superposi-
tions with the Bach–Weyl ring are integrated using the sixth-order
explicit symplectic partitioned Runge–Kutta method with coeffi-
cients adopted from (Yoshida 1990, Solution A) and with step
h = (2–5) · 10−2M depending on the strength of the ring.

In the case of thin discs (first inverted Morgan–Morgan disc in our
case here), regular integrators bring linear to polynomial growth of
error in constants of the motion due to the jump in vertical field. In
previous papers of this series, we got over this by the Hut’a method
with adaptive step and using higher float representation. For this
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Chaos around black holes with discs or rings 1777

paper, we developed a different variable-step integrator largely in-
spired by the IGEM code of Seyrich & Lukes-Gerakopoulos (2012)
and having the desirable properties of reversibility and symmetry
(see Stoffer 1995 for other variable-step symmetric-reversible inte-
gration methods). It is based on GaussÃ collocation method with
three collocation points (s = 3) and step size determined by the col-
location points. Unlike in IGEM, the step size is not determined by
the Jacobian of the integrated vector field but by spatial coordinates
and the integrated vector field itself (i.e. by phase-space variables
and their time-derivatives at the collocation points).

We start by choosing the step

h0 = ε

|| f (1) + f (s)||
, (30)

where f (i) := f (xi) is the integrated vector field at points xi of the
Gaussian collocation and the norm is defined by || f || := ∑ |f j |,
where f j are components of the vector f . (Any norm actually works.
We use absolute value which is computationally less demanding
than fractional powers, for example.) The integrator will be re-
versible and symmetric if h(xi) ≡ h( p1, . . . , ps ; q1, . . . , qs) is a
function symmetric with respect to the reversal of order, 1↔s, and
to the change of the sign of momenta, pi → − pi . Now, the step h0

is adapted according to2

h = h0

n(ζ̄ )
= ε

n(ζ̄ ) || f (1) + f (s)||
, (31)

where

n(ζ̄ ) := 1 + δ1

δ2 + ζ̄ 2
, ζ̄ := 1

s

s∑
i=1

ζi , (32)

so it remains about h0 for ζ̄ 2 	 δ1, while for δ2 + ζ̄ 2 < δ1 it is
contracted; the factor which multiplies h0 is however never less
than δ2/δ1. The coefficients δ1, δ2 are set so that the particle travels
in a controlled manner as close to the equatorial plane as possible.

Then, from some minimal ζ , the particle is reflected with respect
to the equatorial plane: when its |ζ | falls below some chosen ζ min,
the program first estimates whether it will cross the equatorial plane
in the next κ steps by computing

ζ ′ = ζ + κf ζ (x)
ε

||2 f (x)|| , (33)

thus basically using the Euler explicit method with a step of roughly
κh0; if ζ is found to change sign, the original position is reflected
by ζ → −ζ . The advantage of this approach is that the particle
encounters a ‘stepping wall’ near ζ = 0, the iterative Gaussian col-
location does not suffer from the nearby discontinuity and the ζ

→ −ζ reflection exactly conserves energy. The only point violat-
ing the integrator’s symmetry is the step estimate of the crossing,
but any symmetric-reversible stepping would be implicit and dif-
ficult to iterate over the discontinuity, with only small benefit to
accuracy. We checked that when the parameters are tuned prop-
erly, the error typically oscillates without any drift, as typical for
symplectic/reversible-symmetric integrators. In some cases the self-
adjustment of the step has proven insufficient and a slow linear
growth in relative energy error was observed (usually for particles
infalling on to a black hole), but this error only rarely exceeded
10−11. By numerical experiments, we have found the following

2 We perform the integration in Euclidean r sin θ , r cos θ (not in the Weyl-
type coordinates), so we better introduce ζ ≡ r cos θ ( �= z) to avoid confu-
sion.

parameter ranges to be optimal:

ζmin = (1−5) · 10−4M,

δ1 = (10−5−10−3) M2,

δ2 = (10−8−10−5) M2,

ε = (5−8) · 10−2M,

κ = 1−3 .

Let us add that the Gaussian collocation was found by fixed-point
iteration and convergence was confirmed by checking the difference
between the current set of collocation points xi and the previous
one xi(p), as represented by

� =
s∑

i=1

2N∑
j=1

∣∣∣xj
i − x

j
i(p)

∣∣∣ , (34)

where N = 2 is the number of degrees of freedom. The iteration
was stopped whenever � < 10−13. Such a tolerance corresponds to
an average error of the order of 10−14 per collocation component,
which is about what can practically be achieved, because spatial
position (configuration part of x) was often larger than 10, the
‘distance’ � includes subtraction of close numbers and we used
double precision which stores about 15 digits.

The Poincaré surfaces of section were created of 3600 equatorial-
plane intersections, recording transitions in both directions. When-
ever the singularities of the central potential or the ring were closely
approached, the integration was stopped and restarted again with a
nearby initial condition until a sufficient number of points was col-
lected. However, the whole set of intersections generated by a given
trajectory was discarded if a relative error in energy turned out to
be too large (namely � 10−9). Overall, the initial conditions were
chosen by a pseudo-random algorithm similar to the one described
in paper I.

5 C OMPARI NG EXAC T R ELATI VI STI C
A N D P S E U D O - N E W TO N I A N P I C T U R E

Let us stress once more that the (pseudo-)Newtonian and relativistic
dynamical systems in question are fundamentally different, because
they live in a different configuration space and their evolution is
described by a different dynamics as well. It is even impossible to
decide which situations are ‘similar’, because most of the relevant
variables actually have different meaning within Newtonian and
relativistic case; for example, if one places the external source at
some ‘given’ radius, it has different meanings in the Euclidean
spherical/cylindrical coordinates r sin θ , r cos θ , in the Weyl-type
coordinates ρ = √

r(r − 2M) sin θ , z = (r − M)cos θ (which we
use here) and – in relativity – in terms of proper radial distance
or in circumferential radius. Therefore, one can only wish for a
reasonable correspondence of qualitative phase-space features and
of their evolution with analogous parameters. Yet it will still be
interesting to see whether and which of the potentials reproduce at
least some of the quantitative aspects, like the pattern of resonances
and the sequence of their appearance.

