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Spinning particles in vacuum spacetimes of different curvature types:
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In a previous paper, we considered the motion of massive spinning test particles in the “pole-dipole”
approximation, as described by the Mathisson-Papapetrou-Dixon (MPD) equations and examined its
properties in dependence on the spin supplementary condition. We decomposed the equations in the
orthonormal tetrad based on the timelike vector fixing the spin condition and on the corresponding spin,
while representing the curvature in terms of the Weyl scalars obtained in the Newman-Penrose null tetrad
naturally associated with the orthonormal one; the projections thus obtained did not contain the Weyl
scalars ¥, and V. In the present paper, we choose the interpretation tetrad in a different way, attaching it to
the tangent u#* of the worldline representing the history of the spinning body. Actually fwo tetrads are
suggested, both given “intrinsically” by the problem and each of them incompatible with one specific spin
condition. The decomposition of the MPD equation, again supplemented by writing its right-hand side in
terms of the Weyl scalars, is slightly less efficient than in the massive case, because u* cannot be freely
chosen (in contrast to V¥) and so the u¥-based tetrad is less flexible. In the second part of this paper, a
similar analysis is performed for massless spinning particles; in particular, a certain intrinsic interpretation
tetrad is again found. The respective decomposition of the MPD equation of motion is considerably simpler
than in the massive case, containing only W; and ¥, scalars and not the cosmological constant. An option
to span the spin-bivector eigenplane, besides the worldline null tangent, by a main principal null direction
of the Weyl tensor can lead to an even simpler result.
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I. INTRODUCTION

In Ref. [1] (henceforth referred to as paper I), we studied
the problem of motion of a massive spinning test particle
(“pole-dipole” body) as described by the Mathisson-
Papapetrou-Dixon (MPD) equations

1
= = RS, m

§% = poul —uep?, (2)

where p* and u” denote the total momentum and four-
velocity of the particle, S is the particle-spin bivector, and
the dot denotes the absolute derivative along u*. We restricted
to vacuum space-times and focused on the dependence of the
exercise on the spin supplementary condition $*V, =0,
necessary to fix ambiguity in the MPD equations, and on the
interpretation of the spin-curvature interaction in terms of the
Weyl scalars. Starting from the projection of the equations
into a suitable orthonormal tetrad, we chose the latter’s time
vector to coincide with the “reference observer” V# speci-
fying the spin condition and one of the spatial legs to
be given by the spin vector s# connected with S* by
st = —%e"”ﬂ"VySpg = —*S$"V,. Rewriting the force term
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representing spin-curvature interaction in terms of the scalars
U, 4, obtained by projecting the Weyl tensor onto the
associated Newman-Penrose (NP) complex null tetrad, we
found that the MPD-equation orthonormal-basis projections
do not contain scalars ¥, and ¥,. We then suggested a
possible way to choose the remaining two spatial basis
vectors “intrinsically,” that is, along directions provided by
the geometry of the problem itself; this choice is applicable
when v} p# (an alternative tetrad, usable in this situation—
but not together with the Mathisson-Pirani condition, on the
contrary—is added in the present paper, Sec. III B 1).

In order to find how the problem looks in space-times of
some particular curvature type, we aligned the first vector
k* of the NP tetrad with the highest-multiplicity principal
null direction (PND) of the Weyl tensor by a suitable choice
of V¥, reproducing at the same time a given spin, either
described by s* or S according to the MPD equations.
More specifically, the plan goes like this: have a generic
space-time (thus some k* and other PNDs) and a generic
particle (with some spin vector s# or spin tensor S at a
given point). Aligning the first real vector of the NP tetrad
with k#, its second real vector /# can always be chosen so as
to satisfy the relation s# = 7 (k* — I*)," or, respectively, as

an eigenvector of S independent of k*; finally V# is

'More precisely, it is only not possible if k,s* = 0.
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retrodefined by V¥ = \/%(k” + [*). Projecting the MPD

equation of motion into the orthonormal tetrad involving
these V* and s*/s as the zeroth and first vectors (and
completed by some orthonormal ¢4 and €%), one obtains

3
Egs. (66)-(69) of paper I,

=V, p" = -2sImV¥, ul
— s(ImWy — ImW, )
— s(ReW; + ReW, )u?, (3)

e,ilj?” = 25 ImV¥, ud
— s(Im¥5 + Im¥, )2
— s(ReW; — ReW, )u, (4)

. A\ -
erpt =+ (2R6\112 - §> u?
- s(Im\Il3 — Im\Iil)u()
+ s(ImUs + Im¥ )u!, (5)

. A\ s
ept = —s <2Re\I/2 - g) u?
— s(ReW; + ReW, )ud
+ s(ReW; — ReW, )ul, (6)

where u® denote the tetrad components of four-velocity.

It is known that—with the exception of Petrov type 11—
it is possible to rotate the null tetrad so it becomes
“transverse” in the sense that the corresponding ¥, and
W5 projections vanish (instead of the usual elimination of
U, and U,). If such a rotation of the tetrad were feasible (in
addition to the above), the spinning-particle motion would
be fully determined by W, and by the cosmological
constant (because ¥, and W, are not involved from the
beginning). Unfortunately, this could only be achieved by
chance, because the necessary rotation involves all the NP
vectors (in dependence on Weyl scalars in the original NP
tetrad); in particular, it fixes the (k#, I*) plane, so I* cannot
be chosen to lie in the (k*, s*) plane at the same time.

In the last part of paper I, we discussed the implications
of the spin conditions mostly considered in the literature,
mainly advocating the condition V¥ =0 which leads to
ut||p* and generalizing it, and finally checked several
particular types of motion.

In the present paper, let us proceed in a similar way but
choosing a different orthonormal tetrad, namely, the one
tied to u* as the time vector. In Sec. II, we suggest—as a
counterpart of the intrinsic tetrad based on V¥ considered in
paper I—a u*-based tetrad which follows naturally from
geometry of the problem. If trying to adapt the interpre-
tation tetrad to the Weyl-tensor PNDs, one is either led to
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the situation when S$**u, =0, so the Mathisson-Pirani
condition holds (thus returning to the respective section
of paper I), or one has to release the “natural” association of
the orthonormal tetrad with the NP tetrad, namely, to
compute the Weyl scalars in a NP tetrad which is not
naturally associated with the orthonormal tetrad into which
the MPD equations have been projected. Both possibilities
are worked out, with the type-N space-time mentioned as
an example. Implications of specific spin supplementary
conditions are considered in Sec. III, pointing out, in
particular, that for u#|| p# a different tetrad has to be devised
since the original one degenerates (similarly as its counter-
part employed in paper I).

