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We consider the motion of spinning test particles with nonzero rest mass in the “pole-dipole”
approximation, as described by the Mathisson-Papapetrou-Dixon (MPD) equations, and examine its
properties in dependence on the spin supplementary condition added to close the system. In order to better
understand the spin-curvature interaction, the MPD equation of motion is decomposed in the orthonormal
tetrad whose time vector is given by the four-velocity Vμ chosen to fix the spin condition (the “reference
observer”) and the first spatial vector by the corresponding spin sμ; such projections do not contain the
Weyl scalarsΨ0 andΨ4 obtained in the associated Newman-Penrose (NP) null tetrad. One natural option of
how to choose the remaining two spatial basis vectors is shown to follow “intrinsically” whenever Vμ has
been chosen; it is realizable if the particle’s four-velocity and four-momentum are not parallel. In order to
see how the problem depends on the algebraic type of curvature, one first identifies the first vector of the NP
tetrad kμ with the highest-multiplicity principal null direction of the Weyl tensor, and then sets Vμ so that kμ

belong to the spin-bivector eigenplane. In spacetimes of any algebraic type but III, it is known to be
possible to rotate the tetrads so as to become “transverse,” namely so that Ψ1 and Ψ3 vanish. If the spin-
bivector eigenplane could be made to coincide with the real-vector plane of any of such transverse frames,
the spinning particle motion would consequently be fully determined byΨ2 and the cosmological constant;
however, this can be managed in exceptional cases only. Besides focusing on specific Petrov types, we
derive several sets of useful relations that are valid generally and check whether/how the exercise simplifies
for some specific types of motion. The particular option of having four-velocity parallel to four-momentum
is advocated, and a natural resolution of nonuniqueness of the corresponding reference observer Vμ is
suggested.
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I. INTRODUCTION

Curvature of physical spacetime is the major prediction
of general relativity, so it is of special interest to study
processes in which curvature (nonhomogeneity of the
gravitational field) plays a direct role. Being described
by the Riemann tensor, the participation of curvature
usually makes the problem difficult, at least in comparison
with those involving just metric and/or affine connection.
One such problem is the motion of extended bodies (e.g.
Ref. [1]). Even if the body is treated as nonradiating, test,
and small (with all the lengths connected with its multi-
poles much shorter than the spacetime curvature radius),
the corresponding equations of motion even contain the
Riemann tensor together with its derivatives. More explicit
studies thus mostly restrict to the “spinning particle” limit
(the “pole-dipole” approximation) when just monopole
(mass) and dipole (rotational angular momentum, spin)
are taken into account and the motion is described by the
Mathisson-Papapetrou-Dixon (MPD) equations, supple-
mented by some “spin condition.” The approximation is
problematic in highly nonhomogeneous fields, mainly due

to the disregard for the quadrupole effect, but we adhere to
it here. Of important recent references in the field, let us
recommend Refs. [2–6].
The curvature properties are often best revealed in a

suitable orthonormal tetrad, namely as represented in terms
of the “Weyl scalars”—independent projections of the
Weyl tensor in the attached Newman-Penrose (NP) null
tetrad, which can be given a physical interpretation. One
can then understand the geometrical/physical effect of the
individual curvature terms in dependence on the scalars,
and especially discuss the situations when some of the
scalars vanish—the algebraically special cases. Such
studies actually began before the birth of the NP formalism
(e.g. Refs. [7,8]) and since then have notably been devoted
to geodesic deviation as a universal probe of gravitational
field properties [9,10] or to the interpretation of spacetime
perturbations [11].1 Surprisingly, for the spinning particle
problem, a similar discussion has been published in the
massless case only [16]. (The gravito-electromagnetic
parallel has been applied to it by Ref. [17].)
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1Another major curvature interpretation direction stems from
the celebrated analogy between curvature tensors and the
electromagnetic field tensor or electromagnetic tidal tensor—
see Refs. [12–15], for example.
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In the present paper, we will consider particles with
nonzero mass. We keep the cosmological constant, but
restrict to vacuum spacetimes (with zero energy-
momentum tensors), since otherwise we would also have
to incorporate interaction of the particle with matter and/or
other physical fields, generally including torques exerted
on its spin. This would certainly obscure the effects coming
from curvature and its particular algebraic type. In the
following Sec. II, we first recall the spinning particle
problem, consider its basic properties, including the neces-
sity to add a certain “spin supplementary condition,” and
write the equations down in terms of the spin vector and
Riemann tensor dual. In Sec. III, the equation of motion is
expressed in a suitable orthonormal as well as complex null
(NP) frame, representing the Weyl-tensor dual in terms of
its complex projections Ψ0–Ψ4 (details are shifted to the
Appendix). We show that the problem itself provides a
tetrad which can be used rather generally (specifically, if
the particle’s four-velocity and four-momentum are not
parallel) and which gives very simple results, mainly in
connection with Tulczyjew’s supplementary condition.
In order to discuss the equation of motion in dependence

on the spacetime Petrov type, the interpretation frame is then
attached to the Weyl-tensor principal directions in Sec. IV.
As an alternative to the above “intrinsic” tetrad (and the
related null one), there arises a generic possibility (only not
applicable in algebraic type III) to use “transverse frames” in
which pure-gauge longitudinalwave effects vanish, but their
special turn can be aligned with the spin structure only in
exceptional cases. The effect of particular spin conditions is
checked in Sec. V, and several special types of motion are
discussed in Sec. VI. Concluding remarks close the paper by
relating the topic to a wider context and providing some tips
for improvement or an alternative view.
Conventions: We use the metric signature (−þþþ) and

geometrized units in which c ¼ 1, G ¼ 1. Greek indices
run 0–3, and summation convention is followed. The dot
denotes the absolute derivative with respect to the particle’s
proper time τ, and the overbar indicates complex con-
jugation. The Riemann tensor is defined according to
Vν;κλ − Vν;λκ ¼ Rμ

νκλVμ, and the Levi-Cività tensor as

ϵμνρσ ¼
ffiffiffiffiffiffi
−g

p ½μνρσ�; ϵμνρσ ¼ −
1ffiffiffiffiffiffi−gp ½μνρσ�; ð1Þ

where g is the covariant-metric determinant and ½μνρσ� is
the permutation symbol fixed by ½0123� ≔ 1.

II. MATHISSON-PAPAPETROU-DIXON
(MPD) EQUATIONS

In their seminal papers [18–21], Mathisson, Papapetrou,
Tulczyjew, and Dixon provided—following somewhat
different approaches—a full multipole expansion for the
extended-body evolution in general relativity. In greater
detail, this problem has as yet been studied in the

“pole-dipole” approximation, including the computation
of generic trajectories in some basic spacetimes [22–25]
(and of their dynamics over a corresponding phase space
[26–33]), while a similar study at the quadrupole level has
only commenced quite recently [34–38]. If there is no
torque exerted on the particle, the pole-dipole Mathisson-
Papapetrou-Dixon (MPD) system reads

_pμ ¼ −
1

2
Rμ

νκλuνSκλ; ð2Þ

_Sαβ ¼ pαuβ − uαpβ; ð3Þ

where uμ is a tangent to the worldline which represents the
particle’s history (it is assumed to be timelike and normal-
ized by uσuσ ¼ −1), Sμν is the particle-spin bivector, pμ

denotes the total momentum (assumed to be timelike), and
m ≔ −uσpσð> 0Þ is the particle’s mass in the frame
attached to the representative worldline. Let us also
introduce the particle’s mass in the frame given by its
momentum, M ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pσpσ

p
, and an associated four-

velocity, Uμ ≔ pμ=M.
The second MPD equation demonstrates that the tensor

_Sαβ is simple and timelike, with its blade spanned by pα and
uα. It also implies that the spin-bivector dual

�Sμν ≔
1

2
ϵμναβSαβ

evolves according to

� _Sμν ¼
1

2
ϵμναβ _S

αβ ¼ ϵμναβpαuβ; ð4Þ

since _ϵμναβ ¼ 0, and dualization thus commutes with

covariant differentiation. (Hence, � _Sμν is simple and space-
like, having pμ and uμ as eigendirections corresponding to
zero eigenvalues.) This in turn yields

1

2
_Sαβ _Sαβ ¼ −

1

2
� _Sμν� _Sμν ¼ M2 −m2 ≤ 0; ð5Þ

� _Sμι _Sιβ ¼ 0: ð6Þ

Several useful relations can be obtained directly by
projections of the second MPD equation (3): multiplication
by uβ, pβ, _uβ, and _pβ yields, respectively,

pα ¼ muα − _Sαβuβ; ð7Þ

M2uα ¼ mpα þ _Sαβpβ; ð8Þ

_muα ¼ _Sαβ _uβ; ð9Þ

M _Muα ¼ _Sαβ _pβ; ð10Þ
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where in the third case the basic property uβ _pβ ¼ 0 of the
first MPD equation (2) has been used (“four-force acts
perpendicular to four-velocity”). The first two of these
equations indicate a momentum-velocity relation (m can be
supplied from the normalization uαuα ¼ −1), while the last
two lead to mass-evolution formulas:

_m ¼ _uαuβ _S
αβ ¼ _uα

pβ

m
_Sαβ ¼ − _uαpα; ð11Þ

M _M ¼ _pαuβ _S
αβ ¼ _pα

pβ

m
_Sαβ ¼ − _pαpα ð12Þ

(the last expressions follow from the very definitions of m
and M), but in both cases they provide only a partial
answer since they contain the derivative of Sαβ. It was
shown by Ref. [39] that the MPD equations can also be
inverted to

M2uα ¼ m

�
~pα þ 2SαβRβικλ ~pιSκλ

4M2 þ RμνγδSμνSγδ

�
; ð13Þ

where2

~pα ≔ pα þ 1

m
D
dτ

ðSαβpβÞ; ð14Þ

with τ standing for proper time and m again fixed by
uαuα ¼ −1. This formula still contains _pμ and _Sμν, and thus
naturally depends on the solution of the MPD system
(which in general cannot be given without adding a “spin
supplementary condition”—see the following subsection),
so it is also not an explicit momentum-velocity relation,
similarly to equations (7) and (8). However, it at least shows
clearly that such a closed relation does follow when
Sαβpβ ¼ 0 (Tulczyjew’s condition, see Sec. VA).

A. Spin supplementary condition

The effective nonzero size of the “particle,” required by
its nonzero multipole moments, implies freedom of its
internal motion. On the pole-dipole level, this freedom has
three degrees and corresponds to a possibility of selecting
the representative worldline. A usual choice is to identify
the latter with the particle’s center of mass defined with
respect to some physical observer. If such an observer is
represented by a future-pointing timelike field Vμ, defined
“within the body” (all along its history) and normalized
without loss of generality as VσVσ ¼ −1, this means
prescribing that the corresponding relative mass dipole is
zero, SμσVσ ¼ 0, along that worldline (which is yet to be
found, however). These three conditions close the MPD

system, the freedom thus being translated into the choice of
the reference observer Vμ.
Several specific choices of Vμ are natural and have

proven advantageous, namely Vμ ≡ uμ (Mathisson-Pirani
spin condition), Vμ ≡ Uμ (Tulczyjew’s spin condition),
Vμ ¼ ðVt; 0; 0; 0Þ in a coordinate system adapted to given
spacetime symmetries (Corinaldesi-Papapetrou spin con-
dition), Vμ ≡ Uμ þ Nμ, where Nμ is a normalized timelike
direction used for 3þ 1 splitting (Newton-Wigner spin
condition, being employed in the Hamiltonian treatment
[40,41]), and Vμ given by any parallel vector function along
uμ (which implies uμ∥pμ and thus m ¼ M; see Ref. [24]).
Different spin conditions have slightly different character
and (naturally) lead to different representative worldlines,
which has been stimulating discussions on how uniquely
they determine the evolution and whether they actually
describe “the same body”; see Ref. [6] for a recent thorough
treatise on the nature and implications of the different
choices.