Needless to say, one has only a very restricted space here for
such a comparison. It is symptomatic for non-integrable systems
that their dependence on parameters is ‘chaotic’ (non-smooth) –
they may change only slowly within one parameter range, whereas
very abruptly within the other (which may be quite narrow). Being
only able to select several sections through the very rich parameter
space of the systems, one can either take those with the same values
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1778 V. Witzany, O. Semerák and P. Suková

of the corresponding parameters, those showing similar features,
or simply those where something interesting is happening. Without
adhering to any strict rule, we have generally set the fixed parameters
at formally identical values as in the relativistic case and varied the
free parameter in roughly the same range.

The comparison in general reveals that the overall tendency is
the same in both the relativistic and pseudo-Newtonian systems:
when the perturbation strength (disc mass in our case) or parti-
cle energy increases, the system first gets more and more chaotic,
whereas for very large parameter values the ‘primary’ regular re-
gion slowly grows again. However, since such a behaviour is quite
typical for weakly non-integrable systems, we will mainly try to
note the differences.

We start by evolution of the phase portrait with mass of the
external source. Figs 5 and 6 show how Poincaré diagram of equa-
torial transitions changes with relative mass of the inverted first
Morgan-Morgan disc as the external source. Placing the inner edge
of the disc on rdisc = 20M and setting E = 0.045 (= 0.955 − 1.000),
� = 3.75M as in paper I, the figures present diagrams obtained
for eight different values of M/M between 0.1M and 1.7M. The
Schwarzschild centre is imitated by the Paczyński–Wiita potential
in Fig. 5 while by the logarithmic potential in Fig. 6. We have
not included the Nowak–Wagoner potential in the detailed study,
because it has turned out to yield rather different results, not well
compatible with the exact relativistic picture (the NW potential is
‘too weak’ and for a large portion of the studied parameter ranges its
phase space bears no bound particles); however, Fig. 9 is provided
for cursory illustration.

The Figs 5 and 6 are to be compared with fig. 4 of paper I.

(i) The main difference concerns the accessible domain which,
in comparison with the exact relativistic case, is more open towards
the centre for the Paczyński–Wiita potential, whereas more closed
for the logarithmic potential (see Fig. 2): for real Schwarzschild,
the domain is closed first, enlarges with increasing disc mass and
finally opens towards the centre when the disc mass reaches about
half of the black hole mass (this applies specifically to the iMM1
disc with rdisc = 20M, of course). In contrast, for the Paczyński–
Wiita potential the accessible sector is always open towards the
centre, whereas for the logarithmic potential it is closed and only
opens after the disc outweighs the centre. However, this does not
seem to be that crucial for evolution of the phase-space features,
the opening only enables the centre to ‘suck out’ the outer chaotic
sea. (This makes the open diagrams asymmetric with respect to
vr = 0.)

(ii) The similarity of all three systems is really striking, with
most phase-space structures appearing and in the same succession.
In the Paczyński–Wiita case, similar features appear for somewhat
lower disc-mass values (about 0.1M–0.2M ‘earlier’) than in the
relativistic case, while for the logarithmic potential they appear still
about 0.05M–0.1M earlier than for the PW potential. This may be
interpreted as slightly stronger inclination of the pseudo-Newtonian
system towards chaos, which is in accord with our preliminary
guess stemming from deeper potential valleys provided by them
(see Fig. 3).

(iii) More details about the structures: with increasing perturbing
mass, the relativistic geodesic system (see paper I) first develops a
threefold island within the primary regular region (2:3 resonance,
‘fish’-shaped orbit in Fig. 17); then (temporarily) a fourfold one ap-
pears within the chaotic periphery of the accessible region: this is a
particularly shaped ‘symmetrized set’ of 1:2 resonances (analogous

feature appears ‘earlier’ in the PW case).3 Later the central regular
region gives birth to five islands (4:5 resonance, again identical in
the relativistic and pseudo-Newtonian case), then even sevenfold
and ninefold ‘baby-islands’ (6:7 and 8:9 resonances) can be spot-
ted, and finally the region breaks up into two parts symmetrical
with respect to vr = 0 which disappear shortly after the disc mass
reaches about the black hole mass. Meanwhile, a central regular
sector appears and grows gradually with the disc mass increased
still more.
The Paczyński–Wiita centre with the iMM1 disc also first give
birth to the threefold island and then to the fivefold, sevenfold,
and ninefold ones, corresponding to the same resonances as in the
relativistic case; the fourfold structure only appears in a light-disc
stage (along the border of the regular domain). The logarithmic
potential yields very similar behaviour, with the fourfold structure
not occurring at all.

(iv) The break-up of the original central island is a very charac-
teristic feature of the relativistic as well as of the pseudo-Newtonian
systems; in all cases it occurs when the disc mass M reaches about
that of the central hole (M). More specifically (Fig. 14), if one takes
any point r, θ , ṙ , θ̇ on the original central orbit (red) and applies the
reflection θ → π − θ and/or velocity reversal ṙ → −ṙ , θ̇ → −θ̇ ,
the same central orbit is obtained, just in a different phase. Namely,
the central orbit is – up to a phase shift – symmetric with respect to
reflection and reversal which are discrete symmetries of the Hamil-
tonian. However, this symmetry of the whole phase space need not
be respected by individual invariant structures. The multiplication
of resonant islands is then a kind of ‘spontaneous symmetry break-
ing’, because as the central orbit shifts to the strongly perturbing disc
edge, it loses stability and bifurcates into two (green) orbits which
are reflection symmetric when taken together as a ‘symmetrized
set’ (the reflection operation maps the points of the first trajectory
on the second one and vice versa). These green trajectories later
bifurcate even further in the radial direction, into 2+2 ‘reversible-
asymmetric’ trajectories (blue and purple). The four small islands
in the Poincaré diagrams with M = 1.7M in Figs 5 and 6 thus
correspond to a symmetrized set of four distinct 1:1 resonances.