In the second part (Sec. IV), we turn to spinning particles
with zero rest mass. Starting from a summary of what is
known from the literature, we study the geometry of the
massless problem in a similar way as its “massive”
counterpart before. In particular, we again propose a certain
natural NP tetrad and the associated orthonormal frame,
which follow from the geometry of the problem itself, and
inquire about the properties of the MPD equation of motion
when projected there. Also the properties of the orthonor-
mal frame are examined, including the circumstance p* || k*
when the frame is not available (and p* is itself propor-
tional to the worldline null tangent k*).

First, however, let us remind the reader that the space-
time is supposed to be vacuum, possibly involving a
nonzero cosmological constant A; the metric signature is
(—+++); and geometrized units are used in which ¢ = 1,
G = 1. Greek indices run 0-3, latin indices 1-3, and the
summation convention is followed. The dot denotes an
absolute derivative with respect to the particle’s proper time
7, the asterisk denotes the Hodge dual, and the overbar
indicates complex conjugation. The Riemann tensor is
defined by Vg — V., = R',;V, and the Levi-Civita
tensor as

€

uvps — VY [/41/[06],

etro — _% bu/po'], (7)

V=9

where ¢ is the determinant of the covariant metric and
[uvpo] is the permutation symbol fixed by [0123] := 1.
Please see (e.g.) paper I for an introductory summary on the
spinning-particle problem, including basic as well as recent
references.

II. VACUUM MPD EQUATIONS IN
A TETRAD TIED TO u*

The reference observer V¥, in terms of which the spin
supplementary condition is written (S*°V, = 0), can be
chosen freely, so it is generically possible to attach it to a
given NP tetrad by taking V¥ := \/Li (k# + I#). This is not in
general possible with ##, because this has to be obtained
from p# which in turn is determined by the MPD equations,
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so none of these two vectors can be chosen. Hence the
procedure will have to be different, namely, based on the
given u* and k*.

We will again start from the MPD equation of motion,
rewritten in terms of spin vector s# in the form (39) of paper I,

i)y = *R”p(lﬁuysavﬂ
* (O A H veayp
= C vap +§€ vap | WS V7, (8)

where we have used the vacuum relation between the
Riemann-tensor and Weyl-tensor left duals *R*,,; and
*C!yqp (in a vacuum they equal the right duals). Two
advantages of having u* as the time vector of the tetrad
are obvious: first, similarly as V# (and s#, which we used in
paper I), the four-velocity u* appears on the right-hand side
among the vectors on which the dual Riemann is projected,
and second, the whole p* is from the beginning orthogonal to
ut, so its “zeroth” component in such a tetrad vanishes
automatically. (Note that none of these properties holds for
the third major “time” vector of the exercise, p*.) Now,
however, the following question arises: which spatial vectors
should one add to u¥, in order to complete the basis?
Generally, there are two possibilities: either to take some
vectors provided intrinsically by the p*, u#, s#, V¥ geometry
(possibly also including derivatives of these vectors) or to try
to somehow connect the spatial basis directly to the curvature
structure, while staying in a space orthogonal to u*.

The first, intrinsic possibility can be proposed in analogy
with paper 1. Actually, denoting

yi=—u,V¥(>0), y=—-p,V¥(>0),
we chose there the basis
Vst —ypt, (528 — sts,) VY )

(or rather its normalized version), made of the eigenvectors
V# and s* of the spin bivector S, = €44, V*s* and of the
eigenvectors (uu* —yp*) and (s28 — s*s,)V" of its dual
*SH = s#VY — VFsY. As a counterpart of this basis, we
suggested the quadruple made of u* and spatial vectors

Pl — mut = —§"u,, (10)
yst 4 s, ut VH = —* Sy, (11)
eﬂ”duz(yslc + SuuuVK>pl = _*SMA*SM”D’ (12)

i.e., of the eigenvectors u* and (p* —mu*) (‘“hidden
momentum”) of the bivector *S w = €uap p®u” and of the
eigenvectors (ys* + s, u’V*) and e***u,(ys, + s, u*V,)p,
of the bivector $% = p®u’ — u*pf. In the above, m
is the particle mass with respect to u”, given by
m = —u, p*(> 0).
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Note that the last of the tetrad vectors can also be written
in a different way: regarding the formula [see, e.g., Ref. [2],
Eq. (7.15)]

1
* Fﬂ/l* H/ll/ — H/M ij + 5 5/; F(z/} Ha/ﬁ

valid for any two bivectors F,, and H,,, we can rewrite

eﬂuduz(ysk + suuUVK)p/l
. . 1 .
= =SSt = =SSt = S urSTSy

= —SMSMM” - u"eaﬂ}"spauﬁVys(;

= —S’MSMMD — utss = —((‘)‘ﬁ —+ uﬂua)SaﬁSMMU
= (8 + u'u,)e™°V s5(p; — muy), (13)

where we have used just basic forms of all the bivectors and
relation (33) from paper 1, i.e.,

1 .
s§ = Sﬂéw = Esaﬂsaﬂ = Saﬂpauﬂ = e””aﬂsﬂvyuapﬂ. (14)

Also, instead of the tetrad vectors u* and (p* — mu*), it
would be possible to use in the basis, for example, p* and
(mp* — M?u*) (the latter being given by the component of
ut orthogonal to p*).

In order to make the tetrad orthonormal, one needs
magnitudes of the spatial vectors:

(py — mu,)(p* — mu*) = m? — M2, (15)
(ysﬂ + SUMDV”)(YS” + Svuyvﬂ) = 72S2 - (Svuy)27 (16)

€Ill’dul(}/sk + svuyvx)p/leﬂ/)m:u/)(ys” + s/iuﬂvﬂ)pr
— *SMA*SMMU*S”K*SK”M{,
1. ,.
— _ E (lﬁSaﬂ*SMuv*Sﬁaua
= ( - MZ)(]/S” + SUM”Vﬂ)(}/S” + s,u"V*)
= (m? = MO — (s,0)7). (17)

Finally, regarding that the tetrad used in paper I was
numbered as

ey = V¥, (18)
sH

e/; = ? , (19)
u pu' — yp*

ek = , (20)
2 VAT = M) = (ym - p)?

e;md VlsK (/’”"ﬂ - ypﬂ)
A (21)

3T SV = M) = (m—p)
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let us do it similarly here,

yst + s, u’VH

e” N 23
) [y?s% — (s,u%)? (23)
Moy
e = LM (24)
() mZ — M2
Hoo eﬂlldul(},sk + SL/MDVK)p/I 25
6(3)'_\/ 2 _ 2. /732 o\2 (25)
m> — M2\/y?s? = (s,u°)

(we distinguish the two tetrads by the different markings of
their vector-numbering indices).