B. Spin bivector and spin vector

If it satisfies SμσVσ ¼ 0 (its “electric part” vanishes), the
spin bivector must be of rank 2 (must be simple), having
just three independent components. With the reference
observer Vμ selected, it is thus possible to introduce a spin
vector (“magnetic part” of the bivector) by

sμ ≔ −
1

2
ϵμνρσVνSρσ ¼ −�SμνVν ð15Þ

⇔ Sαβ ¼ ϵαβγδVγsδ; �Sμν ¼ sμVν − Vμsν: ð16Þ

The vector sμ is orthogonal to Vμ as well as to Sμν by
definition, from where also

�SμιSιβ ¼ 0: ð17Þ

In other words, the spin bivector Sμν has two different
(orthogonal) eigenvectors Vμ and sμ tied to zero eigenval-
ues; these vectors span the blade of the dual bivector �Sμν.
Since Vμ is timelike by assumption, this dual blade is
timelike (so �Sμν is timelike); hence the blade of Sμν, being
orthogonal to the dual one, is spacelike.
It is useful to also calculate

SαβSμβ ¼ s2ðδμα þ VμVα − s−2sμsαÞ; ð18Þ

−�Sαβ�Sμβ ¼ s2ð−VμVα þ s−2sμsαÞ: ð19Þ

Therefore,−�Sαβ�Sμβ represents the s2-multiple of the dual-
blade metric, while SαβSμβ represents the s2-multiple of the
metric of the blade (i.e. that of the surface orthogonal to
both Vμ and sμ).
The dual blade (the eigenplane of Sμν) can alternatively

be spanned, instead of Vμ and sμ, by null vectors
2Mind the opposite metric signature used in Ref. [39], resulting

in the opposite sign of Sαβpβ.
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kμ ≔
1ffiffiffi
2

p
�
Vμ þ sμ

s

�
; lμ ≔

1ffiffiffi
2

p
�
Vμ −

sμ

s

�
;

where

s2 ≔ sμsμ ¼
1

2
SαβSαβ ¼ −

1

2
�Sκλ�Sκλ ð>0Þ

stands for the spin magnitude squared. Clearly the vectors
are normalized to kμlμ ¼ −1. In terms of the null vectors,
the bivectors can be expressed as

Sαβ ¼ −s ϵαβγδkγlδ; �Sμν ¼ sðkμlν − lμkνÞ: ð20Þ

This implies Sμνkν ¼ 0 and Sμνlν ¼ 0, while �Sμνkν ¼
−skμ and �Sμνlν ¼ slμ, so kμ and lμ are eigenvectors of
�Sμν as well (with eigenvalues ∓s).
The four-momentum pα was previously extracted from

(3) by multiplication by uβ or pβ, but it can now also be
expressed in a different way if multiplying the equation
by Vβ:

γpα ¼ μuα þ Sαβ _Vβ; ð21Þ

where

μ ≔ −Vσpσ ð>0Þ; γ ≔ −Vσuσ ð>0Þ ð22Þ

are, respectively, the particle mass measured with respect to
Vμ and the relative Lorentz factor between uμ and Vμ. By
multiplying this formula once more by uα or pα, one
obtains relations between masses m, M, and μ (and
corresponding projections of Sαβ); multiplication by Vα

gives just identity, while multiplication by sα, _Vα, and _sα,
respectively, yields the important equalities

γpαsα ¼ μuαsα; ð23Þ

γpα _Vα ¼ μuα _Vα; ð24Þ

γpα _sα ¼ μuα _sα: ð25Þ

The last one actually follows due to the first two, because
thanks to them the _sα-product of the last term of (21) gives
zero, too:

_sαSαβ _Vβ ¼ −sα _Sαβ _Vβ ¼ sαðuαpβ − pαuβÞ _Vβ ¼ 0:

The above relations tell us that the vector ðμuμ − γpμÞ is
orthogonal to sμ, _Vμ, and _sμ (and to Vμ as well). Due to
them, it is even possible to find a quadruple of mutually
orthogonal vectors, (e.g.)

Vμ; sμ; μuμ − γpμ; ðs2δμν − sμsνÞ _Vν; ð26Þ

which can thus be used as a basis (we will indeed use it in
Sec. III D). Another simple spacetime basis—“built on” uμ

instead of Vμ—will be added in Sec. II D. Several simple
orthogonal triples can also be found and are useful, like

fVμ; _Vμ; μuμ − γpμg; fuμ; μ _uμ − γ _pμ; γsμ þ sνuνVμg:

Note that the last of these vectors is orthogonal to pμ

besides, so it is orthogonal to both uμ and pμ, which means
that it is an eigenvector of _Sμν (with zero eigenvalue).
Equations (23)–(25) further imply

pαsα ¼ 0 ⇔ uαsα ¼ 0;

pα _Vα ¼ 0 ⇔ uα _Vα ¼ 0;

pα _sα ¼ 0 ⇔ uα _sα ¼ 0;

independently of the spin condition. Whenever sμ is
orthogonal to uμ and pμ, it means that

Sαβ _sβ ¼ − _Sαβsβ ¼ 0;

so _sμ then belongs to the eigenplane of Sμν—it is a
combination of Vμ and sμ. Conversely, sμ belongs then
to the eigenplane of _Sμν, the other independent eigendir-
ection of the latter being given by ϵμικλsιuκpλ. Similarly,
when _Vμ is orthogonal to uμ and pμ, it means that
_Sαβ _Vβ ¼ 0, so _Vμ is the eigenvector of _Sμν, the other
one being ϵμικλ _V ιuκpλ. And, finally, when _sμ is orthogonal
to uμ and pμ, it means that _Sαβ _sβ ¼ 0, so _sμ is the

eigenvector of _Sμν, the other one being ϵμικλ _sιuκpλ.
The above reasoning is clearly pointless if uμ is parallel

to pμ; this circumstance will be discussed more in Sec. V C.

1. Hidden momentum

Inspired by the concept of “hidden momentum” used in
electromagnetism, Ref. [42] introduced its “gravitational”
counterpart analogously as the component of pμ orthogonal
to uμ. Since we assume the particle is torque free, it is solely
given by the chosen spin supplementary condition in our
case (it is purely kinematical; see Ref. [6] for details),

pμ
hidden ≔ ðδμα þ uμuαÞpα ¼ pμ −muμ ¼ ð27Þ

¼ − _Sμνuν ¼
1

γ
ðδμα þ uμuαÞSαβ _Vβ: ð28Þ

We will refer to this term in Sec. V C, where the option of
making pμ

hidden ¼ 0 will be discussed.
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C. MPD equations in terms of spin vector

Writing out the left-hand side of (3) in terms of sμ,

_Sαβ ¼ ϵαβγδ _V
γsδ þ ϵαβγδVγ _sδ; ð29Þ

and then multiplying the equation by ϵμναβVν, one has

ðδμν þ VμVνÞ _sν ¼ ϵμναβVνuαpβ; ð30Þ

and hence

_sμ ¼ Vμ _Vνsν þ ϵμναβVνuαpβ: ð31Þ

Therefore, the change of spin along uμ is parallel to Vμ in
two obvious cases: (i) whenever uμ is parallel to pμ (which
implies _Sαβ ¼ 0 and M ¼ m); and (ii) if Vμ lies in the
plane spanned by uμ and Uμ (i.e. if one applies some
combination of the Mathisson-Pirani and Tulczyjew con-
ditions). The spin magnitude evolves according to

s _s≡ s
ds
dτ

¼ 1

2

ds2

dτ
¼ 1

2
Sαβ _Sαβ ¼ Sαβpαuβ ð32Þ

¼ sμ _sμ ¼ ϵμναβsμVνuαpβ; ð33Þ

which in the above two cases yields conservation. Note in
passing that sμðs _sμ − _ssμÞ ¼ 0, so regarding (23) and (25),
the vectors

sμ; s _sμ − _ssμ; μuμ − γpμ

are orthogonal to each other.
Similarly, by multiplying the relation (29) by ϵμναβsν and

using (33), one arrives at

ðs2δμν − sμsνÞ _Vν ¼ ðδμν þ VμVνÞϵνιαβsιuαpβ; ð34Þ

and hence

s
D
dτ

ðsVμÞ ¼ −sμ _sνVν þ ϵμιαβsιuαpβ: ð35Þ

Introducing (29) and then (31) into the mass-
evolution formulas (11) and (12), we obtain, after some
rearrangement,

γ2 _m ¼ ϵαβρσsα _Vβuρ _uιðδισ þ V ιVσÞ; ð36Þ

γ2M _M ¼ ϵαβρσsα _Vβuρ _pιðδισ þ V ιVσÞ: ð37Þ

In particular, the Vμ ≡ uμ choice leads to _m ¼ 0, while the
Vμ ≡ Uμ choice leads to _M ¼ 0. On the other hand, the
evolution of μ≡ −Vσpσ can be expressed, using (24), as

γ _μ ¼ −γ _Vλpλ − γVλ _pλ ¼ −μuκ _Vκ − γVλ _pλ: ð38Þ
Naturally, this reduces to the above limits too.
Now to the main point at last: written in terms of the spin

vector, the first MPD equation appears as

_pμ ¼ −
1

2
Rμ

νκλuνSκλ ¼ −
1

2
gμρRρνκλϵ

κλαβuνVαsβ

¼ −gμρR�
ρναβu

νVαsβ ¼ �Rμ
ναβuνsαVβ; ð39Þ

where R�
ρναβ and �Rρναβ are the Riemann-tensor right and

left duals; in the last equality, we have used the fact that
they are equal in the vacuum case (even with a nonzero
cosmological constant).

D. Eigenvectors of Sμν, �Sμν, _Sμν, � _Sμν

Already in several places we have mentioned eigenvec-
tors of the spin bivector and of its derivative and/or dual. All
the bivectors indeed have the whole 2D eigenplanes
(corresponding to zero eigenvalues) which can be spanned
in a number of ways, so let us just summarize one simple
possibility for each:

(i) Sαβ ¼ ϵαβμνVμsν, so it is clear that Vβ and sβ are its
“default” eigenvectors—they are simple and
orthogonal to each other.

(ii) �Sμν ¼ sμVν − Vμsν. Thanks to the property (17),
the eigenvectors of �Sμν can be found simply by any
nontrivial projections of Sνβ. One suitable vector for
such a projection is _Vβ:

−Sνβ _Vβ ¼ _SνβVβ ¼ ðpνuβ − uνpβÞVβ ¼ μuν − γpν:

Wewould like the second eigenvector to be orthogo-
nal to the one just found, which is, for example, true
for the vector (34). The latter is in fact orthogonal to
all the vectors Vμ, sμ, pμ, and uμ, so it clearly has
both the desired properties. Note that actually all the
eigenvectors suggested in (i) and (ii) are mutually
orthogonal: sure, they just form the basis we already
know from (26).

(iii) � _Sμν ¼ ϵμναβpαuβ, so the “default” eigenvectors
seem to be pν and uν. These two are, however,
never orthogonal, yet it is easy to fix this by taking

uν and ðδνσ þ uνuσÞpσ ¼ pν −muνð¼ − _SνβuβÞ:

The last vector is exactly the “hidden momentum,”
which turned out to be useful in the understanding of
the pole-dipole description [6].

(iv) _Sαβ ¼ pαuβ − uαpβ. One finds shortly that one
eigenvector, moreover orthogonal to both uβ and
pβ (hence also to pβ −muβ), is ðγsβ þ sνuνVβÞ. The
second one, orthogonal to the latter as well as to uβ

and pβ −muβ, reads
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ϵβικλuιpκðγsλ þ sνuνVλÞ
¼ γs _sVβ þ γðs2δβν − sβsνÞ _Vν

þ uσsσðδβν þ VβVνÞ _sν: ð40Þ

Clearly the eigenvector choices suggested for the (ii)–
(iv) bivectors are only realizable in the generic case; in
particular, they are not valid if pμ ¼ muμ when most of
them become trivial. This special “gauge” will be discussed
below, along with the other two major ones (Sec. V).