(v) Let us point to one specific difference finally: in the log-
potential system, one observes a strong fivefold structure corre-
sponding to a 4:5 resonance inside the central regular region, ex-
isting from M = 0.33M to 0.62M (we mean the one oriented so
that one ‘vertex’ island lies on the vr = 0 axis and towards the
centre); in the PW-potential system, the similar structure is weaker
and only persists from M = 0.54M to 0.67M; in the exact system
it does not appear at all. (However, it can appear rarely for a dif-
ferent type of disc and/or for a disc placed on different radius – see
fig. 5 in paper I, plots with rdisc = 14M and 15M.) Notice also how
in the pseudo-Newtonian cases that structure finally switches over
to a complementary/reverse fivefold pattern, with one ‘vertex’ lying
away from the centre (which is common in the exact system).

Now we proceed to energy which is one of the most important pa-
rameters of any dynamical system. Figs 7 and 8 show how Poincaré
diagram of equatorial transitions changes with conserved energy
of the freely orbiting test particles. Placing the ‘iMM1’ disc of
mass M = 0.5M from rdisc = 20M and setting � = 3.75M as in

3 Normally, an m:k resonance is associated with a k-fold (k-periodic) island.
It is not clear whether the fourfold island represents a tangent or a pitchfork
bifurcation of the 1:2 resonance (cf. also the following commentary on a
1:1-resonance bifurcation).
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Chaos around black holes with discs or rings 1779

Figure 5. Poincaré diagrams in axes (r, vr) showing passages of geodesic orbits with conserved energy E + 1 = 0.955 and angular momentum � = 3.75M
through the equatorial plane of a centre described by the Paczyński–Wiita potential (with mass M) and surrounded by an iMM1 disc with inner radius
rdisc = 20M. Dependence on mass of the disc M is shown, as given in the plots. Accessible sector is indicated in purple and r axis is in units of M.
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1780 V. Witzany, O. Semerák and P. Suková

Figure 6. Same series of plots as in Fig. 5, but with the central black hole simulated by the logarithmic potential (3). Comparison of these two figures with
fig. 4 of paper I indicates that the phase-space portrait of all the three dynamical systems is similar, though various quantitative differences can be noticed (see
mainly behaviour of the accessible region) as more discussed in the main text.
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Chaos around black holes with discs or rings 1781

Figure 7. Poincaré (r, vr) diagrams showing passages of geodesics with angular momentum � = 3.75M through the equatorial plane again, for the centre
described by the Paczyński–Wiita potential (with mass M) and surrounded by an iMM1 disc with mass M = 0.5M and inner radius rdisc = 20M. Here
dependence on energy of the orbiters E is in focus, as indicated in the plots (we enlarge it by unity to match with the relativistic value).
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1782 V. Witzany, O. Semerák and P. Suková

Figure 8. Same series of plots as in Fig. 7, but with the central black hole simulated by the logarithmic potential (3). Comparison of these two figures with
fig. 6 of paper I again indicates that both Newtonian dynamical systems well approximate the relativistic one; quantitative differences are further discussed in
the main text. (Mainly evident is the different delimitation of accessible phase-space sector again, following from differences in effective-potential profiles.)
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Chaos around black holes with discs or rings 1783

Figure 9. Poincaré diagrams in axes (r, vr) showing passages of geodesic orbits with conserved angular momentum � = 3.75M through the equatorial plane
of a centre described by the Nowak–Wagoner potential (with mass M) and surrounded by an iMM1 disc with inner radius rdisc = 20M. The first two rows show
dependence on mass of the disc M, while all the orbiting particles have energy E + 1 = 0.955. The last row shows just three examples of how the plots change
with orbital energy E , while the disc mass is set at M = 0.5M . The plots are rather different from those involving the Paczyński–Wiita or the logarithmic
potential, because the Nowak–Wagoner potential is so weak that it does not form ‘its own’ valley and the accessible region is maintained by the disc, at least
in the M-series plots. On the other hand, exactly due to this different character it is useful to include at least this one series employing the NW potential.

paper I again, the figures present diagrams obtained for eight dif-
ferent values of E between E + 1 = 0.95 and 0.98. The Paczyński–
Wiita potential is used in Fig. 7 while the logarithmic potential in
Fig. 8. The Nowak–Wagoner potential is only illustrated briefly in
Fig. 9.

The Figs 7 and 8 are to be compared with fig. 6 of paper I. The
latter shows less stages than we present here, but the comparison
anyway confirms what has already been observed above in figures
illustrating dependence on the perturbing mass (the sequences in
fact resemble the previous ones): the pseudo-Newtonian systems
well simulate the exact relativistic one, they are just slightly richer
of tiny structures and display major features somewhat ‘earlier’
in terms of the relevant parameter (here energy). In this sense,
they can again be called ‘more chaotic’ than the exact system,
with the logarithmic potential perhaps being slightly more prone to
irregularity than the Paczyński–Wiita one. In the left-hand column
of Fig. 8, notice the nice (centre-vertexed) fivefold pattern and its
switch-over to the ‘complementary’ pattern between E + 1 = 0.957
and 0.958.

The same kind of illustration – dependence on external mass
and on orbital energy – is also provided for the black hole-like
centre surrounded by a Bach–Weyl ring (with radius rring = 20M).
Figs 10 and 11 show how the equatorial (r, vr) section through the
phase-space evolves with relative mass of the ring, while energy
and angular-momentum integrals are chosen E + 1 = 0.977 and
� = 3.75M; the centre is described by the PW potential in Fig. 10,

while by the ln potential in Fig. 11. Figs 12 and 13 show dependence
on energy of the orbiting particles, while � = 3.75M and the ring
mass is set at M = 0.5M; again the PW potential is employed in
the first figure, while the ln potential is employed in the second one.
Figs 10 and 11 are counterparts of fig. 10 in paper I, while Figs 12
and 13 are counterparts of fig. 12 in paper I.