Clearly neither of the tetrads can be erected if u/|| p* (see
Sec. III B below).

A. Basic observations

One of the vectors we have proposed for the u*-based
tetrad, (ys* + s,u*V*), is a combination of V¥ and s*, so it
belongs to the eigenplane of S**. If we select this plane to
coincide with that spanned by the PND k* and a suitably
chosen /¥, the vector (ys* + s,u*V*) will be linked with the
curvature structure. This is actually the best that can be
done in this respect; in particular, one cannot include in the
basis two independent vectors lying in the k*, [V plane,
because it is impossible to make both of them orthogonal to
u*. Therefore, the above set of vectors seems to be a
reasonable proposal from which to build a u*-directed
basis, which at the same time is attached to the curvature
structure as closely as generically possible. (So far, how-
ever, the space-time is left completely general, and
also the tetrad is not necessarily linked to the Weyl-tensor
PNDs.)

Introducing the
write (8) as

tetrad (22)—(25), we can first

1 A
p” = ; <*Cﬂuaﬂ + geﬂuaﬂ> uu(ysa + sluzva) Vﬁ (26)

\/ 755 = (50))°

. A
- ( Come +3 €”<0><1><6>) ve,
(27)
where the relevant components of V(®) read
VO = oOyr = —y, e =y, (28)
V@ = e,(,Z)V" __ym—pg ’ (29)
m* — M?
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V(3) — eLS)V" _ yeﬂuc/lvﬂu,skpg
Vi? = M2/ — (su°)?
¥Sus”

- vVm? = M? \/yzsz _ (s”ua)z

(30)

[Eq. (14) has been used]. It is clear that the cosmological

constant does not occur in the e,gl) p* component, i.e., in the

projection on (ys* + s,u*V*). Since the latter plays the role
of spin in (26), this implies the same property we observed
on V¥-tetrad decomposition in paper I: A only influences
motion in directions perpendicular to the spin.

When projecting p* to the “parenthesis” tetrad, one also
notices that due to the orthogonality u, p* = 0 the “second”
component yields just

n” _ °
o = PuPl MM

_\/mz—/\/lzz\/mz—/\/lz’

where the mass M is given by M? := —p,p#(> 0).

Let us also add some obvious identities useful when
transforming between the “hatted” and the parenthesized
tetrads:

y = —uﬂV” = uﬁ = V<0),

p=-p,Vi=rp’
m=—u,p* = p,

st = sul = —sO),

U

B. Decomposition in a curvature-adjusted tetrad.
Which one?

Employing Appendix A of paper I, where orthonormal
components of the Weyl tensor (and consequently those of
its dual) are expressed in terms of the Wy—W, scalars, it is
now easy to write down the decomposition of the MPD
equation of motion (8):

1
W pt = —2ImW, V(©

—e
o
— (ImV; + Im¥, )V
— (Re®; — Re¥, ) VO, (31)
L o., —MM
S pr =

= —(Im¥5 — Im¥, )V

1

1 A
+ |ReW; = (ReWy + Rely) + Ve, (32)
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1
;e,@ P = —(ReW; + Re¥;)V©

1 A
— |ReW, + 3 (ReV, + Rel,) + 3 V@

[a—

VP (5
14

result is similar to the decomposition with respect to the V#-
based tetrad, given in Egs. (3)—(6), with one important
difference: the components obtained in paper I do not
contain ¥, and ¥,, whereas now these scalars are present.
On the other hand, the present approach has one big
advantage: at any point, the reference observer V¥ can
be chosen arbitrarily (in contrast to u*), so one can in fact
eliminate much of the above formulas.

Let us remind the reader that the complex U scalars
featuring in Eqgs. (31)-(33) represent projections of the
Weyl tensor onto the NP tetrad (k*, I#, m*,m*) naturally
associated with its orthonormal counterpart (22)—(25),
namely, connected with the latter by

1

where we abbreviated o := . Apparently the

1
W= st ely) P (=),
I . o .
m = ey Tiey), = (el ~iefy).

One might also express the projections of the MPD
equation onto the (22)—(25) tetrad in terms of Weyl scalars
obtained in some different NP tetrad, not associated with
the given orthonormal tetrad, but then Eqgs. (31)—(33) would
look differently.

Consider now shortly our plan, i.e., tuning the tetrad to a
given space-time curvature, similarly as in paper 1. It will
certainly be advantageous to identify the first vector &# of
the NP tetrad with the Weyl-tensor PND of the highest
multiplicity again. Should now the plane determined by u*
and k* be made an eigenplane of the spin bivector $**, one
would have to resort to only one viable spin condition, with
V# = u#. This would, however, mean returning to paper I,
Sec. V.A, on MPD equations supplemented by the
Mathisson-Pirani condition. Actually, setting V¥ = u#,
one has s,u’ = 0,0 = s, VO =1, and V) =0, reducing
Egs. (31)—(33) to

e;(tl)p” = =25 ImV¥,,

e,(,z)j)" = —s(Im¥; — Im¥,),
e,(f)j)” = —s(ReW; + ReV¥)),

which are just Egs. (97)-(99) of paper L

If one insisted on the tight connection between the tetrad
and the curvature structure, and at once on a sufficiently
generic view (not pushing one into V¥ = u#), there is an
alternative—with u* used as the time vector of the
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orthonormal tetrad in which the MPD equations are
decomposed, yet with the reference observer V* left free
(for later adaptation of the NP tetrad to a given algebraic
type). If adopting such a compromise, it is necessary to
release the tight (natural) connection between the NP tetrad
and the orthonormal one. Specifically, one could consider
instead the NP tetrad naturally associated with the same
orthonormal tetrad as in paper I, i.e., with (18)—(21).
Expressing such an alternative in other words, one could
keep the NP tetrad (thus the Weyl scalars) from paper I but
decompose the MPD equations in the orthonormal tetrad
(22)—(25) instead of (18)—(21). Rather than deriving such
“hybrid” relations by transformation of the Weyl scalars, it
is simpler to start from Eqs. (3)—(6) and compose their new
components according to the transformation of the ortho-
normal basis. One finds easily that