III. VACUUM MPD EQUATIONS
IN A SUITABLE TETRAD

In a vacuum region, yet possibly involving a nonzero
cosmological constant Λ, the usual decomposition of the
Riemann tensor reduces to

Rμνκλ ¼ Cμνκλ þ
Λ
3
ðgμκgνλ − gμλgνκÞ; ð41Þ

where Cμνκλ denotes the Weyl tensor. In some orthonormal
tetrad feμα̂g (α numbers the vectors), gμνe

μ
α̂e

ν
β̂
¼ ηαβ, the

decomposition reads

Rα̂ β̂ γ̂ δ̂ ¼ Cα̂ β̂ γ̂ δ̂ þ
Λ
3
ðηαγηβδ − ηαδηβγÞ; ð42Þ

where ηαβ is the Minkowski tensor. The dual tensor thus
decomposes as

�Rμ
ναβ ¼ �Cμ

ναβ þ
Λ
3
ϵμναβ: ð43Þ

A. Orthonormal tetrad

When considering the choice of a suitable tetrad, one has
three logical options—uμ, Uμ, and Vμ—for the timelike
vector eμ

0̂
. The choice eμ

0̂
≡ Vμ and eμ

1̂
≡ sμ=s seems the

most advantageous and “universal,” because
(i) The spin sμ, fixed by Vμ and introduced as orthogo-

nal to the latter in every case, represents the most
important spacelike direction of the problem, so it is
natural to discuss the curvature effects with respect
to it.

(ii) The reference observer Vμ is actually the only vector
that one chooses freely, the other ones depending on
it: Vμ fixes the meaning of pμ and Sμν as moments of
the energy-momentum tensor by specifying the
hypersurface over which they are calculated,3 as

well as that of uμ identified as the tangent to the
worldline along which SμσVσ ¼ 0 holds.

(iii) The freedom in Vμ makes it easily adaptable to
particular spacetimes and situations, specifically to
the particular Petrov types.

(iv) Special pictures arising for particular spin supple-
mentary conditions follow simply by selecting Vμ

accordingly, e.g. as uμ, Uμ, or as some vector parallel
along uμ.

Let us note that it might seem preferable to choose uμ as the
timelike direction, for it is (its finding is) certainly central to
the problem, and because uμ _pμ ¼ 0, which makes the time
component of the problem settled immediately. However,
such a choice does not allow one to select the spin sμ as one
of the basis directions, because sμ is orthogonal to Vμ rather
than to uμ (the latter would require uμsμ ¼ uμVν

�Sνμ ¼ 0,
which is not the case in general). And, obviously, uμ cannot
be chosen; it is given by the MPD equations and a chosen
spin condition.
Having opted for eμ

0̂
≡ Vμ, eμ

1̂
≡ sμ=s, we have from (39)

and (43)

_pμ ¼ �Rμ
ναβuνsαVβ ¼ s �Rμ

γ̂ 1̂ 0̂u
γ̂

¼ s �Cμ
γ̂ 1̂ 0̂u

γ̂ þ Λ
3
s ϵμγ̂ 1̂ 0̂u

γ̂: ð44Þ

The projections of equation (44) on Vμ and eμ
1̂
read,

respectively,

−Vμ _pμ ¼ _μþ pμ
_Vμ ¼ _μþ pk̂

_Vk̂ ¼ s �C{̂ 0̂ 1̂ 0̂u
{̂; ð45Þ

e1̂μ _pμ ¼ s �C1̂ γ̂ 1̂ 0̂u
γ̂; ð46Þ

where the notation μ ≔ −Vσpσ has been recalled. The
cosmological term has no effect in this plane. The remain-
ing two spatial directions eμ

2̂
and eμ

3̂
, perpendicular to both

Vμ and sμ, are left unspecified for the moment; the
respective projections of (44) are written

e2̂μ _pμ ¼ s �C2̂ γ̂ 1̂ 0̂u
γ̂ −

Λ
3
su3̂; ð47Þ

e3̂μ _pμ ¼ s �C3̂ γ̂ 1̂ 0̂u
γ̂ þ Λ

3
su2̂: ð48Þ

Hence, the time component −Vμ _pμ is determined purely
by the magnetic part of the Weyl tensor, B{̂ 1̂u

{̂ ≔
�C{̂ 0̂ 1̂ 0̂u

{̂ (see Sec. 1 of the Appendix), while the remain-
ing components are influenced by both magnetic terms
(those containing u0̂ ≔ −Vσuσ ≡ γ) and electric terms
(containing u{̂).

3However, it is worth noting that in the pole-dipole order and
with just gravitational effects included, the pμ is in fact same for
any spin condition.
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B. Newman-Penrose null tetrad

Let us proceed now to the standard Newman-Penrose
tetrad made of two real and two complex null vectors
ðkμ; lμ; mμ; m̄μÞ introduced by

kμ ≔
1ffiffiffi
2

p ðVμ þ eμ
1̂
Þ; lμ ≔

1ffiffiffi
2

p ðVμ − eμ
1̂
Þ; ð49Þ

mμ ≔
1ffiffiffi
2

p ðeμ
2̂
þ ieμ

3̂
Þ; m̄μ ≔

1ffiffiffi
2

p ðeμ
2̂
− ieμ

3̂
Þ; ð50Þ

satisfying the normalizations

kμlμ ¼ −1; mμm̄μ ¼ 1;

kμmμ ¼ kμm̄μ ¼ lμmμ ¼ lμm̄μ ¼ 0

and giving rise to the metric decomposition

gμν ¼ −kμlν − kνlμ þmμm̄ν þmνm̄μ: ð51Þ

The ten independent components of the Weyl tensor
are represented by five independent complex projections:

Ψ0 ≔ Cμνκλkμmνkκmλ; ð52Þ

Ψ1 ≔ Cμνκλkμlνkκmλ; ð53Þ

Ψ2 ≔ Cμνκλkμmνm̄κlλ ð54Þ

¼ 1

2
Cμνκλðkμlνkκlλ − kμlνmκm̄λÞ; ð55Þ

Ψ3 ≔ Cμνκλlμkνlκm̄λ; ð56Þ

Ψ4 ≔ Cμνκλlμm̄νlκm̄λ: ð57Þ

We need to find how the above scalars relate to their
counterparts given by the dual Weyl tensor now. It is
clear from the latter’s definition that the dualization can
be shifted to the respective couple of tetrad vectors in
the projections, so it is sufficient to find how the
bivectors made of the tetrad elements behave under
dualization; actually, due to the symmetries of the (dual)
Weyl tensor, it is sufficient to know this for kμmν and
lμm̄ν. It is easy to check that the null tetrad is
“positively” oriented:

ϵαβγδkαlβmγm̄δ ¼ i½0123� ¼ i;

and that the Hodge star simply brings the imaginary
unit,

�ðkμ∧mνÞ¼ iðkμ∧mνÞ; �ðlμ∧ m̄νÞ¼ iðlμ∧ m̄νÞ; ð58Þ
which implies “anti-self-duality” of the scalars:

�Ψ0 ≔ �Cμνκλkμmνkκmλ ¼ iΨ0; ð59Þ

�Ψ1 ≔ �Cμνκλkμlνkκmλ ¼ iΨ1; ð60Þ

�Ψ2 ≔ �Cμνκλkμmνm̄κlλ ¼ iΨ2; ð61Þ

�Ψ3 ≔ �Cμνκλlμkνlκm̄λ ¼ iΨ3; ð62Þ

�Ψ4 ≔ �Cμνκλlμm̄νlκm̄λ ¼ iΨ4: ð63Þ

Writing, conversely,

Vμ ¼ 1ffiffiffi
2

p ðkμ þ lμÞ; eμ
1̂
¼ 1ffiffiffi

2
p ðkμ − lμÞ; ð64Þ

eμ
2̂
¼ 1ffiffiffi

2
p ðmμ þ m̄μÞ; eμ

3̂
¼ 1ffiffiffi

2
p

i
ðmμ − m̄μÞ; ð65Þ

and using the Appendix, we thus obtain

−Vμ _pμ ¼ −2s ImΨ2u1̂

− sðImΨ3 − ImΨ1Þu2̂

− sðReΨ3 þ ReΨ1Þu3̂; ð66Þ

e1̂μ _pμ ¼ −2s ImΨ2u0̂

− sðImΨ3 þ ImΨ1Þu2̂

− sðReΨ3 − ReΨ1Þu3̂; ð67Þ

e2̂μ _pμ ¼ þs

�
2ReΨ2 −

Λ
3

�
u3̂

− sðImΨ3 − ImΨ1Þu0̂

þ sðImΨ3 þ ImΨ1Þu1̂; ð68Þ

e3̂μ _pμ ¼ −s
�
2ReΨ2 −

Λ
3

�
u2̂

− sðReΨ3 þ ReΨ1Þu0̂

þ sðReΨ3 − ReΨ1Þu1̂: ð69Þ

The main feature of these equations is that they do not
at all contain Ψ0 and Ψ4. And note again that the
cosmological constant only influences motion in the
spatial directions perpendicular to spin.
It may seem possible to express the above equations in

terms of only two components of four-velocity, because uα̂

are constrained by the relation

0 ¼ uμ _pμ ¼ u0̂Vμ _pμ þ δiju{̂e
|̂
μ _pμ

and by normalization
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−1 ¼ −ðu0̂Þ2 þ δiju{̂u|̂:

But uμ _pμ ¼ 0 is satisfied automatically; it brings no
information (it can actually be used as a correctness check).

C. Simple implications from tetrad components of the
MPD equation of motion

It should first be stressed that uμ _pμ ¼ 0, so the overall
effect is always perpendicular to the representative world-
line, irrespective of any interpretation superstructure. In the
above projections, the simplest terms are the “cosmologi-
cal” ones: they act within the ðeμ

2̂
; eμ

3̂
Þ plane and always

perpendicular to the projection of the trajectory onto this
plane. The “Newton-Coulomb” tidal field, generated by
mass and given by ReΨ2, acts in the same manner within
the same plane, its effect having the opposite/same ori-
entation for positive/negative Λ. The “magnetic-type” tidal
field, generated by angular momentum and given by ImΨ2,
acts in exactly the same way, but within the orthogonal
ðeμ

0̂
; eμ

1̂
Þ plane. The remaining force is tied to longitudinal

wave effects in the kμ and lμ directions, represented by Ψ1

andΨ3 (cf. Sec. IV C). The last scalarsΨ0 andΨ4 are not at
all present, which in standard understanding (cf. Ref. [43])
means that if the NP tetrad is chosen as we did, there are no
transverse wave effects, neither in the kμ nor in the lμ

direction.

D. “Intrinsic” choice of tetrad

It was notably Ernst Mach who emphasized that the
system should itself provide terms in which it will be
interpreted. Unfortunately, our system needs the “reference
observer” Vμ in order to be unique and to make sense.
However, we know from (26) that with this chosen, the
spinning particle does provide a unique orthogonal (thus
also orthonormal) basis which can be used in generic
situations (namely, when the vectors pμ and uμ are
independent): besides Vμ and sμ from which we have
started, it is given by ðμuμ − γpμÞ and by the “vector
product” of these three,

ϵμικλV ιsκðμuλ − γpλÞ ¼ Sμλðμuλ − γpλÞ
¼ −SμλSλν _Vν ¼ ðs2δμν − sμsνÞ _Vν;

ð70Þ

note again that we already mentioned this basis in (26).
Hence, besides the −Vμuμ ≡ γ ≡ u0̂ and sμuμ ≡ su1̂ four-
velocity components, we have

ðμuμ − γpμÞuμ ¼ γm − μ; ð71Þ

ϵμικλV ιsκðμuλ − γpλÞuμ ¼ −γϵμικλuμV ιsκpλ

¼ γs _s: ð72Þ

The second and the third components of _pμ follow from

ðμuμ − γpμÞ _pμ ¼ −γpμ _pμ ¼ γM _M; ð73Þ

ϵμικλV ιsκðμuλ − γpλÞ _pμ ¼ − _pμSμλSλν _Vν

¼ ðs2gμν − sμsνÞ _pμ _Vν: ð74Þ

Before usage of the above tetrad, one should learn the norm
of the two newly specified vectors,

ðμuμ − γpμÞðμuμ − γpμÞ ¼ 2γμm − μ2 − γ2M2; ð75Þ

ϵμαβγVαsβðμuγ − γpγÞϵμικλV ιsκðμuλ − γpλÞ
¼ s2ð2γμm − μ2 − γ2M2Þ: ð76Þ

Note that the expression crucial in both these relations
becomes

2γμm − μ2 − γ2M2 → m2 −M2 ð≥0Þ

for the Mathisson-Pirani as well as the Tulczyjew
condition.
Just to summarize, in an orthonormal tetrad involving

the above vectors, one has

u2̂ ≔ e2̂μuμ ¼
γm − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γμm − μ2 − γ2M2
p ; ð77Þ

u3̂ ≔ e3̂μuμ ¼
γ _sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γμm − μ2 − γ2M2
p ; ð78Þ

e2̂μ _pμ ¼ γM _Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γμm − μ2 − γ2M2

p ; ð79Þ

e3̂μ _pμ ¼ ðs2gμν − sμsνÞ _pμ _Vν

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γμm − μ2 − γ2M2

p : ð80Þ

Let us stress that the above tetrad is quite generic (it only
cannot be used with the spin condition uμ∥pμ, which
implies μuμ − γpμ ¼ 0); in particular, it is independent
of the spacetime curvature structure.

