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Averaging in cosmology based on Cartan scalars

Petr Kašpar and Otakar Sv́ıtek

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in
Prague, V Holesovickach 2, Prague 8, 18000

E-mail: ota@matfyz.cz

Abstract. Averaging scheme based on the use of Cartan scalars is presented in the
cosmological context. The resulting method is applied to LTB cosmological model and the
correlation terms appearing due to averaging are physically explained.

1. Introduction
Homogeneous cosmology is a successful but highly simplified model. The real inhomogeneous
universe should be suitably averaged to obtain the corresponding homogeneous model. This is
a nontrivial task from two perspectives. First, Einstein equations are nonlinear leading to the
appearance of a correlation terms which can mimic various sources (e.g. dark energy). Second,
there is no established method for averaging tensors covariantly, this can be circumvented by
concentrating on scalars only.

Many approaches to averaging were developed in the past. The most popular approach to
averaging is Buchert’s method of averaging scalar part of Einstein equations [1], [2]. All of
Einstein equations are averaged in the case of Macroscopic Gravity [3], [4], at the same time
the Cartan structure equations are averaged. Isometric embedding of a 2-sphere into Euclidian
space is used for averaging by Korzyñski [5]. In [6] the Weitzenböck connection was used for
the definition of correct averaging of tensor fields. Coley [7] investigated averaging of scalar
invariants constructed from the Riemann tensor and finite number of its covariant derivatives.

Here we propose to use Cartan scalars to covariantly average both geometry and Einstein
equations. Originally, the theory of Cartan scalars was developed to solve the equivalence
problem for geometries [8], [9] and therefore it is suitable to unambiguously describe the given
spacetime and the process of averaging which is suitably trivial for scalars. We also average
the left hand side of Einstein equations (which can be expressed using Cartan scalars) and we
propose the procedure for obtaining the correlation term.

Usually, correlation term is defined as a difference between Einstein tensor defined via
macroscopic highly symmetric (”averaged”) metric and average of Einstein tensor computed
using unaveraged metric

Rµν (gαβ)− 1

2
R (gαβ) δµν + Cµν = 8πTµν (gαβ)

Cµν = 〈Rµν〉 −
1

2
〈R〉 δµν −Rµν (gαβ)− 1

2
R (gαβ) δµν .
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2. Cartan scalars
They are constructed as tetrad projections of Riemann tensor and the finite number of its
covariant derivatives and they completely (locally) specify the geometry of a manifold. Cartan
scalars are true scalars on the bundle of frames F (M) and for a fixed tetrad they behave as
scalars on the manifold as well. We can use them to obtain the dimension of an isometry group
and the corresponding algebra of Killing vectors. And as mentioned in introduction, they form
a classical approach to the equivalence problem.

First we review the Cartan-Karlhede approach for construction of Cartan scalars. LetM be
a n-dimensional differentiable manifold with a metric

g = ηijω
i ⊗ ωj ,

Frame ωi is fixed up to the generalized rotations

ωi = ωiν(xµ, ξΥ)dxν ,

where ξΥ denote the coordinates of a Lorentz group G. Bundle of frames F (M) is locally
isomorphic to U ×G, U ⊂ M and we introduce enlarged exterior derivative d = dx + dξ. This
gives Cartan structure equeations

dωi = ωj ∧ ωi j ,

dωi j = −ωik ∧ ωkj +
1

2
Ri jklω

k ∧ ωl,

with a condition ηikω
k
j + ηjkω

k
i = 0.

Generation of covariant derivatives of the Riemann tensor is performed by successive
application of d

dRijkl = Rmjklω
m
i +Rimklω

m
j +Rijmlω

m
k +Rijkmω

m
l +Rijkl;mω

m,

dRijkl;n = Rmjkl;nω
m
i +Rimkl;nω

m
i + ...+Rijkl;nmω

m,

.

.

Now, Rp denotes the set
{
Rijkm, Rijkm;n1 , ..., Rijkm;n1...np

}
where p is such that Rp+1 contains

no additional functionally independent element (over F (M), with dependence defined using
df ∼ dg). The set Rp characterizes the geometry up to isometry and the elements are Cartan
scalars. Rp has to satisfy (nonlinear) constraints so we can form a smaller subset R′p that can
be used to generate the full set.

3. Averaging
Geometry of M is now characterized by the set Rp of scalars which can be naturally averaged
over a given domain D without any problems related to covariant tensor averaging

〈f〉 (x) =
1

VD

∫
D

f
(
x+ x′

)
dNx′.

New geometry 〈M〉 describes a manifold identical as a set but with averaged geometry given
by averaged Cartan scalars. However, naively averaging Rp would result in a set potentially
violating nonlinear constraints and therefore not generating viable geometry. To overcome this
we will use the restricted set R′p to obtain a new set 〈R′p〉 and then we generate the whole set
〈Rp〉 from 〈R′p〉 using constraints. Then there exists a metric tensor 〈gµν〉 (or equivalently

〈
ωi
〉
)
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giving the same Cartan scalars. Such metric may be constructed using the averaged Cartan
scalars.