0,1 1
+u'V
el pr = TR T b, (34)
(MO)Z_(MI)Z

(@) ey _ (rm—pu) 5.
[ p”——\/l—m eﬁp/‘. (35)

To also find the hatted decomposition of e’(‘3) , werecall e;(f) v
given in (30) and calculate the remaining components,

i,

o®pa _ U eqs”
a i - — — )
Vm? — M2 /(M0>2 _ (u1)2
6(3)eg =0,
1
e,(f)eg = - —
0\2 _ (02 __ym=p)
()2 = ()21~

which can then be inserted into

e,(;)l')ﬂ = (e(3)eg)62j9" + (eS)e?)e},p” + (eg)eg‘)e,%j)”.
Since the decomposition (3)—(6) from paper I is expressed in
terms of the hatted four-velocity components, it is useful to

add, as a counterpart of (28)—(30), that

W=v0 =y, (36)
ul = -5 /s, (37)
3 ym—p
u- = , 38
V1 (m? = M?) = (ym — p)? )
. g
3 Ll (39)

A = M) = (m— )
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The last two components are proportional to V(2 and V©);
see (29) and (30), respectively.

C. Algebraically special space-times: Type-N example

It is only meaningful to discuss the particular curvature
types if one accepts the above compromise view, i.e.,
decomposes the MPD equations into the u#-based ortho-
normal tetrad, but keeps the NP tetrad (in which W scalars
are computed) unrelated, and thus free for adaptation to the
curvature structure as in paper . We saw above that one
pays for this freedom by longer expressions for the MPD-
equation projections. On the other hand, these equations
“inherit” from those obtained in paper I the lack of the ¥,
and W, scalars.

For the most special Petrov type N, by using Eqgs. (82)-
(83) of paper 1, i.e.,

=V, p* =0, 3,141'7”:0, e,%]b”:—gsué, eﬁj)":—suj,
and (39) from above, we obtain
61(41)1.7” =0, (40)
2 M
@., A 5[ (ym-p)? A sS8
ey p” = —Su 1 yz(mz—Mz) 3 mZ_MZ s (41)
o) —3su’

ey pt= X = -

\/ (”0)2_ (“1)2\/ l_yz((};,g:lj\),ﬂ)

_ —55%r(ym—p)Vm? = M @)
7252 = (sO)2 [ (m? = M?) = (ym — p)?]

In the intrinsic tetrad, we found, in Eq. (84) of paper I, that
MM = —(A/3)s,5", so we can also write the second
equation as

: ~MM
ef,z)p” = Ny vk (43)

The decomposition forms following for other Petrov
types can also be obtained straightforwardly, and we will
not discuss them.

II1. SPECIFIC SPIN CONDITIONS

Let us briefly consider how the exercise looks when
supplemented by the main spin conditions. We will,
however, not include the Mathisson-Pirani spin condition,
V# = u#, anymore, because this simply reduces the prob-
lem to the form already treated in Sec. V.A of paper 1.

PHYSICAL REVIEW D 92, 124036 (2015)
A. Tulczyjew spin condition, V¥ = p#/ M

We know from paper I (Sec. V.B) that the Tulczyjew
condition implies y = m/M, u= M, s,p* =0 = s,u*,
M=0,5=0, and 6 = s, so we have

2_M2
VO =, ="y V" _ VB =, 44
’= I (44)
(U'/t_sﬂp”_ i'/l
ey’ p ___eﬂp’ (45)
P =0=elph, (46)
6(3)1.),, _ i P* p's*ut _ MS,p*u’
! svVm? =M% svVm? — M2
MSp't M Ny
=K \/m? - M?
svVm* — M?* s
— e,%i?", (47)

which reduces Egs. (31)—(33) to

Msﬂp/‘ = —2mImV¥,

2
- Vm? = M? (Im¥; + Im¥,), (48)

S
+ m2 - M2 (Im\IIO - Im\114), (49)

M? m(ReV¥; + Rel,)

2
s m* — M2

1 A
- RC\IIZ - E (RC\IIO + Re\ll4> - § . (50)

So the projections of p* into the u”-based tetrad (paren-
thesized) equal those into the V#-based tetrad (hatted), and
they appear somewhat simpler when written in terms of the
U scalars computed in the null tetrad associated with the
VF¥-based orthonormal tetrad; this was done in paper I,
Eqgs. (121)-(124):

0 = s(Im¥; — ImVy),

. 2 .
eyt = —%Im\llz —s(Im¥; + ImW3)u?,

0 = s(Im¥; — Im¥3),

M 2 A Rew. ) — ms*(Re¥, + ReW¥s)
3 : m? — M? '

The reason for the difference is that when the above
expression is written in terms of the Weyl scalars computed
in the null tetrad associated with the u#-based orthonormal
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tetrad, it contains, in addition to ¥, ¥,, and V3, also ¥,
and U,.

B. Condition u*| p*: An alternative tetrad

If w||p”, then p'=mu", m=M, m= M=0,
p* = mut, S =0, *S* =0, § =0, and u=ym. The
intrinsic tetrad tied to u*, Egs. (22)—(25), cannot be used,
because its last two vectors degenerate (the hidden momen-
tum vanishes).2 One can, however, find a different ortho-
normal tetrad, usable even when p* = mu”—for example,
one can choose, besides (22) and (23), a vector orthogonal
to ut, V¥ as well as s#, i.e.,

e ruVes, = SMu

and add the last one orthogonal to all u#, e’(‘]>, and $*u, (we
will number the two vectors in a reverse order):

p erbr y (ys/; + 5,17V 5)€, i’ VEs'

O P = (5w P = DS = (5,0

(6” + uwu,)(ys* V¥ + s,u’s")

, (51)
TP = G P = D)5 = (s,0)
uv JVKA
e’(‘3) := S*u, _ e u,V.es; . (52)
VSPu,Sestt® /(2 = 1)s% — (s,u’)?

Obviously, these vectors are not defined if the Mathisson-
Pirani spin condition $#**u, = 0 is applied.