IV. EQUATION OF MOTION IN SPACETIMES OF
DIFFERENT ALGEBRAIC TYPES

Let us look at whether the above projections of the
MPD equation of motion can be somehow linked to the
algebraic type of curvature. This mainly means to turn
the interpretation tetrad so as to reflect both the spin and the
curvature features. First, we leave the supplementary spin
condition generic, and then we will consider the mostly
used special choices.
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A. Interpretation in a tetrad tied to curvature structure

One of the aims of this paper is to check whether in some
cases the above structure tied to the particle spin can “fit in”
spacetime curvature in such a manner that the MPD
equations assume an especially simple and easily inter-
pretable form. It is known that every spacetime hosts four
null eigendirections of the Weyl tensor, called its principal
null directions (PNDs); their multiplicities indicate the
Petrov type of spacetime. Let us denote by kμ the PND
of the highest multiplicity. Let us also define another
independent real null vector lμ and normalize it by
kμlμ ¼ −1; it can in general be chosen arbitrarily (it even
has to be if the curvature is of type N and kμ is a four-fold
PND), though it would be especially beneficial to take as lμ

some of the other PNDs. However, such a choice is
typically not feasible, if one needs to also simultaneously
fix the tetrad to the spin structure.
The only way to “adapt” the spin structure to some

spacetime features is to choose the reference observer Vμ

accordingly and thus adjust the spin eigenspace in some
preferred direction. Consider what can be achieved in this
respect at some point of the particle worldline. Let us have
some spacetime and use its highest-multiplicity PND kμ as
the first vector of the NP tetrad. Now, imagine first that one
knows the particle’s spin vector sμ. Then it is natural to
define the second null vector of the NP tetrad by

lμ ≔
s2kμ

2ðsιkιÞ2
−

sμ

sιkι
:

It is easy to check that such lμ is really null and that
kμlμ ¼ −1. Clearly the definition is not possible if sιkι ¼ 0.
Supposing that this is not the case and regarding that a null
vector can be normalized arbitrarily, let us choose the
normalization of kμ so that sιkι ¼ sffiffi

2
p . Then we can specify

the definition of lμ as

lμ ≔ kμ −
ffiffiffi
2

p sμ

s
; ð81Þ

which inverts to sμ ¼ sffiffi
2

p ðkμ − lμÞ. Subsequently, we

choose the reference observer by

Vμ ≔
1ffiffiffi
2

p ðkμ þ lμÞ

and introduce the spin bivector by

Sαβ ¼ ϵαβγδVγsδ ¼ −s ϵαβγδkγlδ:

As the second situation, imagine—as is the case when
starting from the original MPD equations—that one knows
the particle’s spin bivector Sμν (rather than the vector sμ).
Then it is natural to define the second null vector lμ of the
NP tetrad as some null eigenvector of Sμν, i.e. as a vector

satisfying Sμνlν ¼ 0, and normalize it by kμlμ ¼ −1. (If lμ
happened to be proportional to kμ, one would have to take
the other independent null eigenvector of Sμν.) Having both
kμ and lμ, one chooses

Vμ ≔
1ffiffiffi
2

p ðkμ þ lμÞ; sμ ¼ sffiffiffi
2

p ðkμ − lμÞ

as the reference observer and the corresponding spin vector.
Since SμνVν ¼ 0 according to the required spin condition,
the eigenplane of Sμν is thus turned so as to also contain kμ,
with sμ lying in it automatically.
Finally, the plane orthogonal to both kμ and lμ can be

spanned by the remaining two complex null vectorsmμ and
m̄μ arbitrarily (turning these suitablymay slightly reduce the
Weyl-tensor components; see Sec. 2 of the Appendix); the
corresponding orthonormal vectors are obtained by (65).
To summarize the above in an effective way, by a suitable

choice of Vμ, it is possible to rotate the eigenplane of Sμν so
as to contain the given null vector kμ (the highest-
multiplicity PND in our case). The spin structure of our
problem has thus been connected with the curvature
structure, which is desirable if one wishes to discuss the
spinning particle motion in dependence on the Petrov
type of the background. Namely, the interpretation ortho-
normal tetrad has thus been chosen in the way described in
Sec. III A, while the first vector kμ of the associated NP
tetrad has been identifiedwith the highest-multiplicity PND,
which leads to the respective simplification (vanishing) of
some of theWeyl-tensor projections.Were it possible to also
identify the second NP-tetrad vector lμ with some of the
other PNDs, some further Weyl scalars could be made to
vanish (in particular, in type D it is very advantageous to
align lμ with the second existing double-degenerate PND),
but this is typically not the case, because the ðkμ; lμÞ plane
has no reason to coincide with the eigenplane of Sμν.
Practically, by a suitable choice of Vμ, one can make the
eigenplane of Sμν intersect the ðkμ; lμÞ plane right along kμ,
but the other generator sμ is thus fixed and cannot in general
be rotated to fall in the ðkμ; lμÞ plane too.
Now it is clear how the equations (66)–(69) simplify in

specific algebraic types. If all the Weyl-tensor PNDs are
distinct, the spacetime is of Petrov type I. If the null tetrad is
chosen so that one of these directions coincides with kμ, the
corresponding scalar Ψ0 vanishes (if the PND were aligned
with lμ, the last scalar Ψ4 would vanish instead). This,
however, does not affect equations (66)–(69), since they
lack Ψ0 and Ψ4 a priori. In algebraically special cases, the
PND kμ is degenerate and further Weyl scalars vanish
besides Ψ0: in type II, kμ is double and Ψ0 ¼ Ψ1 ¼ 0, and
in type III, it is triple andΨ0 ¼ Ψ1 ¼ Ψ2 ¼ 0, with obvious
effect on equations (66)–(69). We see, however, that even in
a type-III background, where only Ψ3 survives in the
equations, all the force components are still nonzero in
general; just one of the components of Ψ3 can be
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transformed out in addition by a suitable rotation of mμ and
m̄μ vectors (see Sec. 2 of the Appendix).

B. Type-N and type-D fields

The remaining Petrov types N and D are usually
discussed separately, since they are algebraically the
most special and cover many of the important exact
spacetimes known. In type N, corresponding to purely
transverse plane waves, there is just 1 four-times repeated
PND. Using it as kμ and erecting the orthonormal tetrad as
described in Sec. IVA, one obtains equations with
ðΨ0 ¼ÞΨ1 ¼ Ψ2 ¼ Ψ3 ¼ 0, hence only keeping the cos-
mological terms,

−Vμ _pμ ¼ 0; e1̂μ _pμ ¼ 0; ð82Þ

e2̂μ _pμ ¼ −
Λ
3
su3̂; e3̂μ _pμ ¼ Λ

3
su2̂: ð83Þ

Recalling that uμ _pμ ¼ 0, we see that three (generically
independent) projections of _pμ vanish, so apparently it is
possible to rotate eμ

2̂
and eμ

3̂
in order to annul one of the

respective projections additionally. In the “intrinsic” tetrad
suggested in Sec. III D, the third of these equations is
written

M _M ¼ −
Λ
3
s _s; ð84Þ

and the last one, thanks to the second (sμ _pμ ¼ 0), is written

_Vμ _pμ ¼ Λ
3
ðγm − μÞ: ð85Þ

Finally, in spacetimes of Petrov type D, there are two
independent double PNDs. Identifying one of them again
with the NP-tetrad vector kμ, one arrives at the same result
as for type II, namely ðΨ0 ¼ÞΨ1 ¼ 0. A further simplifi-
cation, Ψ3 ¼ Ψ4 ¼ 0, only occurs if the second NP-tetrad
vector lμ can be aligned with the second double PND (this
choice is known as the Kinnersley tetrad); all the tidal field
is represented then by Ψ2, so the equations reduce to

−Vμ _pμ ¼ −2s ImΨ2u1̂; ð86Þ

e1̂μ _pμ ¼ −2s ImΨ2u0̂; ð87Þ

e2̂μ _pμ ¼þ s

�
2ReΨ2 −

Λ
3

�
u3̂; ð88Þ

e3̂μ _pμ ¼ − s

�
2ReΨ2 −

Λ
3

�
u2̂: ð89Þ

In our “intrinsic” tetrad the third of these equations is
written

M _M ¼
�
2ReΨ2 −

Λ
3

�
s _s: ð90Þ

As pointed out already, the Kinnersley-like choice is,
however, not feasible in general, if we need to reconcile
the tetrad with the spin structure at the same time.

C. Ideally rotated NP tetrads: Transverse frames

It is known [44,45] that instead of canceling out the
scalars Ψ0 and Ψ4, it is quite generally possible to do the
same with the coupleΨ1 andΨ3. This is in fact a preferable
alternative, as it means elimination of the “pure-gauge”
longitudinal wave effects. Notably, Ref. [46] presented a
covariant procedure, applicable to any type-I spacetime and
any initially chosen NP tetrad, to find a new tetrad (the
transverse frame) in which Ψ1 ¼ 0 and Ψ3 ¼ 0, together
with prescriptions for the new values of Ψ0, Ψ2, and Ψ4.
Such an option seems ideal for our projections (66)–(69) of
the MPD equations, since they do not contain Ψ0 and Ψ4

from the beginning, so their values are irrelevant. Hence, if
we use in our picture as kμ and lμ the vectors reached in
Corollary 2 of Ref. [46] (and derive Vμ, eμ{̂ from them
accordingly), the MPD equation projections (66)–(69)
would reduce to the type-D form (86)–(89) in any field.
The only exception is type III, where the “transverse” frame
cannot be found; the existence and (non)uniqueness of such
a tetrad were summarized in Ref. [44]. Note also that in
type N our MPD equation projections are even simpler to
write (see previous subsection), so there is no need to use
the transverse frame. To sum up, the transverse tetrad could
simplify our equations in type-I and type-II spacetimes,
effectively turning them into the type-D form.
There is a problem, however: as found in Ref. [46], there

generally exist three distinct “principal” transverse frames
ðkμ; lμ; mμ; m̄μÞ, plus a continuous set of their derivatives
obtained by renormalization eϕkμ, e−ϕlμ in the real timelike
plane and rotation e−iθmμ, eiθm̄μ in the complex spacelike
plane. Hence, for any of these alternatives, the ðkμ; lμÞ plane
is fixed, so—like with the Kinnersley tetrad choice in the
type-D case—it is not in general possible to fix it to the spin
direction concurrently.
In type-D spacetimes, ReΨ2 and ImΨ2 represent, respec-

tively, components of the gravitoelectric and gravitomag-
netic tidal fields (see Sec. 1 of the Appendix); ReΨ2 stands
for expansion and ImΨ2 stands for the vorticity/twist of the
PNDs. Clearly ReΨ2 is connected with the “scalar,”
centrally acting field component, while ImΨ2 is connected
with magnetic-type effects due to mass currents (typically
due to rotation). Equations (86)–(89) reveal that in case one
could make the interpretation tetrad transverse (thus def-
initely not in spacetimes of type III), the electric part of the
curvature would drive the spinning particle within the plane
orthogonal to ðVμ; sμÞ (i.e. within the blade of Sμν), while
the magnetic part of the curvature would drive it within the
ðVμ; sμÞ plane (i.e. within the blade of �Sμν).
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In type-III spacetimes where the NP tetrad cannot be
rotated so as to become transverse (not even at one point),
the equations of motion (66)–(69) read

−Vμ _pμ ¼ −s ImΨ3u2̂ − sReΨ3u3̂; ð91Þ

e1̂μ _pμ ¼ −s ImΨ3u2̂ − sReΨ3u3̂; ð92Þ

e2̂μ _pμ ¼ −
Λ
3
su3̂ þ s ImΨ3ðu1̂ − u0̂Þ; ð93Þ

e3̂μ _pμ ¼ þΛ
3
su2̂ þ sReΨ3ðu1̂ − u0̂Þ: ð94Þ

The first two projections have the same right-hand side, and
the last two would be just Im and Re parts of the same
expression if Λ were zero.
Note, finally, that the transverse tetrad is (or would be) an

alternative to the “intrinsic” tetrad suggested in Sec. III D:
when using the intrinsic orthonormal tetrad, given by the
pole-dipole description itself (provided that the reference
observer Vμ has been fixed), it is generally not possible to
make it transverse with respect to the curvature at the
same time.

