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We report a new method to compute the Interatomic Coulombic Decay (ICD) widths for large clusters
which relies on the combination of the projection-operator formalism of scattering theory and the
diatomics-in-molecules approach. The total and partial ICD widths of a cluster are computed from
the energies and coupling matrix elements of the atomic and diatomic fragments of the system. The
method is applied to the helium trimer and the results are compared to fully ab initio widths. A
good agreement between the two sets of data is shown. Limitations of the present method are also
discussed. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942483]

I. INTRODUCTION

Resonance phenomena appear in many physical, chem-
ical, and biological processes,1 for example, in atom-
molecule or electron-molecule collisions, photoionization, and
autoionization events. Even though resonance states have been
investigated for decades,2 computing their properties is still a
challenging task.

Among the resonance phenomena, the Interatomic
Coulombic Decay (ICD) effect has attracted considerable
attention in the last decade. ICD is an ultrafast non-radiative
electronic decay process for excited atoms or molecules
embedded in a chemical environment, like in a cluster. Via
this process, the excited species can get rid of the excess
energy, which is transferred to one of the neighbors, and
ionizes it. The ICD process was predicted in the late 1990s by
Cederbaum et al.3 It was experimentally demonstrated about
10 years ago on the example of neon clusters by Marburger
et al.4 and Jahnke et al.5 Since then, it was shown that ICD is
a general process, taking place in a large variety of systems,
like hydrogen bonded6,7 or van der Waals clusters.8–11 It has
been observed mainly after photoionization or photoexcitation
but has also been experimentally demonstrated after an
electron12 and ion impact.13–15 ICD was first predicted and
observed after ionization in the inner-valence shell, but it
was also demonstrated (i) after two-electron processes like
simultaneous ionization-excitation16,17 and double ionization
or excitation18,19 and (ii) in cascades after Auger20–23 and
resonant Auger.24,25

The energy width of a resonant state is an important
property to characterize the resonance. General quantum
mechanical equations for computing the decay widths are
known but are only applicable to small systems. The main
difficulty stems from the fact that one has to account both
for the many-body and for the scattering aspects of the decay
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phenomenon. Several computational approaches have been
developed and used to calculate ICD widths.26–29 Among
them, methods based on Complex Absorbing Potential (CAP)
provide only total widths. Partial widths can be obtained
using Wigner-Weisskopf method. However, this approach is
based on the lowest-order perturbation theory and thus gives
only estimates for the widths. To date, only the Fano- Al-
gebraic Diagrammatic Construction (Fano-ADC) method30–32

provides reliable partial ICD widths which are necessary
for full theoretical description of the process. This ab
initio method is, however, computationally expensive and
not applicable to really large systems.

We report here on a simpler approach based on
the diatomics-in-molecules (DIM) technique33 for the
computations of the ICD widths in rare-gas clusters. In the
standard DIM approach, the Hamiltonian matrix elements of
a system are evaluated using the energies of the atoms and
all pairs of atoms forming the system. The DIM Hamiltonian
matrix is generally small and scales linearly with the number
of atoms within the system. Furthermore, it requires only
accurate energies of atoms and diatomic molecules which can
nowadays be obtained with advanced and reliable quantum
chemistry methods. DIM methods have been successfully
employed for describing small molecules34,35 as well as pure
and doped rare-gas clusters.36–39 Here, in the spirit of the
DIM, we propose to compute the ICD widths of rare-gas
clusters from the widths of each pair of atoms forming the
cluster.

In Section II, we give the general formulas for the
computation of resonance widths from the projection-operator
formalism. The standard DIM approach for the calculation of
potential energy surfaces is then presented. The DIM-based
method proposed here for the computation of the ICD widths
is finally reported. In Section III, we apply this method to
the helium trimer and derive explicit DIM formulas for this
system. ICD widths from the DIM approach are compared to
fully ab initio (Fano-ADC) results.