The new basis vectors (51) and (52) provide—
independently of the spin condition—projections

VP =15 = (s,)?

2 —
V& =y 3

vB =0, (53)

775 = (s,u%)

so Egs. (31)—(33) assume a similar form as (48)—(50), just

2) o —MM
with e, p* no longer equal to Nassyve and with slightly

m
more complicated o, v@, e( )p” and e( ) p*. Note that, if
employed together with the Tulczy]ew condition, this
alternative tetrad yields exactly the same projections of
V¥ and p* as the original tetrad, that is (44)—(47).

In Sec. V.C.1 of paper I, we showed that the freedom
which the condition u* || p# leaves to the choice of V¥ can be
used to select the latter in such a manner that the
corresponding spin s* is orthogonal to u* (thus also to
p") and remains so along the whole trajectory. Specifically,
this requires selecting V¥ = u# at some initial point and
then prescribing evolutions

*The tetrad (18)—(21) suggested in paper I degenerates then in
the same manner.
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VH :izsﬂ’ SH :ﬂv (54)
um um?
with a given by
M2 M?
a=—pH S, = —e p”

Ensuring the above setting, one gets, at a generic point, the
“alternative” tetrad

VH — yu
e o=t (ss)

e = — =
®T o1 O~ o1

and hence projections

VO=y vih=0, v@=4/y2-1, VO =0. (56)
Consequently, Egs. (31)—(33) reduce to

(04
5= ~2yIm¥; - \/3’27—1 (ImWs +ImW,), (57)

V,.p" y(Im¥, — Im\II3) 1
= —(Im¥y, — Im¥ 58
S(}/z—l) \/3/2—_1 2<m 0 m 4) ( )
Suu’p"  y(ReWs + Rel)
s*(r* = 1) V-1
1 A
— RG\IJZ - 5 (RC\IJO + RC\I/4) — g . (59)

This form is slightly more complicated than the Tulczyjew-
condition counterpart (48)—(50). Note that one cannot
obtain the latter, or any other more special form, by
resorting to V¥ ~ p# and so, because by prescribing the
initial value (#*) and evolution of V¥, the reference
observer was fixed and cannot be adjusted any more (it
cannot be set proportional to p* or u¥, in particular).

1. Remark: Alternative to the intrinsic tetrad of paper I

If p# = mu”, the tetrad (18)—(21) employed in paper I is
clearly meaningless as well. Let us suggest its substitute
even usable when p* = mu/, thus supplementing paper I
where we did not go into this detail. One of the vectors
orthogonal to both V# and s# can obviously be chosen like
above in the u*-based tetrad case, namely, according to
(52), and the last vector can be found in analogy with (51),
i.e., as the one orthogonal to all V¥, s#, and (52):

*Let us stress that s,u* = 0 does not in general mean S, u* =
0 (i.e., the Mathisson-Pirani condition); the spin bivector still has
V# and s* as its eigenvectors, while #” need not belong to the
eigenplane.
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eﬂ — _S/“/MIJ _ eﬂwdvl/ulcsl (60)
3 VSPu,Sqou” /(7 = 1)s2 = (s,u°)?

. erbry aSpEpicr VI U's
Cha s\/y—ls—(su)2
(8, + V'V, — efe D

VoD —<s6u>

where we remind the reader that e’; =

(61)

s#/s. Therefore, the
e’(‘z) vector is represented by the component of u#* orthogo-

nal to both V# and s*. Again, this tetrad is not available if
the Mathisson-Pirani condition holds, $*u, = 0.

IV. MASSLESS PARTICLES

In paper I as well as so far here, we have been
considering particles with nonzero rest mass. Let us now
reserve some space to localized massless particles. It was
shown by Refs. [3,4] that the “massless” situation, repre-
sented by a traceless energy-momentum tensor, implies4

m = —p, k' = 0 (= const along k*); (62)

the same was also obtained by Ref. [5] from conformal
invariance of the action functional. Other results were that,
if S, is spacelike, S, 5 =: 25> > 0, then
S kv =0,  kk=0, K~k  (63)
so—as already suggested by Ref. [6]—the Mathisson-
Pirani condition automatically holds, and the particle
follows a null geodesic.
The MPD equations themselves (1), (2) remain the same,

R e )
yet one can only rarely take over results from the massive
case (paper I) simply by putting m = 0; namely, the
assumption u,u* = —1 (and V, V¥ = —1) was used there
frequently, whereas now V*# — u# — k* turns out to be
lightlike. From the second MPD equation, one sees
immediately that the scalar s called helicity is constant

along k*,
25§ = §,,8" =0,

and that $% is null since $% Sa/; =0, with k* being a
common eigenvector of S% and S,

“In the massless case, let us use k* instead of u* for the tangent
of the representative worldline k*, while keeping the dot for
covanant differentiation along that worldline, i.e., X := X, k.

Otherwise it could hardly be understood as descrlbmg the
rotational angular momentum.
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Let us stop at k* for a while: here it represents
the worldline tangent, while in paper I we denoted by k*
the first vector of the NP interpretation tetrad. However, the
tetrad was chosen so that k# (as well as its second vector [#)
lay in the eigenplane of §,,, which is just consistent with
the present notation since the spin condition $#*k,, = 0 now
necessarily holds, so &* is naturally taken as the main vector
of the interpretation tetrad.

Multiplication of the second of the MPD equations (64)

by ps and by pj yields
M2k = —8%p, (65)
MMk = (p, p")k* = =8 . (66)
from which one sees that

Saﬁ['?/} = Saﬂpﬂ’ ./\'/lS“ﬁp/; = Mgaﬂpﬁ.
Above, we have introduced p, p# =: M? as in the massive
case, but with a different (plus) sign—we will see below
that p* is spacelike now.