V. SPECIFIC SPIN CONDITIONS

Let us check now whether some of the usually posed spin
supplementary conditions bring some advantages when
employed in particular Petrov types. It must be stressed,
however, that choosing a certain particular Vμ irrespec-
tively of the curvature type (typically as fixed to some
important direction given by the particle motion) means
that this zeroth tetrad vector cannot in general be at the
same time aligned with the PNDs in the desirable way, so in
special Petrov types the MPD equation only gets further
simplified if the highest-multiplicity PND kμ incidentally
belongs to the (now a priori selected) spin plane ðVμ; sμÞ.

A. Mathisson-Pirani spin condition, Vμ ≡ uμ

With the condition Sμσuσ ¼ 0, the first MPD equa-
tion (39) becomes

_pμ ¼ �Rμ
ναβuνsαuβ ≡ Bμ

αsα; ð95Þ

where Bαβ is the gravitomagnetic tidal field (see Sec. 1 of
the Appendix). The right-hand side thus differs from that of
the geodesic deviation equation only in sign and in the
Hodge dualization of Riemann. The tangent-vector tetrad
components degenerate to

u0̂ ≡ γ ≡ −uσuσ ¼ 1; u{̂ ¼ 0;

which simplifies the (66)–(69) projections to

e1̂μ _pμ ¼ −2s ImΨ2; ð96Þ

e2̂μ _pμ ¼ −sðImΨ3 − ImΨ1Þ; ð97Þ

e3̂μ _pμ ¼ −sðReΨ3 þ ReΨ1Þ ð98Þ

(the time component is trivial, since uμ _pμ ¼ 0). Here the
cosmological constant drops out completely, while all three
Weyl scalars remain present; Ψ2 is only represented by its
imaginary part and determines the force which acts on the
particle in the direction of its spin.
For Vμ ≡ uμ, one has γ ≡ 1 and μ≡m, equation (36)

implies _m ¼ − _uμpμ ¼ 0, equation (31) reduces to
_sμ ¼ uμ _uνsν, equation (33) gives _s ¼ 0, and equations (23)
and (25) imply

sμuμ ¼ 0 ⇒ sμpμ ¼ 0 ð⇒Þ sμ _pμ ¼ msμ _uμ; ð99Þ

which allows us to rewrite the first of the above equations
(for the spin-direction projection of _pμ) directly in terms of
four-acceleration _uμ:

msμ _uμð¼ −muμ _sμÞ ¼ −2s2 ImΨ2: ð100Þ

A propos, in the case of the Mathisson-Pirani condition,
the four-acceleration can be isolated from the MPD
system [24],

_uμ ¼ 1

s2

�
1

m
_pιsιsμ − pκSμκ

�
; ð101Þ

as also follows by equation (35).
As noted above, after choosing Vμ ≡ uμ, the tetrad

zeroth and first vectors are fixed, so even if the spacetime
was algebraically special, they cannot be rotated to make
kμ ≡ 1ffiffi

2
p ðVμ þ sμ=sÞ coincide with the desired PND. Only

in the special case when the particle is moving so that kμ ≡
1ffiffi
2

p ðuμ þ sμ=sÞ points just in that principal direction does

the Ψ1 scalar vanish and the above equations simplify
accordingly. If the principal direction were even triple
degenerate (type-III field), in that case, Ψ2 would vanish
too, implying no force (and no acceleration) in the direction
of the spin vector. Finally, for a particle moving in the
direction given by PND of the type-N spacetime, one has
eα̂μ _pμ ¼ 0, so _pμ ¼ 0 (no force).

B. Tulczyjew spin condition, Vμ ≡ pμ=M

With Vμ ≡ pμ=M, one has γ ≡m=M and μ≡M,
equation (37) implies M _M ¼ − _pμpμ ¼ 0, equation (31)
reduces toM2 _sμ ¼ pμ _pνsν and equation (33) to _s ¼ 0, and
equations (23) and (25) imply, analogously as above,
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sμpμ ¼ 0 ⇒ sμuμ ¼ 0 ð⇒Þ sμ _uμ ¼
m
M2

sμ _pμ: ð102Þ

However, the main advantage of this condition is that an
explicit relation exists giving uμ in terms of pμ and Sμν [47]:

uμ ¼ m
M2

�
pμ þ 2SμνRνικλpιSκλ

4M2 þ RαβγδSαβSγδ

�
ð103Þ

(plus uμuμ ¼ −1 fixes m, which is not constant along uμ

here). Likewise, it is also possible to find pμ in terms of uμ

and Sμν. Actually, relation (23) implies uμsμ ¼ 0, so pμ and
uμ are both orthogonal to _pμ as well as to sμ. Hence, it is
natural to decompose pμ into muμ and a term orthogonal to
uμ (namely, proportional to ϵμνρσuν _pρsσ). Multiplying this
decomposition by ϵμαβγuα _pβsγ, using the relation

ðs2δμν − sμsνÞ _pν ¼ Mϵμιαβsιuαpβ ð104Þ

following from (34)), substituting the definition relation
MSμα ¼ ϵμαβιpβsι, and finally demanding that
pμpμ ¼ −M2, one derives

pμ ¼ muμ −
1

M
ϵμνρσuν _pρsσ; ð105Þ

where m2 ¼ M2 þ Sαβ _pαuβ, and _pμ is to be substituted
from the first MPD equation (2). Note that a counterpart of
(104) can be found as well for the decomposition of sμ into
components parallel to _pμ and orthogonal to it (and thus
proportional to ϵμνρσ _pνuρpσ).
With Tulczyjew’s condition, the first MPD equation (39)

reads

M _pμ ¼ �Rμ
ναβuνsαpβ; ð106Þ

and its “temporal” (Vμ) projection vanishes again due to

pμ _pμ ¼ −M _M ¼ 0. The tetrad components of four-
velocity include

u0̂ ≡ γ ≡ −
pσuσ

M
¼ m

M
;

u1̂ ≔
sσuσ

s
¼ msσpσ

M2s
¼ 0;

so the (66)–(69) system reduces to

0 ¼ −Vμ _pμ ¼ þsðImΨ1 − ImΨ3Þu2̂

− sðReΨ1 þ ReΨ3Þu3̂; ð107Þ

M2

m
e1̂μ _uμ ¼ e1̂μ _pμ ¼ −

2ms
M

ImΨ2

− sðImΨ3 þ ImΨ1Þu2̂

− sðReΨ3 − ReΨ1Þu3̂; ð108Þ

e2̂μ _pμ ¼ þs

�
2ReΨ2 −

Λ
3

�
u3̂

−
ms
M

ðImΨ3 − ImΨ1Þ; ð109Þ

e3̂μ _pμ ¼ −s
�
2ReΨ2 −

Λ
3

�
u2̂

−
ms
M

ðReΨ3 þ ReΨ1Þ: ð110Þ

The first of these equations together with the normalization

−1 ¼ −ðu0̂Þ2 þ
X

ðu{̂Þ2 ¼ −
m2

M2
þ ðu2̂Þ2 þ ðu3̂Þ2

gives u2̂ and u3̂ in terms of the Weyl scalars,

u2̂ ¼ �ReΨ1 þ ReΨ3

M

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

ðReΨ1 þ ReΨ3Þ2 þ ðImΨ1 − ImΨ3Þ2

s

¼ �ReΨ1 þ ReΨ3

MjΨ1 þ Ψ̄3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
; ð111Þ

u3̂ ¼ � ImΨ1 − ImΨ3

M

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

ðReΨ1 þ ReΨ3Þ2 þ ðImΨ1 − ImΨ3Þ2

s

¼ � ImΨ1 − ImΨ3

MjΨ1 þ Ψ̄3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
; ð112Þ

which can then be used in the remaining equations to
express e{̂μ _pμ in terms of Ψa; for instance,

e1̂μ _pμ ¼ −
2ms
M

ImΨ2∓ 2sImΨ1ImΨ3

MjΨ1 þ Ψ̄3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
: ð113Þ

Again, if pμ incidentally points in such a direction that
the plane ðpμ; sμÞ contains some of the PNDs of an
algebraically special spacetime, then Ψ1 ¼ 0 and

e1̂μ _pμ ¼ −
2ms
M

ImΨ2; ð114Þ
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e2̂μ _pμ ¼ −
s
M

ImΨ3

�
m� 2ReΨ2 − Λ

3

jΨ3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p �
;

ð115Þ

e3̂μ _pμ ¼ −
s
M

ReΨ3

�
m� 2ReΨ2 − Λ

3

jΨ3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p �
:

ð116Þ

(One of the last two projections can furthermore be trans-
formed out by a suitable rotation of mμ and m̄μ vectors.)
A similar situation in the type-III case would mean no force
in the spin-vector direction (plus one more transformable
out), and if it were type N, the force would vanish
completely again.
A short remark on equation (104): It says that the

projection of _pμ onto a hypersurface orthogonal to
sμð≡seμ

1̂
Þ equals Mϵμιαβsιuαpβ, which means that the

e2̂μ _pμ and e3̂μ _pμ components can also be obtained directly
from that expression [rather than from (106), which is more
complicated)]:

se2̂μ _pμ ¼ M
s
ϵμιαβe2̂μsιuαpβ ¼ Mϵ2̂ 1̂ α̂ β̂uα̂pβ̂

¼ Mðu0̂p3̂ − u3̂p0̂Þ ¼ M2u3̂ −mp3̂;

se3̂μ _pμ ¼ M
s
ϵμιαβe3̂μsιuαpβ ¼ Mϵ3̂ 1̂ α̂ β̂uα̂pβ̂

¼ Mðu2̂p0̂ − u0̂p2̂Þ ¼ mp2̂ −M2u2̂:

However, this is nothing new; it only reproduces what we
knew from the beginning, namely relation (8). Actually,
with the Tulczyjew condition, the latter reads

M2uα −mpα ¼ −Sαβ _pβ

¼ −ϵαβγδVβsγ _pδ ¼ s ϵ0̂ 1̂ αδ _pδ;

which exactly yields the above projections.