The comparison with paper I again verifies quite close similarity
of all the three dynamical systems (the exact relativistic one and
those with the black hole simulated by the PW or the ln potential).
One might however notice many unlike details, but they are not
worth careful discussion, because in the ring case the dynamics is
apparently very rich of tiny structures, both regular and chaotic. The
rich ornamentation follows from close encounters with the singular
source, so in future work – whether within exact description or using
pseudo-potentials – it will be sensible to rather consider orbits not
closely interacting with the ring, i.e. to choose the accessible region
so that not to involve the ring radius. Such a configuration will
also be more realistic since there are no literally singular sources
in nature (cf. paper III where this point was checked in simple
modelling of Galactic circumnuclear rings).

Anyway, comparison of Figs 12 and 13 with fig. 12 of paper I
indicates, similarly as the centre-disc plots above, that the pseudo-
Newtonian imitations of black hole lead to slightly faster ‘evolution’
with parameters than the exact relativistic case, which can perhaps
be interpreted as more ‘unstable’ response to the perturbation. For
instance, the break-up of the principal regular sector existing below
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1784 V. Witzany, O. Semerák and P. Suková

Figure 10. Poincaré (r, vr) diagrams showing passages of geodesics with conserved energy E + 1 = 0.977 and angular momentum � = 3.75M through
the equatorial plane of a centre described by the Paczyński–Wiita potential (with mass M) and surrounded by a Bach–Weyl ring with radius rring = 20M.
Dependence on mass of the ring M is shown, with values given in the plots. Accessible sector is indicated in purple and r axis is in units of M.
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Chaos around black holes with discs or rings 1785

Figure 11. Same series of plots as in Fig. 10, but with the central black hole simulated by the logarithmic potential (3). Comparison of these two figures with
fig. 10 of paper I indicates that the phase-space portrait of all the three dynamical systems is similar, though many quantitative details are different (it would
be pointless to discuss them extensively due to the richness of the structure); note again the different delimitation of the accessible region.

MNRAS 451, 1770–1794 (2015)

 at U
niverzita K

arlova v Praze on July 24, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1786 V. Witzany, O. Semerák and P. Suková

Figure 12. Poincaré (r, vr) diagrams showing passages of geodesics with angular momentum � = 3.75M through the equatorial plane again, for the centre
described by the Paczyński–Wiita potential (with mass M) and surrounded by a Bach–Weyl ring with mass M = 0.5M and radius rring = 20M. Here,
dependence on energy of the orbiters E is in focus, as indicated by its values given in the plots (we enlarge it by unity again). We are not showing plots obtained
for E + 1 = 0.910 and less which only contain a tiny accessible region around the ring (the other region between the centre and the ring is not existing yet).

the ring occurs at E = 0.945−0.950 in the relativistic case, while
at E + 1 = 0.940−0.945 in both pseudo-Newtonian cases. Again
quite different is the moment of opening of the accessible domain
towards the centre: in the relativistic picture, this happens at E �
0.934, while with the PW potential it happens at E + 1 � 0.917
(the PW potential is almost ever open) and with the ln potential
it happens only at E + 1 � 0.953 (the ln potential is almost ever
closed).

5.1 On dependence on perturbing mass and on orbital energy

The Newtonian dynamics allows for a straightforward and quan-
titative explanation of the correspondence between the changes in
sections caused by variation of the perturbing mass M and by vari-
ation of the orbital energy E . First, as we fix the total energy E and
increase the disc mass M, the potential well becomes deeper, so
the particle necessarily gets more kinetic energy. Hence, although
the parameters of the surfaces of section in Figs 5 and 6 might look
like we study ‘identical’ ensembles of trajectories subjected to a

stronger and stronger dynamical perturbation, effectively it is not
so.

To illustrate this point further, we compute the average speed
v̄(E,M, �, rdisc) over the equatorial plane for the parameters chosen
in Figs 5–8,4

v̄(E,M, �, rdisc) =
∫ √

2 [E − Veff (θ =π/2)] 2πr dr∫
2πr dr

, (35)

and plot the dependence of the result on M and E for the PW and
ln potential in Fig. 15. (Integration is performed over the accessible
region; in cases where the latter was not closed in the direction
towards the centre, we have taken the lowest reachable r to be
5M.) In the ranges 0 � M � 0.8M and 0.945 � E+ 1� 0.965 (of
which part is shown in the figure), and for both central potentials, the
growth of v̄ with either M or E is very similar. The comparison of
plots shown in Fig. 15 thus suggests the following interpretation: the

4 The ‘average speed’ is certainly an ambiguous concept. We choose here a
definition which is simple and natural.
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Chaos around black holes with discs or rings 1787

Figure 13. A counterpart of Fig. 12, showing the same series of dependence-on-energy plots for the centre described by the logarithmic potential (3). All the
parameters are kept from previous figure, i.e. � = 3.75M, M = 0.5M , rring = 20M, and also the values of E are chosen equally, as indicated in the plots. In
addition, we have kept exactly the same axis ranges, so the two figures can be compared easily. Their relativistic counterpart is fig. 12 of paper I.

phase-space structure stays roughly the same for a moderate disc-
mass perturbation, with the growing disc mass mostly inducing a
shift of the orbits to higher kinetic energies. This aspect is surely
present in the relativistic case studied in papers I–III as well, but
would require a more subtle argument.

5.2 Remark on the Bach–Weyl ring

The Bach–Weyl ring is actually an interesting source. Its potential
(29) is everywhere attractive, namely its field intensity (minus gradi-
ent of the potential) points towards the ring from all local latitudinal
directions. In the Newtonian picture it thus represents an ‘ordinary’
ring source. In relativity the potential remains valid, but the metric
involves two functions, the second being given by a line integral of
the potential gradient. In the BW-ring case, both functions are given
by elliptic integrals and, as expected, both diverge at the very ring.
The two divergences however combine to such a deformation of ge-

ometry in the ring’s vicinity that the real physical distance (proper
distance) to the ring comes out finite from outside (when the ring is
approached from bigger radii), whereas infinite from inside (when
the ring is approached from smaller radii). When free motion is plot-
ted in coordinates, the particles thus appear repelled/attracted by the
ring in the directions from which the ring is physically nearby/far
away, i.e. they seem to be repelled towards larger radii, whereas
attracted from smaller radii. The effect is strongest in the equa-
torial region. We noticed it and interpreted in Semerák, Žáček &
Zellerin (1999), and later this was repeated by D’Afonseca, Letelier
& Oliveira (2005).