Another difference from the massive case is that the spin
vector defined analogously as there, by projection of the
spin-bivector dual onto V¥ — k*, is also null (s,s" = 0)
and proportional to k¥,

st = —% Hrok,S,, = —*S"k, = skt. (67)
The null character of s* is seen immediately: s,s* only
contains terms involving S,k =0 or kk” =0. The
second claim, s# = sk#, follows from the fact that two
real null vectors are orthogonal if and only if they are
proportional to each other. The above result also implies
that s# parallel transports along k*; specifically, if k* is

affinely parametrized (k* = 0), then
= §k* + sk* = 0. (68)

Once one knows that the particle moves on a geodesic
and that its spin is proportional to the latter’s tangent k*,
one might have little reason to continue the study, because
the momentum p* is a “strange thing” (spacelike) anyway,
so there is actually no demand to interpret its evolution p*.
However, we show below that even in the massless case
there naturally follows a (timelike) “reference observer”
and an associated (spacelike) spin vector (whether the
former is taken as primary or the latter), i.e., quantities
which have the same meaning as in the massive-particle
case and which are worth further consideration. We first
realize that the null version of the Mathisson-Pirani con-
dition leaves more freedom to the spin bivector than the
timelike version and then fix the remaining freedom by
determining the remaining independent dimension of the
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spin-bivector eigenplane. In doing so, we naturally intro-
duce the reference observer V# and the corresponding spin
S# and also note that one can in fact take advantage of this
freedom and adjust the spin eigenplane so as to contain a
desired direction (independent of k*), in particular, the
main PND of the host space-time.

A. Null spin condition: $**k, = 0, k,k* =0

As stressed by Ref. [7] in their treatment of massless
spinning particles, the null version of the spin condition is
less restricting than the “full” timelike case. Generally
speaking, the vanishing of the projection of an object onto a
null direction k* does not exclude that the object has a
component proportional to k*. In the case of our bivector
St the “timelike” condition $#V, =0, considered in
paper I, strictly determined its eigenplane and blade; in
particular, it implied that the bivector must read

S

_ Kol I 7 =
w = €l VIS = =S €kl =1ism, A m,,

where the real null vectors k# and [# were related to V# and
s* by

kﬂ—l(Vﬂ+SM> lﬂ—1<Vﬂ_Sﬂ)
V2 s) V2 s)

and m* and m" are complex null vectors (mutual complex
conjugates) orthogonal to both &# and /¥ and normalized to
m,m* = 1. In contrast, the condition $*k, = 0 admits a
more general form,

S, =ism, A, +k, A (Lm, + Lin,),  (69)

where m* and m" are some complex null vectors orthogo-
nal to k¥* and normalized to m,m* = 1 and L denotes an
(arbitrary) magnitude of “the other” independent spin
component. Speaking more generally, the spin vector
(67) follows uniquely from a known bivector, but the
converse is not true; the bivector is not fully determined
by the spin vector.

However, a simple non-null bivector has the whole plane
of eigendirections (with zero eigenvalue), so there exists (or
one can choose) a second null direction /¥, independent of
k*, which is also “annihilated,” $#**/, = 0. Provided it is
normalized so that k,/* = —1, the conditions $**k, = 0 and
S#1[, = 0 require L = —ism,I* (ergo L = ism,[*). For the
eigendirections k* and /¥ known/chosen, the bivector is
already determined uniquely (and it is possible to choose
m* and m* perpendicular to both, making L = 0). Clearly,
if there is some privileged null direction in space-time (call
it [#), one can take advantage of the freedom still remaining
in the spin bivector subjected to the null condition $*k, =
0 and require that it also satisfy $**1, = 0, thus inclining the
bivector’s eigenplane in the desired way.

PHYSICAL REVIEW D 92, 124036 (2015)

B. Spin-bivector eigenplane
Having introduced /¥ as the second independent eigen-
vector of the spin bivector, we can multiply by /4 the second
equation of (64) to get

p* = —pllgk® + pt (70)

as a counterpart of equation y p® = pu® + S% Vﬁ which was
numbered (21) in paper I. We have introduced

SaﬂZﬂ = —Saﬂl/} = pa + kal/;pﬂ
= (573 + kalﬂ -+ lakﬂ)pﬂ =: p‘j’_ (71)

as the part of p# orthogonal to the plane (k*,/*); it is a
counterpart of the hidden momentum

pgidden = (6;; + uauﬁ)pﬁ =p*—mu® = —Saﬂuﬁ

from the massive case.

As already suggested above, we will use in the next
section the NP tetrad based on independent real null vectors
kK and I* which are both annihilated by §,, and which are
normalized as k,/* = —1. Being null, /* certainly satisfies
1, =0, apd, if thf‘: particle’s geodesic is affinely para-
metrized (k" = 0), "k, =0 as well, but /# need not be
parallel along k* (i.e., " #0 in general). Actually, with

helicity s known, one can “reconstruct” the spin bivector
(and its dual) by

Sep = =S €apak? P, S = s(KI = 1Y), (72)

Multiplying the derivative
Sep = =5 €qpysk? I° (73)
by €], we have
2 = —Shap = s22”2,, = S‘”“lupa = M2 (74)

We have again used p®p, =: M?, so with the sign

different from the massive case. Namely, " is clearly
orthogonal to both k# and /# which span the eigenplane of
St and this eigenplane is timelike by assumption, so I has
to be spacelike; hence, M? > 0. Besides, I* is also seen to
be orthogonal to p#; the reason cannot (in general) be that
p" also belongs to the eigenplane of S$*, because this
would mean /* = 0, so " = 0 and, consequently, p*||k*,
which is not in general consistent with the MPD equation
for p* (cf. Ref. [4], Sec. V, and Sec. IVG 1 below).
Therefore, in the generic situation the vectors k*, [#, and
pt are independent.
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Note that one learns from (72) that k* is also annihilated by
S = s(kM I - 1MKY), (75)

50 it is the common null eigenvector of $* and *$**. This

confirms that $* is null and thus *$**S,, = 0 like in the
massive case, similarly as *$*S,, = 0.

C. Summary of eigenvectors of the spin bivectors

It is very easy now to summarize the independent
eigenvectors of all the bivectors involved. The eigenplane
of §* is timelike, and it is spanned by k* and /¥, while the
eigenplane of §"” is null and spanned by k# and /* (the two
eigenplanes intersect “along” k*). The eigenvectors of g
are k* and p*, their plane being null (because *$* is null, as
inherited from S"”). The last bivector, *S#*, is the only one
which does not annihilate k*, but clearly this is true for Z”,
while its second eigenvector can be found among projections
of $"; in particular, S”’“ZD = p/| is certainly independent of
I*. Both I* and p'| are spacelike as well as the eigenplane
spanned by them (this is confirmed by the timelike character
of the dual spin bivector, *S¥*S,, = —2s?).

Therefore, the massless case differs from the massive one
in the null character of §** and *S** (for a massive particle,
S* is timelike, and *S$* is (thus) spacelike).