1. Using the “intrinsic” tetrad with
Tulczyjew’s condition

The Tulczyjew condition very well fits together with
decomposing the MPD equation in the “intrinsic” tetrad
suggested in Sec. III D. Actually, substituting Vμ ¼ pμ=M,
γ ¼ m=M, μ ¼ M, and _s ¼ 0 into (77)–(80), and assum-
ing m ≠ M (otherwise the tetrad is not defined), we obtain
for uμ and _pμ the components

u2̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p

M
; ð117Þ

u3̂ ¼ m _s

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ 0; ð118Þ

e2̂μ _pμ ¼ m _Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ 0; ð119Þ

e3̂μ _pμ ¼ −pμ _Sμλ _S
λνpν

Ms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ M
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
; ð120Þ

which reduces the (107)–(110) system to

0 ¼ sðImΨ1 − ImΨ3Þ; ð121Þ

e1̂μ _pμ ¼ −
2ms
M

ImΨ2 − sðImΨ1 þ ImΨ3Þu2̂; ð122Þ

0 ¼ sðImΨ1 − ImΨ3Þ; ð123Þ

M2 ¼ s2
�
Λ
3
− 2ReΨ2

�
−
ms2ðReΨ1 þ ReΨ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 −M2
p : ð124Þ

The first and the third equation are equal and imply
ImΨ1 ¼ ImΨ3; the last equation represents a constraint
between several parameters of the exercise; evolution has
only remained in the sμ _pμ component.
If the ðpμ; sμÞ plane contained some of the PNDs of an

algebraically special field, one would have Ψ1 ¼ 0; hence
also ImΨ3 ¼ 0, and the evolution equation would
shorten to

�
M2

m
e1̂μ _uμ ¼

�
e1̂μ _pμ ¼ −

2ms
M

ImΨ2:

In type III whereΨ2 ¼ 0 as well, this right-hand side would
vanish, and the constraint would reduce to

M2 ¼ Λ
3
s2 −

ms2 ReΨ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p :

We have not mentioned types D and N, because in these
cases the “intrinsic” tetrad is not available. To prove this, let
us evaluate the term which “deviates” uμ from pμ according
to the relation (103): by substituting consecutively

Sκλ ¼ −ϵκλαβsαVβ; pι ¼ MV ι;

Sμν ¼ ϵμνρσVρsσ;

R�
ν0̂ 1̂ 0̂

¼ �Rν0̂ 1̂ 0̂ ¼ �Cν0̂ 1̂ 0̂ ðvacuumÞ;

decomposing the result in the generic ðkμ; lμ; mμ; m̄μÞ-tied
orthonormal tetrad, and using the Appendix, one finds
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SμνRνικλpιSκλ ¼ −2SμνR�
νιαβp

ιsαVβ

¼ −2MsSμν�Rν0̂ 1̂ 0̂ ¼ −2Ms2ϵμν0̂ 1̂�Cν0̂ 1̂ 0̂

¼ 2Ms2ð�C3̂ 0̂ 1̂ 0̂e
μ
2̂
− �C2̂ 0̂ 1̂ 0̂e

μ
3̂
Þ

¼ −2Ms2½ðReΨ1 þ ReΨ3Þeμ2̂
þ ðImΨ1 − ImΨ3Þeμ3̂�:

Hence, in type-D and type-N spacetimes where
Ψ1 ¼ 0 ¼ Ψ3, this term vanishes and uμ is parallel with
pμ, which is exactly the situation when the “intrinsic” tetrad
does not exist.

2. Note on the momentum-velocity relation

As seen from (14), for the momentum-velocity relation
(13) to “close,” a condition weaker than Tulczyjew’s is in
fact sufficient; namely, D

dτ ðSαβpβÞ has to be expressible in
terms of Sαβ and pα only (for example, it must be
proportional to Sαβpβ or to pα). Concerning the importance
of the momentum-velocity relation, it might be interesting
to examine the range of this option, but we will not go in
this direction here.

C. Vμ parallel along uμ

We suggested in Ref. [24] to take Vμ given by some
vector parallel along uμ, i.e. satisfying _Vμ ¼ 0. Relation
(21) then implies uμ∥pμ (such an option was already
recommended by Ref. [48]); therefore m ¼ M, μ ¼ γm
and _Sμν ¼ 0, � _Sαβ ¼ 0, _s ¼ 0. The mass m ¼ M is con-
stant along pμ ¼ muμ, and the MPD equation’s left-hand
side can thus be written as _pμ ¼ M _uμ; its “time” compo-
nent, in particular, also reads −Vμ _pμ ¼ _μ ¼ _γm. From
uμ∥ pμ and _Vμ ¼ 0 it also follows that _sμ ¼ 0. Most of
the equations in Sec. II become trivial.
Not so the first MPD equation (39). Actually, in spite of

these significant simplifications, the scheme (66)–(69) does
not reduce in general. In particular, note that although the
present spin condition leaves the reference vector Vμ more
free, namely only restricted by _Vμ ¼ 0, one still cannot
count on correlating it with the main PND kμ besides: in
such a case Vμ and the corresponding sμ would have to be
related to kμ by Vμ ¼ ffiffiffi

2
p

kμ − sμ=s, so the requirement
_Vμ ¼ 0 would only be fulfilled if _kμ ¼ 0 (because _sμ ¼ 0),
i.e. only if kμ were itself parallel along the particle’s
worldline. Of course, it is not in general. On the other
hand, if restricting to purely local analysis, “at any single
point” of the trajectory, then it is always possible to select
Vμ in the desirable way, namely to take advantage of its
freedom and choose it there in the sameway as described in
Sec. IVA. Therefore, at any given point, we can keep the
recipe from that section and simplify equations in some of
the algebraically special situations accordingly.

1. More on the uμ∥ pμ option

The main benefit of choosing such a Vμ whose _Vμ ¼ 0 is
that uμ and pμ are parallel then, pμ ¼ muμ; i.e. the “hidden”
component of momentum (28) vanishes. Besides obvious
simplification, this circumstance also remedies one of the
inherent inconveniences of the extended-body problem.
Namely, even though pμ should be timelike in reality (i.e.
one supposes M2 > 0), the MPD equations do not in
general guarantee that uμ is timelike as well (the selected
representative worldline may be winding through the
body’s convex-hull world tube in an awkward way); in
particular, uμ has been observed to easily become spacelike
in highly nonhomogeneous fields where the pole-dipole
approximation is most problematic. The uμ∥ pμ option thus
eliminates the need to control the spacetime character of uμ,
this being fixed by the character of pμ. Moreover, since
uμ∥ pμ implies _M ¼ _m ¼ 0, the normalization of pμ ¼
muμ is conserved. The same, of course, applies to the
reference vector function Vμ, since it is parallel transported
along uμ.
A further advantage of having pμ ¼ muμ is that it can

keep the problem linear in spin. Actually, the MPD
equations (2) and (3) themselves are linear in Sμν, but
the spin supplementary condition—which anyway has to
be added—brings the nonlinearity in general. The non-
linearity can be seen as entering through the momentum-
velocity relation which has to be used on the left-hand side
of (2) in order to write the latter down as an equation for uμ;
the momentum-velocity relation (103) arising for the
Tulczyjew spin condition is a clear example. With the
option pμ ¼ muμ (and m constant along uμ), equations (2)
and (39) simply become

m _uμ ¼ −
1

2
Rμ

νκλuνSκλ ¼ �Rμ
ναβuνsαVβ: ð125Þ

Therefore, the problem remains linear in spin (if Vμ is not
spin dependent, of course).
Let us realize now that uμ∥ pμ can, however, be ensured

by a weaker condition than _Vμ ¼ 0; namely, it is sufficient
to take _Vμ proportional to sμ. Actually, we know that
uμ∥ pμ implies _Sαβ ¼ 0, � _Sαβ ¼ 0, and _s ¼ 0, irrespec-
tively of the spin supplementary condition. But since some
spin condition (VμSμν ¼ 0) has ultimately to be employed,

it is reasonable to rewrite the _Sαβ ¼ 0 option as _VμSμν ¼ 0,
as also given by (21). Well, we have in fact only restored
the statement that the hidden momentum (28) should be
zero. Or, in still other words, uμ∥ pμ ⇔ _Vμ belongs to the
eigenplane of Sμν. The latter is spanned by Vμ and sμ, of
which Vμ is nevertheless perpendicular to _Vμ, so _Vμ has to
be proportional to sμ. Multiplying this proportionality by
sμ, one finds
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_Vμ ¼ 1

s2
_Vνsνsμ: ð126Þ

This result is nothing new; we knew it from equation (34))
already. Similarly, the spin-vector evolution (31) for uμ∥pμ

reduces to

_sμ ¼ _VνsνVμ: ð127Þ

The reference vector function Vμ is clearly not fixed
uniquely. Specifically, it is constrained by VμVμ ¼ −1 and
(126)), of which the latter represents just two independent
conditions, because its projections onto Vμ and sμ are
satisfied automatically. The remaining indeterminacy of Vμ

can be interpreted as a freedom to choose the magnitude of
_Vμ. If _Vμ is multiplied by some scalar, _sμ has to be
multiplied by the same one, otherwise D

dτ ðVμsμÞ (and ergo
also Vμsμ itself) would not stay zero.
Consider now how to exploit the above freedom in order

to choose Vμ in a “natural” way. One possibility is to
require D

dτ ðuμsμÞ ¼ 0 which, according to relation (23) (but
here even more so due to uμ∥pμ) is equivalent to

D
dτ

ðpμsμÞ ¼ _pμsμ þ pμ _sμ ¼ 0:

Taking now _sμð¼ _VνsνVμÞ ¼ αs2

μM2 Vμ, with α some dimen-

sionless scalar and μ≡ −Vσpσ,M2 ≡ −pσpσ (¼ m2 when
uμ∥pμ), we find

α ¼ M2

s2
_pμsμ ¼

m2

s2
�RμναβsμuνsαVβ ð128Þ

¼ m2�R1̂ γ̂ 1̂ 0̂u
γ̂; ð129Þ

which can in general (general vacuum) be decomposed by
equation (67).4 Therefore, if pμsμ ¼ muμsμ ¼ 0 at some
(initial) point and α is chosen as above, then uμsμ ¼ 0 (sμ is
“purely spatial”) along the whole representative worldline.
Finally, a natural option for how to set uμsμ ¼ 0 is to

simply select Vμ ≡ uμ ð¼ pμ=mÞ initially. With α chosen
by the above prescription, and with Vμ and sμ evolving
according to

_Vμ ¼ α

μm2
sμ; _sμ ¼ αs2

μm2
Vμ; ð130Þ

the four-momentum pμ will then remain tangent and the
spin sμ orthogonal to the representative worldline uμ.

VI. SPECIAL TYPES OF MOTION

It is useful to once more realize what can actually be
chosen freely in the spinning particle exercise. Tackling it
as a 3þ 1 problem (e.g. when integrating the MPD
equations on computer), one typically first selects Vμ

and the three-vectors of initial relative velocity and initial
spin with respect to some observer (which may be different
from Vμ); these determine the initial four-velocity uμ and
four-spin sμ; then the initial bivector Sαβ ¼ ϵαβγδVγsδ is
calculated. The remaining point is to obtain the initial four-
momentum pμ; this is practically done in dependence on
the chosen spin supplementary condition, but in principle
pμ follows by integrating the energy-momentum tensor
over a hypersurface fixed by Vμ. Hence, apart from initial
conditions, Vμ is the only freely selectable quantity.
It is thus natural that we have first considered the choice

of Vμ, because this may be done without loss of generality.
In this section, secondarily, let us check whether some
“clean” cases do not follow for special types of motion, i.e.
for special uμ or/and pμ (whether with a special choice of
Vμ or not). Note that some of these have already been
mentioned within the previous section on specific spin
conditions.
It should be emphasized that one must distinguish

between a special setting holding at one point and the
much stronger (and by default considered) circumstance of
such a setting remaining valid along the whole represen-
tative worldline.

A. Special uμ

The MPD components (66)–(69) simplify when some of
the four-velocity components uα̂ vanish.

1. uμ lying in the Weyl-tensor eigenplane

If uμ lies in the plane spanned by kμ and lμ, it is
orthogonal to mμ and m̄μ, hence u2̂ ¼ 0 and u3̂ ¼ 0, with
obvious effect on the above equations. However, the plane
of kμ and lμ is the plane of Vμ and sμ—namely, it is the
eigenplane of Sμν—hence necessarily Sμσuσ ¼ 0. If the
above holds along the trajectory (not just at one point), one
is thus back at the Mathisson-Pirani condition in Sec. VA.