Averaging generally leads to decrease in the number of independent functions in 〈Rp〉,
enlargement of isotropy group of the new spacetime 〈M〉 and a new algebra of Killing vectors.

Left hand side of Einstein equations can be projected on tetrad of the Cartan-Karlhede
algorithm to obtain expression in Cartan scalars enabling straightforward averaging.

We have two roads to averaging with Cartan scalars. Direct method described above - which
is very difficult. And indirect method which is performed by comparing averaged scalars with
scalars of known highly symmetric spacetimes (FRLW etc.), possibly getting conditions for their
equivalence and correlation tensor

Cµν = 〈Rµν〉 −
1

2
〈R〉 δµν −Rµν (gαβ)− 1

2
R (gαβ) δµν

and note that the conserved stress-energy tensor has the following form

(ef)Tµν = Tµν (gαβ)− Cµν . (1)

This technique passes the basic test of correct averaging: constant curvature spacetimes are
preserved.

4. Applications - LTB metric
Lemâıtre-Tolman-Bondi (LTB) metric is an exact spherically symmetric solution with
inhomogeneous dust Tµν = ρuµuν . The line element reads

ds2 = −dt2 +
(R′(t, r))2

1 + 2E(r)
dr2 +R2(t, r)(dθ2 + sin2(θ)dφ2).

Einstein equations reduce to the following

R2
,t = 2E +

2M(r)

R
+

Λ

3
R2, 4πρ =

M ′

R′R2
,

where function E(r) determines a curvature of spatial section t = const. and M(r) is the
gravitational mass contained within the comoving radius r. The first of the above equations can
be integrated to obtain

R∫
0

dR̃√
2E + 2M

R̃
+ 1

3ΛR̃2
= t− tB(r),

where tB(r) is the bang time function meaning the Big Bang is not simultaneous in all points.

4.1. First model
We will consider E = 0 and assume the ansatz

R (t, r) = A(t, r) expψ(t, r),

where ψ(t, r) is a quickly varying function, and ψ << ψ,x ∼ ψ,xy ∼ ψ,xyz, where x, y and z
denote time or radial coordinate; additionally ψ,x >> A(t, r) and its derivatives. We consider
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this tetrad

ω0 =
1√
2

(dt+R,rdr),

ω1 =
1√
2

(dt−R,rdr),

ω2 =
1√
2

(Rdθ + iR sin θdφ),

ω3 =
1√
2

(Rdθ − iR sin θdφ).

After following the above described prescription for averaging we obtain following nontrivial
zero-order Cartan scalars

ψ2 = −1
6(R,r)

−1R,ttr + 1
6R
−1R,t(R,r)

−1R,tr + 1
6R
−1R,tt − 1

6R
−2(R,t)

2,

φ00′ = φ22′ = 1
2R
−1R,t(R,r)

−1R,tr − 1
2R
−1R,tt,

φ11′ = −1
4(R,r)

−1R,ttr + 1
4R
−2(R,t)

2,

Λ = 1
12(R,r)

−1R,ttr + 1
6R
−1R,t(R,r)

−1R,tr + 1
6R
−1R,tt + 1

12R
−2(R,t)

2.

In the leading order all averages are equal to zero except

〈Λ〉 =
1

2
〈ψ2

,t〉. (2)

First order scalars are (in the leading order) all equal to zero. Comparison with known solutions
evidently leads to de Sitter space, correlation term is in the form of a positive cosmological
constant.

4.2. Onion model
We consider approximate LTB solution by Biswas, Mansouri and Notari - a spacetime with

radial shells of overdense and underdense regions. It is given by E(r) > 0, a(t, r) := R(t,r)
r with

a(t, r) :=

(
6

π

)1/3

t2/3(1 + Lt2/3
1

r
sin2 πr)

and can be interpreted as a perturbation of the flat dust FRW if we consider L as a small
parameter.

Cartan scalar Λ reads

Λ(r, t, L) =
1

12

1

a2(a+ a,r)r
[3a2a,tt + a2ra,ttr + 3a(a,t)

2

+2a,ttaa,rr + 2a,traa,tr + (a,t)
2ra,r + a,rrK + 3Ka+ aK,r].

Function K(r, L) is related to curvature function E(r) by

K(r, L) = −2E(r)

r2
=
−L
πr

sinπr sinπr (3)

Here we perform spatial averaging only and expand in the powers of L (coefficients A,B,C,D
are given by averaging)

〈Λ〉 ≈ A

t2
+

B

t4/3
L+

C

t2/3
L2 +

D

t0
L3

Individual terms as interpreted with respect to Einstein-de Sitter model have the following
meaning (beyond first term they represent correlation terms):
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(i) standard dust

(ii) behaves like curvature

(iii) causes acceleration equivalent to p = −2
3ρ

(iv) cosmological constant

Other zero order Cartan scalars are at most linear in L. However this means that the
interpretation given above should be treated with caution beyond second term.

5. Conclusion
We have seen that using Cartan scalars for averaging provides conceptually straightforward
method. However, it presents challenging technical (for direct method) and interpretation
problems (for indirect one). The correlation term is just a cosmological constant in the simple
model. However it is rather complex in the more realistic Onion model.
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