D. Natural tetrad

In Sec. LD of paper I, we suggested a natural
orthonormal tetrad which is provided intrinsically, by
geometry of the spinning-particle problem itself. In case
of the Mathisson-Pirani supplementary condition, it was
given by u#, s# (the eigenvectors of the spin bivector), the
hidden momentum (p* — mu*), and the vector product of
the three. The vectors

ke 1 ph T (76)
we listed in the previous subsection can be used as such a
natural tetrad here in the massless case. Actually, k# and /¥
span the (timelike) eigenplane of $¥, and p/| with I span
the spacelike plane orthogonal to it, being orthogonal to
each other as well. The first two, null vectors are normal-
ized by k, /' = —1, and the second, spacelike couple is seen
immediately to have norms given by

2

i, =M

2

P py = p'p, = M2, -

Needless to say, the spacelike basis vectors

iz H
po_PL LS
DT M T M (77)

can be transformed into null ones by
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1 , _ Lo, .
(e’(‘z)—l—le’(‘?’)), m”::—(eéz)—le” ), (78)

V2 VACKEC

to complete the NP null tetrad to (k¥, I#, m¥, m*).

m” =

E. Vacuum MPD equations in a natural tetrad

Regarding that the spin condition $#*k, = 0 holds, we
naturally tie the interpretation tetrad to k*. Proceeding as
above, one assumes that $* is spacelike (S, $* = 252 > 0),
which implies that it has a timelike eigenplane. Within such a
plane, itis possible to find two independent null eigenvectors.
Denote by /# “the other one,” independent of k*, and
normalize it by k,/* = —1. To complete the standard NP
null tetrad, add two complex null vectors m* and m*,
orthogonal to both k* and /# and normalized as m,m" = 1.

The MPD equation of motion (64) for the massless case
can now be written as

1
P = =5 Rk S = S PR e ek
= SPP R gk K = 57 CH gk 1K, (79)

where R}, and *R,,,,5 are the Riemann-tensor right and left
duals [as in paper I, Eq. (39), we have used that they are equal
in the vacuum case; this does not depend on the value of
cosmological constant]. Since *R¥ 5 =*C" 5 + é—‘e"mﬁ,
the cosmological constant drops out completely due to the
presence of k“k”.

One can first decompose the MPD equation of motion
directly in the NP tetrad, while employing the Weyl-scalar
relations summarized in paper I, Egs. (Al)—(A4):

k,pt = —5*C sk’ k1K = 0, (80)

L' = =5 *Cuopl K 1°K/ = 25 ImT,, (81)
m,pr = =5 Cpapm" kK 1°kF = —is ¥, (82)
i, P = =5 Capm" kK 1°kF = isV. (83)

It may, however, be more natural to escape the complex
results by writing the last two components as projected onto
the (real) orthonormal vectors (77) rather than onto their
complex null counterparts. Since

e :ﬁ(m”er”), e :\/lii(m”—rh"),
we find easily, in lieu of (82) and (83),
P pt = V25 Tm,, (84)
el p = —\/2sRell,. (85)

In order to parallel the decomposition made in the massive
case, one can also introduce orthonormal vectors
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1 1
VH = —(k* + "), ey =—(K =1
), ey =)

and add the corresponding projections instead of (80)
and (81),

-V, pt = e,(,”j)" = —\/2s Im®¥,. (86)

The vector V¥ is a most natural timelike direction
with which the massless problem can be connected;
clearly, e’<‘1) represents the corresponding spin vector (its

unit form)—it is orthogonal to V# and belongs to the
spin-bivector eigenplane (S’“’e£1> =0).

Equations (84), (85), and (86) show that the projections
of the massless pole-dipole MPD equation onto the natural
tetrad based on the worldline tangent k* are very simple and
determined just by ¥; and ¥,. In comparison with
equations

e},jﬂ‘ = —2s5ImV¥,,
e2pt = —s(Im¥ — Im¥, ),
e?“i)” = —s(ReV¥; + ReV),

obtained for massive particles and the Mathisson-Pirani
spin condition (paper I), the massless case does not contain
the U5 scalar. If one takes the advantage of the remaining
freedom of the spin bivector subjected to only the null spin
condition $*k, = 0 (see Sec. IV A) and chooses its second
null eigendirection /# to be given by the highest-multiplic-
ity PND of the Weyl tensor (provided that k,/* # 0, of
course), then, depending on the Petrov type, some of the
Weyl scalars can be eliminated. In particular, besides ¥, =
0 (note again that we take [/ as the second vector of the NP
tetrad), W5/ W5, and W, /W5, ¥, and ¥, can thus be made to
vanish in type-Il/type-IIl/type-N space-times. Hence, since
the MPD-equation projections contain ¥; and V,, they
only simplify in the type-III or type-N case.

F. Properties of the natural orthonormal tetrad

Let us check some more properties of the above-
introduced natural orthonormal tetrad

:S” u :ﬁ u sl

LY

First, provided that the particle’s geodesic worldline is
affinely parametrized, k¥ = 0, we see that

. » M
== (88)
V2 \2s

One also easily relates the (null) spin s* to the newly
introduced “‘spin with respect to V#” (denoted by S*),

PHYSICAL REVIEW D 92, 124036 (2015)

1
o = skt = \%(V" Hely) = Vs (39)
As §* = sk* = 0, we have
"
M _Vﬂ _ _M€<3) 90
ey = = Ner . (90)

Finally, regarding that
L= R pt = 00+ R+ R P, (91)

one finds, from orthonormality of the basis,

3) -y
. ey’ p
& = M ) 92)
W M
6‘}(43) :Tkﬂ - M 6’(2). (93)

Having introduced V# and S¥, we can express the spin
bivectors alternatively as®

Sap = €aprsV7S?, S = SHVY — VHSY (94)
and write, similarly as in paper I (Sec. II. C), equations for
V# and §* in terms of k* and p*. Actually, multiplying
Sep = €apysV7S? + €445V S by €V, and eS,, we
obtain, respectively,

S” = eﬂyaﬂvvkapﬂ =" .vaw (95)
S2VH = e bS ko py = =SS, (96)
where we have already regarded that sV* = S ~ e’<’3) and

s = 0. Note that the above equations can also be obtained
very straightforwardly by differentiating

St =SV, sPVH = —*gmS, (97)
and that, thanks to S, 8" = 52, the magnitude of S* is
automatically constant along k*.