2. uμ (and thus pμ) orthogonal to sμ

If uμ is perpendicular to sμ or, in other words, uμ is
tangent to a timelike hypersurface spanned by Vμ, mμ, and
m̄μ, then u1̂ ¼ 0 disappears from the equations. If the
transverse NP frame could be used, thus having equations
in the (86)–(89) form, the time component would vanish in
that case, −Vμ _pμ ¼ 0.
Let us check for further consequences, mainly for how

the choice of Vμ is restricted by the requirement sαuα ¼ 0.
Firstly, relation (23) says that sαpα ¼ 0 then, too. We know
that such a situation can be accomplished by selecting4Specifically in type-N spacetimes, α ¼ 0.
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Vμ ¼ uμ or Vμ ¼ pμ=M, i.e. by Mathisson-Pirani or
Tulczyjew choice of the spin supplementary condition
(Secs. VA and V B above), and that the simultaneous
orthogonality of sμ to both uμ and pμ may also happen
when these two vectors are parallel (Sec. V C). However,
here we want to check whether there are some other
alternatives, so we assume that the three time-direction
vectors Vμ, uμ, and pμ are independent.
Now, since sμ is orthogonal to all of them, it can be

written

sμ ¼ s
_s
ϵμικλV ιuκpλ; ð131Þ

where (33) has been used for “normalization.”
Consequently, equation (31) assumes the form

_sμ ¼ Vμ _Vνsν þ
_s
s
sμ: ð132Þ

Does anything follow for the evolution of Vμ? Projecting
the equation (35) on uμ and pμ, one finds, respectively,

uμ
D
dτ

ðsVμÞ≡ uμðs _Vμ þ _sVμÞ ¼ 0; ð133Þ

pμ
D
dτ

ðsVμÞ≡ pμðs _Vμ þ _sVμÞ ¼ 0; ð134Þ

which means orthogonality to both uμ and pμ, because the
vector ðs _Vμ þ _sVμÞ cannot be trivial. Hence, this vector has
to be an eigenvector of _Sμν (with zero eigenvalue again). It
is also simple to check, e.g. by multiplying relation (132))
by _Vμ, that

_sμðs _Vμ þ _sVμÞ ¼ 0: ð135Þ

Since the vectors uμ, pμ, and _sμ have to be independent,5

this means that D
dτ ðsVμÞ is orthogonal to all uμ, pμ, and _sμ,

so it can also be represented as

s _Vμ þ _sVμ ¼ 1

_s
ϵμικλ _sιuκpλ ¼ −

1

_s
� _Sμι _sι ð136Þ

[cf. its generic decomposition (35)]. Besides D
dτ ðsVμÞ, the

other eigenvector of _Sμν is of course sμ, its derivative _sμ

belonging to the eigenplane of Sμν conversely.6

Before continuing, two points should be stressed:
(1) It might seem that _Vμ is aligned with sμ (which

would ensure uμ∥pμ), because both these vectors
are orthogonal to the triple Vμ, ðμuμ − γpμÞ, and
ðs _sμ − _ssμÞ (for sμ it is always so, while _Vμ is only
orthogonal to the first two in general); note that the
second vector of the triple is orthogonal to both the
remaining two. But the suspicion is not the case,
because exactly in the case when sμ is orthogonal to
uμ and pμ, the vector ðs _sμ − _ssμÞ is proportional to
Vμ [it is clear from equation (132))], so the triple is
not independent.

(2) Mind that orthogonality to both uμ and pμ does not
mean lying in the plane spanned by Vμ and sμ: as Vμ,
pμ, and uμ are all timelike, they are never orthogonal
to each other, so the planes ðVμ; sμÞ and ðuμ; pμÞ are
never orthogonal, in spite of sμ being orthogonal to
both uμ and pμ (in this subsection).

Let us assume that the orthogonalities sαuα ¼ 0 and
sαpα ¼ 0 remain valid all along the representative
worldline, i.e. that D

dτ ðsαuαÞ ¼ 0, D
dτ ðsαpαÞ ¼ 0 as well.

Combining these with the relation (25), i.e. with
γpα _sα ¼ μuα _sα, we also see that

γ _pαsα ¼ μ _uαsα; ð137Þ
which can further be extended on account of relation (31):

γ _pαsα ¼ μ _uαsα ¼ γμ _Vαsα

¼ −γpα _sα ¼ −μuα _sα ¼ −γμVα _sα: ð138Þ
The above means that we already know of several
vectors orthogonal to sμ: Vμ, pμ, uμ, and ðγ _pμ − μ _uμÞ,
of which the last two are also orthogonal to each
other. Hence, ðγ _pμ − μ _uμÞ must be some combination of
Vμ, pμ, and uμ, because these three are independent by
assumption.

3. _uμ ¼ 0: Geodesic motion

It is known that in special situations the spin-curvature
interaction may have no effect on the particle’s four-
velocity, thus leaving the motion free. Vanishing of accel-
eration _uμ implies, irrespectively of spin condition,

_m ¼ − _uμpμ ¼ 0; ð139Þ

_pμ ¼ −S̈μσuσ: ð140Þ

5Otherwise (132)) would be a combination of uμ and pμ, i.e.

Vμ _Vνsν þ ð _s=sÞsμ ¼ Auμ þ Bpμ:

Multiplying this by sμ, we find s _s ¼ 0, which however also
equals ϵμναβsμVνuαpβ according to (33). Now, uμ, pμ, and Vμ are
assumed to be independent in this part, so sμ would have to be
dependent, which is in contradiction with its being orthogonal to
all the three.

6The second eigenvector of _Sμν orthogonal to sμ is ϵμιαβsιuαpβ.
The vector ðs _Vμ þ _sVμÞ was already decomposed into this basis
in equation (35).
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Note that _Sαβ _uβ ¼ 0 holds due to _uβ ¼ 0 here, so one
cannot argue that _uμ is another eigenvector of _Sαβ, the latter
thus being trivial, etc.
When _uμ ¼ 0, the Mathisson-Pirani condition Vμ ¼ uμ

clearly coincides with the _Vμ ¼ 0 condition. This is an
advantageous option, since the latter yields pμ ¼ muμ and
_pμ ¼ m _uμð¼ 0Þ, so there is no force, and the MPD exercise
reduces to the constraint

�Rμ
ναβuνsαuβ ≡ Bμ

αsα ¼ 0; ð141Þ

or, if written out in terms of its projections (96)–(98),

ImΨ2 ¼ 0; ImΨ1 − ImΨ3 ¼ 0;

ReΨ1 þ ReΨ3 ¼ 0: ð142Þ

Hence, the Bαβ field has to be zero in the rest frame of the
particle, or, if this is not the case, the particle’s spin has to
be its eigenvector (with zero eigenvalue).
On the other hand, the Tulczyjew condition Sαβpβ ¼ 0

yields different results—in particular, it allows for nonzero
force _pμ even when _uμ ¼ 0. Regarding (102), we however
see that sμ _pμ ¼ 0, which in turn reduces the expression
(104) to

s2 _pμ ¼ Mϵμιαβsιuαpβ: ð143Þ

Also, using Vν ≡ pν=M and _pνsν ¼ 0 in (31), we have

_sμ ¼ 0 ð⇒ _s ¼ 0Þ: ð144Þ

Finally, since e1̂μ _pμ ¼ 0, the Tulczyjew-condition form of
the MPD decomposition, (107)–(110), reduces to the last
two projections, plus the condition that the expression
(113) has to yield zero. The latter says that the masses m
and M are necessarily related through the scalars Ψ1, Ψ3,
and ImΨ2. Equivalently (and more simply), one can
calculate e2̂μ _pμ and e3̂μ _pμ from (143). As the latter is clearly
spacelike and orthogonal to sμ, it is moreover possible to
rotate the eμ

2̂
, eμ

3̂
vectors so that it has just a single

component.

4. Stationary situation

Consider now a situation in which relevant scalars do not
change along uμ. It is in fact sufficient to demand

_M ¼ 0 ⇒ _Sαβ _pβ ¼ 0; _pαpα ¼ 0;

which means that _pβ is an eigenvector of _Sαβ. Since _pβ

(supposed to be nonzero) is independent of the generic
eigenvectors of _Sαβ given in Sec. II D, the bivector _Sαβ has
to be zero rank (antisymmetry only allows for even rank, so
it cannot be 1); namely, it is trivial. Hence, � _Sμν is also zero,

and pμ and uμ are parallel, pμ ¼ muμ, which implies
(cf. Sec. V C, but mind that we do not assume _Vμ ¼ 0 now)

m ¼ M; μ ¼ γm; _s ¼ 0;

_sμ ¼ Vμ _Vνsν; s2 _Vμ ¼ −sμ _sνVν:

In a stationary situation, one can also assume

d
dτ

ðpμsμÞ ¼ m
d
dτ

ðuμsμÞ ¼ 0; ð145Þ

in fact, products between any dot-derivatives of pμ (thus
uμ) and sμ should be constant as well, which brings the
chain of relations

_pμsμ ¼ −pμ _sμ;

p̈μsμ ¼ − _pμ _sμ ¼ pμ ̈sμ;

p
:::
μsμ ¼ −p̈μ _sμ ¼ _pμ ̈sμ ¼ −pμs

:::μ; etc:…

Let us stress, on the other hand, that we do not a priori
demand anything of scalars involving Vμ, because this
vector is auxiliary and need not respect the symmetry of the
physical problem necessarily. However, in Sec. V C 1, we
saw that the uμ∥pμ case offers one natural possibility: to
prescribe VμðτÞ so that sμ is—and remains—orthogonal
to pμ.

B. Other

Other special properties are of course possible, though
some of them are either contained in what has already been
discussed, or they do not seem to lead to a particular
simplification of the exercise.
For example, if uα _V

α ¼ 0, then according to (24)
pα

_Vα ¼ 0 as well, hence _Sαβ _V
β ¼ 0; since _Vβ is in general

independent of the eigenplane of _Sαβ (Sec. II D), _Sαβ has to
be trivial, and we are back in the situation mentioned in the
previous subsection. Similarly, uα _sα ¼ 0 implies pα _sα ¼ 0

by (25), from which also _Sαβ _sβ ¼ 0 and again _Sαβ ¼ 0

generically.
An interesting case follows if sα _V

α ¼ − _sαVα ¼ 0. Then
all the vectors Vμ, sμ, _Vμ, μuμ − γpμ are orthogonal to each
other, so they form an orthogonal basis in spacetime; this
basis is actually the one we introduced in Sec. III A, just
with the vectors eμ

2̂
and eμ

3̂
specially given by _Vμ

and μuμ − γpμ.