Since the above feature is ‘felt’ up to several tenths of ring mass
in the Weyl or Schwarzschild coordinates (in geometrized units), it
might be somehow reflected in orbital statistics. However, the effect
is much better seen in the meridional plane (than in the equatorial
one): the coordinate tracks of free particles, when approaching the
ring from any latitudinal direction, are driven towards its inner
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Figure 14. A scheme of the 1:1-resonance bifurcations occurring both in
the relativistic and pseudo-Newtonian hole–disc field. The left-hand part
indicates the imprints of the trajectories on the Poincaré section, while the
right-hand part illustrates the corresponding trajectory shapes (coloured,
respectively) within the (r sin θ , r cos θ ) plane, with the dotted line always
representing the equatorial plane θ = π/2. Note that the sections of the blue
and purple trajectories would in fact depend on the direction of velocity on
the curve. The original 1:1 island first breaks up ‘vertically’ and then both
new islands further decouple ‘horizontally’. This typically happens in stage
when the phase space is the most chaotic, which in terms of the disc mass
as the perturbing agent means M ∼ M . In this paper, the three phases can
be seen in Figs 5 and 6, in plots with M = 0.9M , 1.0M, and 1.7M; the
corresponding relativistic situations were plotted in fig. 4 of paper I (see the
plots with M = 1.0M and 1.1M there; the third phase was not shown).

Figure 15. Average speed (35) with which the orbits (having � = 3.75M)
intersect the equatorial plane of the system of a black hole surrounded by the
iMM1 disc with inner radius rdisc = 20M. The dependence of v̄ on the relative
disc mass M/M is plotted for E + 1 = 0.955 (these curves are given in ‘×’
crosses; top axis applies); the dependence of v̄ on the conserved energy E
is plotted for the disc mass M = 0.5M (these curves are given in solid
diamonds; bottom axis applies). The top couple of curves has been obtained
for the Paczyński–Wiita potential, while the bottom (faster growing) couple
for the logarithmic potential. In both cases, v̄ grows almost monotonously
with M as well as with E , having a single ‘dip’ which is associated with
the phase when the accessible region reaches above the disc edge.

side and hit it just along the equatorial plane. Inspection of the
ring’s neighbourhood in Poincaré plots does not seem to indicate
stronger anisotropy in the relativistic case. One can only observe
slight differences in evolution of the main regular region centred
just above the ring: for small ring mass, it is central symmetric in
all three descriptions, but when the mass reaches several percent
of M, it ‘elongates’ along the vr = 0 direction and finally two
new islands establish on its opposite radial sides, created by orbits

circling around (‘through’) the ring. This process starts somewhat
before M = 0.02M in the relativistic system as well as in the
system using the ln potential, while in the PW-potential case it
starts only before M = 0.03M . The only qualitative difference
between the relativistic and the pseudo-Newtonian systems is that
in the latter case, for large ring masses (from M = 0.8M for the ln
potential, while from M = 0.9M for the PW potential) a new pair
of regular regions appears, again symmetrically with respect to the
principal island, but now both lie above the ring radius. See mainly
the last plot (M = 1.1M) of the ln-potential Fig. 11, where these
two islands already dominate the section. It would be interesting
to check whether the lack of this regular couple in the relativistic
system has connection with the ring’s outward repulsion.

However, it should be noted that the Poincaré-surface analysis is
best suited for the demonstration of long-term effects in the motion
of eternally orbiting particles, whereas the above-mentioned feature
mainly affects trajectories soon to be captured by the ring. Thus,
the Poincaré section will typically bear one or two points from such
trajectories and their dynamical behaviour will be hardly discernible
for most part. The only effect one could hope to observe in the
surfaces of section is a deformation of invariant structures – of
which we find no persuasive evidence.

5.3 Resonance and chaos in orbit shapes

Poincaré surfaces of section represent a basic tool for assessing the
overall structure of the possible test-particle motion, but one should
keep in mind that they are really just sections through phase space,
flattening out most of the information about individual trajectories.
When comparing different systems, like the relativistic one and its
pseudo-Newtonian counterparts we are interested in here, one natu-
rally first checks the Poincaré diagrams for analogies and variances,
but in fact any statements concerning the occurrence of certain struc-
tures in Poincaré sections have to be taken with caution, because a
particular sequence of recorded points (e.g. equatorial transitions)
does not in general unveil a trajectory uniquely.

In order to get an idea of what trajectory shapes such structures
may represent and to illustrate what the statements about the fre-
quency ratios mean for the actual trajectories, we select one of the
sections obtained within the series capturing the dependence on
iMM1-disc mass, namely the M = 0.35M section of Fig. 6 (where
the black hole was simulated by the logarithmic potential). This
case represents the weakest perturbation for which separatrix chaos
already appears near the threefold island; the diagram is repeated
in Fig. 16 with a selection of orbits plotted in colours. The motion
in the φ direction is dynamically unimportant (bound by conserved
integral �) in the axially symmetric case, so we suppress this di-
mension and illustrate the orbital shapes within the Weyl (ρ, z)
meridional plane. The results are grouped in Fig. 17, marked by the
same colours as their equatorial sections in Fig. 16.