G. Special cases of motion

The massless spinning-particle problem turns out to be
quite constrained; it offers much less freedom for various
special performances than the massive case. Let us still
mention two cases which arise naturally.

®Note that the above-introduced spin S thus fixes the spin
bivector uniquely, in contrast to the null spin s# introduced by (67).

124036-11



0. SEMERAK

1. p* ~ k" circumstance

Notice, finally, that the tetrad (87) would be meaningless if
p" belonged to the eigenplane of S* (i.e., if it were some
spacelike combination of k# and /#), because then sAH =
—S"*p,=0and, consequently, S‘(,/; =0and p/| = S"”ZU =0.In
such a case, all the vectors k#, I#, s#, V¥, S¥, and p* would lie
in the spin-bivector eigenplane, and most of them would be
parallel transported along the representative worldline:
=0, "=0, #=0, V* =0, § =0. However, as
already noted below Eq. (74) and as best seen from
Eqg. (70), such a circumstance would imply p* = —p# Lk,
s0 M =0 and p* = —pPlgk*; i.e., both p* and p® would
also have to be lightlike and proportional to k#. According to
Eq. (79), this would require *C"mﬂk”l“kﬂ to be lightlike,
which definitely does not hold for generic motion in generic
space-time. Using the metric decomposition

g = —kFI* = kT 4+ mFm® 4+ mf'm® (98)

and regarding that the first two terms yield zero in the scalar
product below, one can rewrite the requirement as

0= <*Cﬂvkﬂkylkkl)gﬂa(*caﬁyékﬂlyka)

= 2(*C g K Ik (* C o s kP 1 %)

=20, 7, (99)

which is only satisfied for U; = 0, i.e., if (i) either the particle
moves in the direction (k*) of the double PND of a Petrov-
type-II space-time, (ii) or the space-time is of type N (and one
aligns with its quadruple PND the second vector /# of the NP
tetrad).

2. Stationary situation

The only basic scalar involved which may not be
constant is M. Consider now the case when it is constant,

M =0, but when M # 0, so p* is spacelike (if p* were
lightlike, it would immediately lead to p* ~ k*, which has
already been mentioned above). From (66) one infers—in

both cases—that §% pp = 0, which implies that p* belongs
to the eigenplane of S This eigenplane is spanned by k*
and *, so p* has to be given by their combination, say
p* = ak’ + MBI”. In particular, P/, must be proportional
to I, since it does not have any component proportional to
k* by definition. Actually, the latter also follows, given
M =0, from (92).” _

A related consequence of M = 0is of course p,p* = 0.
Writing p* as (79), inserting the metric (98), and using
ksp° =0 and

7Therefore, ifM = 0, then j)’i can be used, after normalization,
as the eé) vector of the interpretation tetrad equally as well as [*.
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e p” _ M

V2 V2
one can express the p,p" = 0 circumstance as a simple

condition for the type of space-time, because in terms of
the Weyl scalars computed in our NP tetrad, it reads

,p° =0 = m,p° = m,p° =

0= p,p* = —5*Cpepp"k* 1°kP
= —5*Cppap(mtin, + m*m,) p°k* 1°k?

Ms* i vja
= _W Coop(mt + i) k"1 1% (100)
:%(—i\lﬁ +i0)) = V2MsIm¥, (101)
where, in the last row, Egs. (82) and (83) have

been used. )
The coefficients of the p¥ = ak* + MpI" relation can
also be found in terms of the Weyl scalars: multiplying it by

lﬂ and 2M, we have, respectively,

L' = —a... = 25 Im¥,, (102)
MZ

1,pt = M= = —V2MRe¥,.  (103)

V. CONCLUDING REMARKS

We have continued the study of a spinning-particle
motion in the pole-dipole approximation. After treating,
in Ref. [1], the MPD equation of motion in an orthonormal
tetrad tied to the reference observer (denoted V#), i.e., in a
tetrad involving as a time leg the vector which fixes the spin
supplementary condition ($**V, = 0), we considered the
tetrad tied to the tangent of the worldline that represents the
particle’s history (denoted u*). Both possibilities lead to
usable formulations of the problem, with the latter (proposed
in the present paper) being slightly less efficient, because u*
cannot be freely chosen (in contrast to V#). In both cases, we
showed how the MPD equation decomposes if representing
the curvature terms in the language of Weyl-tensor scalars
obtained in the NP null tetrads naturally associated with the
orthonormal ones. In the case of decomposing the MPD
equation in the u#-based tetrad, we also showed how the
projections look when computing the Weyl scalars in a
different NP tetrad (different than that naturally associated
with the orthonormal u#-based tetrad), namely, the one tied
to a vector V* that can be freely chosen.

Expressing the MPD-equation components in terms of
the Weyl scalars, one can infer whether and how the
exercise simplifies in particular Petrov types, provided that
the NP tetrad can be aligned with the highest-multiplicity
PND. Such an alignment is of course more problematic for
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the u#-based tetrad (if one does not want to necessarily resort
to the $**u,, = 0 spin condition) which is much less flexible.
Another item was to see how the problem depends on the spin
supplementary condition. We saw, in particular, that for the
most advantageous option u#|| p#, the interpretation tetrads
we had suggested (as given intrinsically by the geometry of
the problem itself) were not available (two of their vectors
turned zero) and suggested simple alternatives (which on the
contrary do not work for the $#*u, = 0 condition).

The second part of the present paper was devoted to
spinning particles with zero rest mass. For them, the
worldlines are null geodesics, the spin vector is also
lightlike (and proportional to the worldline tangent), the
momentum is spacelike (or null in a certain limit, which,
however, only corresponds to a specific motion in type-II
fields), and the Mathisson-Pirani spin condition follows
necessarily. In spite of these important differences, a similar
analysis can be performed as in the massive case; in
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particular, a certain intrinsic interpretation tetrad can again
be proposed. The respective decomposition of the MPD
equation of motion is considerably simpler than in the
massive case; it contains only ¥; and ¥, scalars and not the
cosmological constant. Even (some of) these are eliminated
in type-Ill or type-N space-times if the second null
eigendirection /¥ of the spin bivector is identified with
the main PND of the background curvature (this is possible
thanks to the less restricting nature of the null Mathisson-
Pirani condition), and of course in the case when the
particle moves, at least at a given point, along a PND.
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