VII. CONCLUDING REMARKS

The spinning particle problem is known to be inherently
problematic, at least in the pole-dipole approximation, but
it has a considerable history and brings a nice geometry.
And it is not only of theoretical interest, as seen in growing

SPINNING PARTICLES IN VACUUM SPACETIMES OF … PHYSICAL REVIEW D 92, 064032 (2015)

064032-17



interaction with the wide effort to understand and predict
the generation of gravitational waves by collisions of
compact objects, either by approximations or by purely
numerical approaches. In particular, an inspiral of a binary
of compact bodies has become a key process in that field,
and the role of spin in its outcome is a very lively topic—
see e.g. Refs. [49,50] or, especially for the question of the
spin supplementary condition, Ref. [51]. The effects of spin
can mainly be expected to be important in the final stages of
a black hole merger, because close to the horizon they are in
fact stronger than radial attraction due to mass (in case of a
single black hole, this is a defining property of the static
limit, thus of the ergosphere), though with distance they fall
much faster than the “Newtonian” component. One par-
ticular situation where spin has been found to play a crucial
role is with the “gravitational kicks” which the outcomes of
binary black hole mergers can get as a result of anisotropic
emission of gravitational waves—see e.g. Ref. [52] or,
specifically for the role of the “hidden momentum” in this
effect, Ref. [53].
Let us mention, in particular, the extreme-mass-ratio

limit of the binary inspiral, because it has been given
special attention recently, and because the spinning
particle problem represents its limit neglecting the radi-
ation and approximating the small body by a test pole-
dipole top [35]. See, for example, Ref. [54] for a review
of this field, also including a discussion of different spin
supplementary conditions. The extreme-mass-ratio in-
stance of gravitational recoils has been studied e.g.
by Ref. [55].
A decent history must, of course, be also attributed to the

area of the algebraic structure of curvature (Petrov types).
Although in the neighborhood of compact-body astrophys-
ics it looks more academic, it is not fully so. Actually, the
Kerr solution of Einstein’s equations, celebrated by S.
Chandrasekhar mainly as an astrophysical discovery, and
indeed by default considered by astrophysicists when
speaking of galactic nuclei or some binary x-ray sources,
is algebraically special (type D). If the field in the core of
these systems (of galactic nuclei in particular) is really
close to the Kerr one, its special structure should reveal, for
example, in the inspiral of some much lower-mass compact
body (mentioned above) and, consequently, also in the
generated waves. In the monopole–test-particle limit,
the “Kerr-like” algebraic type is actually necessary for
the geodesic equation (and also several other important
problems) to be completely integrable [56], hence not
allowing for chaotic behavior. However, even in type-D
spacetimes the motion is in general chaotic if the particle is
endowed with spin (Ref. [32] and references therein) or
higher multipoles. The issues of spin, curvature structure,
and orbital dynamics are thus naturally bound together
within one of today’s major application directions of
general relativity. We have not considered any gravitational
waves emitted by the orbiting particle in this paper, but the

background spacetime certainly can contain waves. In this
respect, the often treated Petrov type N is of physical
relevance as a possible approximation of the far-zone
radiation fields of bounded sources (see e.g. Ref. [57]
and references therein).
To summarize the present paper, we have first reviewed

the Mathisson-Papapetrou-Dixon (MPD) formulation and
derived (or quoted) some useful relations of generic
validity, while mainly focusing on the role of the spin
supplementary condition. In the second part we projected
the MPD equation of motion onto a suitable tetrad and
expressed the spin-curvature term on its right-hand side in
terms of the Weyl scalarsΨ0–4 obtained in the complex null
(Newman-Penrose) tetrad related to the orthonormal one.
Specifically, we have chosen the orthonormal tetrad tied to
the “reference” observer Vμ, fixing the spin condition,
taking the corresponding spin vector sμ (or rather its unit
form) as one of the spatial legs. In such a tetrad, the MPD
equation appears as (66)–(69), which does not at all contain
the null-tetrad scalars Ψ0 and Ψ4. The remaining two
spatial vectors can be chosen in various ways, of which the
preferable are those fixing them “intrinsically,” along
some directions provided by the geometry of the problem
itself. We described one such possibility, applicable when
uμ∦pμ and given by ðμuμ − γpμÞ and the “vector product”
of the former three, which can be expressed
as ðs2δμν − sμsνÞ _Vν.
Having expressed the MPD equation in terms of the

Weyl scalars, it is natural to ask whether it assumes any
special, simple form in spacetimes of particular Petrov
types. For such a purpose, it is advantageous to choose Vμ

so that the highest-multiplicity principal null direction of
the Weyl tensor falls within the eigenplane of the spin
bivector, and to make it the first vector of the associated
null tetrad. Even more favorable would be to make the null
tetrad “transverse” in the sense that the corresponding Ψ1

and Ψ3 projections vanish; the spinning particle motion
would then be fully determined by Ψ2 and by the
cosmological constant. Unfortunately, such a turn can only
be reconciled with the spin structure in exceptional cases;
namely, when it is possible—by a suitable choice of Vμ—to
identify the spin eigenplane with the real-vector plane of
some of the transverse tetrads.
In the last part, we first treated where the exercise leads

for the main spin conditions considered in the literature,
and then revisited in particular the condition _Vμ ¼ 0
(ensuring the very advantageous arrangement uμ∥pμ) and
generalized it, suggesting also a natural resolution of
nonuniqueness of the corresponding reference observer
Vμ. Then we checked how the equations are compatible
with several particular types of motion.
Our next plan is to compare the analysis with that made

in a different interpretation tetrad, namely the one tied to
the wordline tangent uμ, and also to consider the case of
massless particles.
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APPENDIX: ORTHONORMAL-TETRAD
AND NULL-TETRAD COMPONENTS

OF THE WEYL TENSOR

Here we list the Weyl-tensor components in some
orthonormal tetrad ðVμ; eμ{̂ Þ and in the related Newman-
Penrose null tetrad ðkμ; lμ; mμ; m̄μÞ. Note that we actually
need the Weyl-tensor dual in the Mathisson-Papapetrou-
Dixon equations, but the null-tetrad scalarsΨ0;…;Ψ4 only
change by an imaginary unit when dualizing Cαβγδ, so it
does not matter if we write the relations for Cαβγδ itself or
for its dual. Note also that �Cαβγδ ¼ C�

αβγδ has the same
symmetries as Cαβγδ (and hence ten independent
components).
Besides the “automatic” properties following from the

Riemann-tensor–type symmetries, the additional vanishing
of the Weyl-tensor nontrivial trace, gαγCαβγδ ¼ 0, implies
another set of useful relations (when projected onto various
null dyads):

Ckmkm̄ ¼ Clmlm̄ ¼ Cmkml ¼ Cm̄km̄l ¼ 0; ðA1Þ

Ckmm̄m ¼ Ψ1; Clmm̄m ¼ Ψ̄3; ðA2Þ

Cklkl ¼ Cmm̄mm̄ ¼ Ψ2 þ Ψ̄2 ≡ 2ReΨ2; ðA3Þ

Cklmm̄ ¼ −Ψ2 þ Ψ̄2 ≡ −2iImΨ2; ðA4Þ

where obvious notation has been used. Direct substitution
then yields the orthonormal components

C0̂ 1̂ 0̂ 1̂ ¼ Cklkl ¼ 2ReΨ2;

C0̂ 2̂ 0̂ 2̂ ¼ ReCkmlm̄ þ 1

2
ReðCkmkm þ ClmlmÞ

¼ −ReΨ2 þ
1

2
ðReΨ0 þ ReΨ4Þ;

C0̂ 3̂ 0̂ 3̂ ¼ −C0̂ 1̂ 0̂ 1̂ − C0̂ 2̂ 0̂ 2̂

¼ −ReΨ2 −
1

2
ðReΨ0 þ ReΨ4Þ;

C1̂ 2̂ 1̂ 2̂ ¼ −C0̂ 3̂ 0̂ 3̂;

C1̂ 3̂ 1̂ 3̂ ¼ −C0̂ 2̂ 0̂ 2̂;

C2̂ 3̂ 2̂ 3̂ ¼ −C0̂ 1̂ 0̂ 1̂;

C0̂ 1̂ 0̂ 2̂ ¼ C3̂ 1̂ 3̂ 2̂ ¼ ReCklmk þ ReCklml

¼ ReΨ3 − ReΨ1;

C0̂ 1̂ 0̂ 3̂ ¼ C2̂ 1̂ 2̂ 3̂ ¼ −ImCklkm þ ImCklml

¼ −ImΨ1 − ImΨ3;

C0̂ 2̂ 0̂ 3̂ ¼ C1̂ 2̂ 1̂ 3̂ ¼
1

2
ImðCkmkm þ ClmlmÞ

¼ 1

2
ðImΨ0 − ImΨ4Þ;

C0̂ 1̂ 2̂ 1̂ ¼ −C0̂ 3̂ 2̂ 3̂ ¼ ReCklkm þ ReCklml

¼ ReΨ1 þ ReΨ3;

C0̂ 1̂ 3̂ 1̂ ¼ −C0̂ 2̂ 3̂ 2̂ ¼ ImCklkm þ ImCklml

¼ ImΨ1 − ImΨ3;

C0̂ 2̂ 1̂ 2̂ ¼ −C0̂ 3̂ 1̂ 3̂ ¼
1

2
ReðCkmkm − ClmlmÞ

¼ 1

2
ðReΨ0 − ReΨ4Þ;

C0̂ 1̂ 2̂ 3̂ ¼ −iCklmm̄ ¼ −2ImΨ2;

C0̂ 2̂ 1̂ 3̂ ¼ ImCkmlm̄ þ 1

2
ImðCkmkm − ClmlmÞ

¼ −ImΨ2 þ
1

2
ðImΨ0 þ ImΨ4Þ;

C0̂ 3̂ 1̂ 2̂ ¼ C0̂ 2̂ 1̂ 3̂ − C0̂ 1̂ 2̂ 3̂

¼ ImΨ2 þ
1

2
ðImΨ0 þ ImΨ4Þ:

(Not all these are independent, needless to say. Others can
be obtained just using the C½μν�½κλ� antisymmetries and the
C½μν�↔½κλ� symmetry.) The respective components of the
dual Weyl tensor are obtained according to

Ψ → �Ψ ¼ iΨ∶ Reð�ΨÞ ¼ −ImΨ; Imð�ΨÞ ¼ ReΨ:

1. Electric and magnetic curvature

Let us look into which Weyl scalars enter the Weyl-
tensor electric and magnetic parts. These are introduced, in
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analogy with electric and magnetic parts of the Faraday
tensor, as projections of the Weyl tensor on some timelike
vector field (in our case represented by Vμ),7

Eαβ ≔ CαμβνVμVν ≡ Cα0̂β0̂; ðA5Þ

Bαβ ≔ �CαμβνVμVν ≡ �Cα0̂β0̂: ðA6Þ

Orthonormal components of these (symmetric) gravito-
electric and gravitomagnetic tidal fields can be seen
above—namely, E{̂ |̂ are given by real parts of Ψa, except
for E1̂ 3̂ and E2̂ 3̂, which are given by imaginary parts of Ψ1

and Ψ3, or of Ψ0 and Ψ4, respectively; in B{̂ |̂, the
appearance of real and imaginary parts is reversed.
In the so-called transverse orthonormal frames

(Sec. IV C), the first MPD equation can in favorable cases
be expressed in terms of just Ψ2, which underlines the
importance of type-D curvature, where the latter is the only
relevant Weyl scalar. If we keep only Ψ2, we see that the
above tidal fields have only diagonal components:

E1̂ 1̂ ¼ −2E2̂ 2̂ ¼ −2E3̂ 3̂ ¼ 2ReΨ2;

B1̂ 1̂ ¼ −2B2̂ 2̂ ¼ −2B3̂ 3̂ ¼ −2ImΨ2:

2. Rotations within the ðmμ;m̄μÞ plane
Of the well-known four basic types of the NP-frame

transformations, namely null rotations preserving kμ or lμ,
boosts in the ðkμ; lμÞ plane and spatial rotations in the
ðmμ; m̄μÞ plane, the last ones are mainly of interest for us,
because in our problemmμ and m̄μ can be rotated arbitrarily
within the plane orthogonal toVμ and sμ. Parametrizing such
a rotation as

m0μ ¼ expðiαÞmμ; m̄0μ ¼ expð−iαÞm̄μ; ðA7Þ

the Weyl scalars transform according to Ψ0
2 ¼ Ψ2, and

Ψ0
0 ¼ expð2iαÞΨ0; Ψ0

4 ¼ expð−2iαÞΨ4; ðA8Þ

Ψ0
1 ¼ expðiαÞΨ1; Ψ0

3 ¼ expð−iαÞΨ3 ðA9Þ

(hence, those which were zero remain so). In particular, Ψ1

and Ψ3 obey

ReΨ0
1 ¼ þReΨ1 cos α − ImΨ1 sin α; ðA10Þ

ImΨ0
1 ¼ þReΨ1 sin αþ ImΨ1 cos α; ðA11Þ

ReΨ0
3 ¼ þReΨ3 cos αþ ImΨ3 sin α; ðA12Þ

ImΨ0
3 ¼ −ReΨ3 sin αþ ImΨ3 cos α: ðA13Þ

By such a rotation, it is generally possible to get rid
of one component of one of these two scalars, but not
more.
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