There are two distinct structures in Fig. 16, the threefold and the
fivefold island; the ratio of the radial to vertical frequencies is 2:3 for
the former and 4:5 for the latter. The shapes of the trajectories reveal
less thick resonances hidden in both the central and threefold island,
but for most of them only a longer evolution track could confirm
whether it is actually a resonance or a near-periodic orbit only.
However, one can notice a certain deformation due to the proximity
of a resonance in Fig. 17: the fish-like shape of the 2:3 trajectory
corresponding to the threefold island is reflected in a significant part
of the neighbouring non-resonant phase space, which might perhaps
lead to observable signs in an ensemble of particles orbiting near
the black hole. Besides obvious structures, one also notices, when
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Chaos around black holes with discs or rings 1789

Figure 16. The Poincaré diagram M = 0.35M from Fig. 6 revisited with
the aim to illustrate what kind of orbits its main structures represent. About
7400 transitions for each orbit has been recorded. The orbits are shown
in colour to ensure their easy identification against Fig. 17 where the
meridional-plane shapes of their 200 periods are plotted.

recording data for Fig. 16, that the computation of the single purple
orbit lying within the (blue) regular single-periodic region takes
much longer time than that of the other orbits around. This typically
indicates that one is close to a resonance, which is confirmed in
Fig. 17. Let us also point out to the rightmost orbit in the last-but-
one row and to the middle one in the last row (both are purple):
they are very similar, both lying just between a ‘box’ regime and a
resonant regime of the regular region, and analogous to a rotation
of a pendulum very close to libration; the spatial corridors more
densely filled by the orbit in Fig. 16 then correspond to the pendulum
near-stopping at the unstable top equilibrium (before falling back
to rotation) which stands for an unstable counterpart of the stable
periodic orbit at the resonance core.

As seen in the second row of Fig. 17, the time span corresponding
to some 200 equatorial-plane intersections is not enough to discern
between the regular trajectory (red) and the very close separatrix
chaos (green). On the other hand, the respective surface of section
in Fig. 16 allows us to discern order and chaos unambiguously at
the toll of 7400 equatorial intersections. To better understand the
computational/observational times required for a clear distinction
between the regular and weakly chaotic orbit, we employ a time
series recurrence analysis in the following section.

5.4 Recurrence analysis

It is appropriate to support the Poincaré-section observations by
some other independent method. Like in paper II, we turn to two
recurrence methods here, one based on statistics over directions in
which the orbits traverse a pre-selected mesh of phase-space cells,
the other built on recurrences themselves to the neighbourhoods of
phase-space points.

Kaplan & Glass (1992) suggested monitoring the evolution of
a tangent to the trajectory in small subsets of phase space which
are crossed recurrently. For this purpose, the phase space is ‘recon-
structed’ from a given data series x(τ ) (either computed or mea-
sured) by adding the latter’s replicas delayed by some shift �τ and
its multiples. The method was designed to distinguish between de-
terministic and random systems, but we saw in paper II that it is
quite sensitive to weak irregularities and thus very well able to also
recognize how chaotic the (deterministic) system is. Without going

into details (see paper II for description of how we use the method
for our system), let us only recall main points.

(i) First, the dimension d is chosen of the phase space to be
reconstructed, plus the delay �τ and the size of boxes into which
the phase space is divided.

(ii) Average tangents of a trajectory within a given (jth) box are
summed (vector addition) for a large number of recurrent transits
and the length of the result is suitably normalized; the result is
denoted as Vj(�τ ).

(iii) The resulting norm is averaged then over all boxes which
were crossed exactly n-times.

(iv) The result depends on n, on d, on �τ , and on the lattice-box
size. (The choice of these parameters in turn depends on how long
data series one deals with.) With n it decreases roughly as n−1/2 for
random data, whereas more slowly for a deterministic system (in a
theoretical limit of an infinitely long series and infinitesimally fine
grain, it even remains 1 for the deterministic case). The dependence
on �τ is specifically studied on the deviation of the result from the
value obtained for random walk, computed for each box and then
averaged over all occupied boxes,

�̄ = �̄(�τ ) :=
〈

[Vj (�τ )]2 − (R̄d
nj

)2

1 − (R̄d
nj

)2

〉

(R̄d
nj

is the average displacement per step for random walk of length

nj in d dimensions). In a theoretical limit, �̄ = 0 for a random walk,
whereas �̄ = 1 for a deterministic system; in practice, �̄ falls off
roughly as autocorrelation function for a random series, while more
slowly for a deterministic one.

We have subjected to the Kaplan–Glass test two orbits from
Figs 16 and 17, namely the outmost of the red-colour (threefold)
regular ones and the nearby green-colour chaotic one which has
arisen from a separatrix break-up (see Fig. 18). The autocorrelation
corresponding to the dependence of the ‘directional-vectors aver-
age’ �̄ on time delay �τ clearly confirms the different character
of the orbits. Let us specify that we started the analysis from re-
constructing the phase space as three dimensional and dividing it in
253 = 15625 boxes; average number of transitions through one box
(among those which were crossed at least once) has been around 50.

The second method rests on the statistics of recurrences to pre-
scribed neighbourhoods of phase-space points (either of the ‘orig-
inal’ phase space, or the reconstructed one). Marwan et al. (2007)
elaborated various useful outcomes of such a statistics and codified
their computation in the RECURRENCE PLOTS software; we already
applied it, in paper II, to the exact relativistic system.

The main object of the analysis is the symmetric recurrence
matrix

Ri,j (ε) = �
(
ε− ‖X i − Xj‖

)
, i, j = 1, . . . , N , (36)

where X i = X(τi) denote N successive points of a given phase
trajectory, ε is the radius of a chosen neighbourhood (called thresh-
old), � is the Heaviside step function and ‖ · ‖ denotes the chosen
norm (we use a simple Euclidean norm, but other can be considered,
without significantly affecting the results). The matrix contains only
units (meaning that jth point is close to the ith and represented by
black dots) and zeros (blank positions which mean the opposite).
For regular systems, the recurrences arrange in distinct structures,
in particular in long parallel diagonal lines and checkerboard struc-
tures, whereas for random systems they are scattered without order;
the chaotic systems provide something in between. A number of
useful ‘quantifiers’ can then be extracted from the recurrence data,
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1790 V. Witzany, O. Semerák and P. Suková

Figure 17. A counterpart of Fig. 16, showing the shapes within the r sin θ , r cos θ plane of the trajectories whose equatorial transitions have been recorded
there (in the r, vr axes). The orbits are plotted up to some 200 periods and are coloured to be easily identifiable in Fig. 16. From top left to right and bottom,
the profile starts from the central orbit of the threefold island and proceeds towards the centre of the Fig. 16 surface of section. All the plots have exactly the
same scale, though the coordinate ranges (indicated along the axes in units of M) are adjusted to capture the orbits effectively. Orbits from ‘more interesting’
regions are purple, one chaotic orbit is green.

as explained in Marwan et al. (2007) and also briefly reviewed in our
paper II. The simplest ones follow from the lengths of the diagonal
and vertical/horizontal lines which have occurred in the recurrence
matrix.

The recurrence pattern clearly depends on the time step �τ with
which the trajectory is sampled and on the ‘target’ radius ε. Besides
that, the matrix often contains false recurrence records that should
be discarded from statistics. For example, if ε is too large and

the time step too small, several successive points of the trajectory
of course lie within the ε-neighbourhood of each other, but do
not represent true recurrences. Due to the same reason, the real
recurrences may then involve more than one point, even if the orbit
comes across its certain previous part in quite a divergent manner.
To overcome such false signals, several further ‘thresholds’ are
introduced and adjusted, mainly the minimal lengths of relevant
diagonal and vertical lines, lmin and vmin.
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Chaos around black holes with discs or rings 1791

Figure 18. Two ‘neighbouring’ orbits from Fig. 16 (and Fig. 17), namely the outmost of the red-colour (threefold) regular ones (left-hand plot) and the
green-colour chaotic one (right-hand plot), are clearly distinguished by the Kaplan–Glass ‘average directional vectors’ recurrence method. The meaning of
the �̄(�τ ) dependence is explained in the main text. Recall that both orbits represent motion of free particles with E + 1 = 0.955, � = 3.75M in the field of
a centre described by the logarithmic potential (mass M) and surrounded by the iMM1 disc with mass M = 0.35M and inner radius rdisc = 20M. The orbits
have been followed for about 500 000M of proper time (some 5000 periods); the top row shows the dependence �̄(�τ ) from �τ = 0 up to �τ = 100 000M,
while three selected intervals of �τ are added in more detail in the bottom row (the �τ -axis labels are in thousands of M everywhere).

The choice of the recurrence threshold ε should also take into
account the physical extent of the orbit and its variance. However,
we overcome this ambiguity by rescaling the time series in such a
way that each variable has zero mean and unit variance. This also
assures that motion in all coordinate directions have equal weight
in the analysis, irrespective of the actual ranges spanned by the
trajectory.

For the relativistic–pseudo-Newtonian comparison using the
recurrence-matrix analysis, we choose fig. 12 of paper II. There,
several ‘quantifiers’ were computed for 470 geodesics having spe-
cific energyE = 0.9532 and specific angular momentum �= 3.75M,
sent tangentially (with ur = 0) from radii between r = 5M and 24M
(with step 0.04M) from the equatorial plane of the system of a black
hole (M) and the iMM1 disc with M = 0.5M and rdisc = 18M. The
orbits were followed for about 250 000M of proper time with ‘sam-
pling period’ �τ = 45M, the minimal length of diagonal/vertical
lines has been set at 90M and the radius of the recurrence neighbour-
hood (the threshold) at ε = 1.25. Two of the quantifiers – the most
simple one called DIV, given by reciprocal of the longest recurrence-
matrix diagonal, and a much more ‘sophisticated’ one read off from
the slope of the histogram of diagonals (and providing an estimate
of the maximal Lyapunov exponent), were particularly illustrated
by colouring the computed orbits according to their values in the
Poincaré diagram. Two main observations were made: (i) all the
quantifiers proved sensitive to even tiny phase-space features, and

(ii) the computationally easy DIV quantifier proved equally efficient
as the more sophisticated one.

The above recurrence analysis was performed in a 6D phase space
(r, θ , φ, and the respective velocities), while, for the present com-
parison, we have repeated it, for the same set of geodesics, in the
(r sin θ , r cos θ ) plane plus the respective velocity dimensions only.
Elimination of φ from the analysis has some interesting aspects,
even though it is a Killing-symmetry coordinate. For instance, note
that in the full 3D configuration space there are virtually no true re-
currences, since even the most regular central orbit is quasi-periodic
in φ. Within the meridional plane, on the other hand, the resonance
cores produce true recurrences (see Section 5.3).

Let us add that the φ coordinate can be viewed as a kind of
‘dynamical memory’, because

�φ =
∫

�t

� dt

r2 sin2 θ
(37)

(a relativistic formula only contains proper time τ instead of t).
Hence, the inclusion of φ actually adds non-trivial information, so
the change resulting from its elimination might indicate the robust-
ness of various recurrence indicators.

The parameters we have used for the re-analysis of fig. 12 of
paper II are lmin = 3 and vmin = 3 for the minimal diagonal and
vertical, the Theiler window w = 3 and the neighbourhood ra-
dius ε = 0.8 (with Euclidean metric used for the distance). The
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trajectories for the recurrence matrix were then recorded at a time
step �τ = 45M for a total time of about 250 000M like in paper II.
As can be seen in Fig. 19, the DIV indicator is not changed by the
3D→2D projection at all, whereas the DET quantifier turned out
to be less robust in this respect. In particular, the DET quantifier
seems to wrongly indicate that a large part of the central island is
‘less deterministic’ than the surrounding chaos. To understand this
point, let us recall that the DET indicator is defined as the ratio of
the number of diagonal lines longer than lmin to the number of recur-
rence points. We checked that the orbits in the central island show
a large number of recurrence points but not always grouped into
longer diagonal lines. The performed normalization with respect to
the total number of recurrence points thus has an undesirable effect
in this case.

Now to the comparison: we take an analogous pseudo-Newtonian
situation, namely the gravitational system with ‘the same’ param-
eters and with the central black hole simulated by the logarith-
mic potential (we do not employ the Paczyński–Wiita one, be-
cause that yields rather open accessible region, which makes the
chaotic sea efficiently drained away to the centre), and subject it
to the same recurrence-matrix analysis as performed in fig. 12 of
paper II; the results are given in Fig. 19. Clearly the phase-space
structure is rich for the given parameters and also rather different
from its paper-II counterpart. (As already stressed above, the rela-
tivistic and pseudo-Newtonian systems are qualitatively similar, but
the similar phase-space pictures are somewhat shifted with respect
to each other in the parameter space.) The question is whether the
corresponding recurrence patterns are still not alike, in spite of this
first-sight difference.

In Fig. 19, the left-hand column is relativistic and the right-hand
column is pseudo-Newtonian (with the logarithmic potential), both
plotted in the same scale. Both Poincaré sections are coloured by
the longest-diagonal reciprocal DIV, the latter’s zero-velocity radial
profile being also plotted below, and the last row shows another
simple quantifier DET, given by ratio of the points which form a
diagonal line longer than a certain value within all the recurrence
points. Although the surfaces of section reveal rather different struc-
tures, we do not see any big overall divergence in the recurrence
characteristics.

C O N C L U D I N G R E M A R K S

We have considered Newtonian dynamical systems describing
the massive-test-particle motion in a gravitational field of a
Schwarzschild-like centre simulated by a suitable potential and
surrounded symmetrically by a gravitating thin disc or ring. Try-
ing to learn how they differ from the corresponding relativistic
system, namely the time-like geodesic dynamics in the field of a
Schwarzschild black hole surrounded by ‘the same’ disc or ring
(described by the same Newtonian potential), we plotted Poincaré
diagrams of equatorial transitions for a number of similar situa-
tions (same coordinate position and relative mass of the disc or
ring, same values of the particles’ conserved energy and angular
momentum) and found similar tendencies, typical for weakly non-
integrable systems. The picture revealed by the surfaces of section
was also confirmed by two recurrence methods, one resting on
statistics over directions in which the orbits transit recurrently the
boxes of a pre-selected phase-space mesh, and the other analysing
the recurrences themselves to some prescribed neighbourhood of
phase-space points. We have been using a different code than in
previous papers of this series, so the present results also support
robustness of the observations made.

A careful conclusion would be that the pseudo-Newtonian ap-
proach can reproduce the long-term dynamics of our relativistic
system reasonably, though there appear various quantitative differ-
ences. However, this conclusion strongly depends on the potential
used to mimic the black hole centre: the Paczyński–Wiita and the
logarithmic potentials provide results very similar to the relativistic
treatment, while the Nowak–Wagoner potential offers quite a differ-
ent picture; some other potentials are not suitable for these purposes
at all (although they may be efficient in another context). Yet even
the Paczyński–Wiita and the logarithmic potentials differ consider-
ably (from the relativistic system as well as from each other) in the
phase-space accessible region they determine – the PW potential is
too open, whereas the ln potential is too closed in direction towards
the centre, which mainly affects how effectively the centre ‘sucks
out’ the chaotic orbits; nevertheless, this does not seem to influence
much the behaviour of regular structures under parameter change.
Generally, the pseudo-systems (involving the PW and mainly the ln
potential) can be labelled slightly more unstable than the exact rela-
tivistic system, since their phase-space structures evolve somewhat
faster with parameters.

As mentioned in preceding papers, there are several possible
directions of further study. One can certainly subject the dynami-
cal system – either the relativistic or the (pseudo-)Newtonian one
– to still other methods (than already employed there), e.g. the
Melnikov-integral calculation or the basin-boundary analysis, or to
a more detailed study of its particularly ‘interesting’ orbits (mainly
the periodic ones). However, most important astrophysically is to
make our setting more realistic and to try to confront it with what is
going on in real celestial systems. The simplest issue, at least within
the static and axially symmetric situation, would be to add another
gravitating components like central star cluster, a jet or a halo. Sec-
ondly, we plan to consider non-singular (i.e. 3D) sources instead
of the infinitesimally thin ones. This is especially important in sys-
tems where the orbits can reach very close to the sources, mainly
in the relativistic description when the rings as well as edges of the
thin discs usually represent a curvature singularity and (thus) the
space–time is unnaturally deformed in their vicinity. In particular,
one would be interested in how reasonably – as far as the long-
term dynamics is concerned – the singular (Bach–Weyl) ring can
approximate a toroidal source; this could be studied on a sequence
of toroids gradually thinning to a ring.

Once obtaining a sufficiently realistic description, it is desirable to
look for consequences for observational phenomena. For instance,
the ensembles of initial conditions studied in the surfaces of section
can be understood as actual collisionless ensembles of particles
orbiting a black hole. The increased ‘suck-in’ of the ensemble un-
der perturbation then imply an enhanced accretion rate, while the
resonances, on the other hand, correspond to particularly behaving
oscillation modes.

And then there are difficult aspects of ‘realisticity’: incorporating
(adequately) rotation of the gravitating bodies (which brings drag-
ging effects into the relativistic systems) and possibly also back
reaction resulting from the non-test character of the orbiter.
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Chaos around black holes with discs or rings 1793

Figure 19. Examples of the recurrence-plot results, obtained for free motion with E(+1) = 0.9532 and � = 3.75M in the black hole–disc field with M = 0.5M

and rdisc = 18M. Exact relativistic system is represented in the left-hand column, while pseudo-Newtonian system employing the logarithmic potential is in
the right-hand column. The top row shows Poincaré diagrams coloured according to the value of DIV whose ur = 0/vr = 0 radial profile is also plotted in
the middle row (going from blue to red, the value of DIV increases, which corresponds to increasing irregularity); the bottom row shows the same profile for
another simple quantifier DET, given by ratio of the points which form a diagonal line longer than a certain minimum. The horizontal axes (r in units of M)
are common for all rows and the vertical axes are common for both columns. One more remark: notice that in the left-hand Poincaré section the orange and
red orbits are rather separated, whereas in the right one they are mixed within the chaotic sea. This is because the left-hand section is actually divided into a
‘sticky’ interior region harbouring weaker chaos and only slowly diffusing particles, and the outer chaotic sea with strong chaos. In the right-hand section, the
outer layer is mixed orange-red, with its less chaotic orange trajectories perhaps corresponding to motion ‘sticked’, for a short time, to the three small islands
on the outskirts. For M ≈ 0.65M the green layer of very weak chaos gets connected with the outskirts, thus yielding a picture rather similar to the relativistic
case.
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