0021-9606/2016/144(8)/084111/7/$30.00 144, 084111-1 © 2016 AIP Publishing LLC
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II. ICD WIDTHS IN THE PROJECTION-OPERATOR-DIM
FRAMEWORK

The general formulas for the calculation of the ICD
widths are derived from the theory of resonances of Fano
and Feshbach.40,41 The wavefunctions and coupling matrix
elements involved in such calculations are then computed
within the DIM approach. The main advantage of the latter
is that only energies and coupling matrix elements of the
atomic and diatomic fragments are needed. Computations of
resonance widths in the case of electron-molecule collisions
have been performed with such combined approach (so-
called generalized diatomic-in-molecules approach in this
context).43,44 In the present study, we report a similar approach
applied to the calculations of ICD widths.

A. The projection-operator approach

A general description of the Fano-Feshbach theory of
resonances within the projection-operator approach is given in
Ref. 42. We summarize here the results for a single resonance
state. The generalization for a non-interacting manifold of
resonance states is straightforward. The resonance is described
by a discrete state |Ψd⟩, represented by a square integrable
wave function, with the energy expectation value given
by

Ed = ⟨Ψd |Ĥe|Ψd⟩, (1)

where Ĥe is the full electronic Hamiltonian. This discrete state
is embedded into and coupled to a continuum of final states,
which can be written as |Φ f k⟩ = |Ψf ⟩|k⟩. Here, the decay
channel |Ψf ⟩ is the eigenstate of the system after the decay
with energy E f and |k⟩ is a single-electron continuum state.
Neglecting the inter-channel coupling, the coupling between
the decaying state |Ψd⟩ and the final state |Φ f k⟩ is

Vd, f k = ⟨Ψd |Ĥe|Φ f k⟩. (2)

The partial ICD width for a given channel f is then given by

Γf = 2π |Vd, f k |2δ �Eres − k2/2 − E f

�
, (3)

where Eres = Ed + ∆(Eres) stands for the real energy of the
resonance; ∆(E) is the so-called level shift. The value of k is
fully determined by the knowledge of Ed and E f . The k index
is thus dropped in the following. The total width is the sum of
the partial ones over all decay channels,

Γtot =

f

Γf . (4)

B. The diatomics-in-molecules approach

The states |Ψd⟩, |Ψf ⟩, and thus Vd, f are computed within
the DIM framework. In this approach, the Hamiltonian of
a N-atomic system is subdivided into atomic and diatomic
parts,

Ĥe =

N−1
α=1

N
β>α

Ĥαβ − (N − 2)
N

α=1

Ĥα. (5)

Each fragment part Ĥα contains all kinetic energy operators
and intra-atomic potential energy terms in Ĥe which depend
only on the coordinates of the electrons assigned originally to
atom α. The operator Ĥαβ contains all kinetic energy terms as
well as intra-atomic and inter-atomic potential energy terms
associated to the diatomic molecule αβ.

The DIM basis set is then constructed as antisymmetrized
and spin-adapted products of the atomic eigenfunctions | χαm⟩
with energy eαm of Ĥα,

|Ψanti
m ⟩ = Â|Ψm⟩ = Âŝ

N
n=1

| χn
m⟩. (6)

The operator Â ensures the antisymmetrization and ŝ creates
spin-adapted linear combination of the atomic eigenfunction
products. In order to evaluate the Hamiltonian matrix elements
in the DIM basis set, the diatomic Hamiltonians Ĥαβ are
expressed via their eigenvalues {ϵαβ

i } and eigenfunctions
{|ψαβ

i ⟩},

Ĥαβ =

i

|ψαβ
i ⟩ϵαβ

i ⟨ψαβ
i |. (7)

Noting that Â and Ĥαβ commute, the operation of Ĥαβ on
|Ψanti

m ⟩ is simply

Ĥαβ |Ψanti
m ⟩ = ÂĤαβ |Ψm⟩ = Â


i

|Ψαβ
i ⟩ϵαβ

i ⟨Ψαβ
i |Ψm⟩, (8)

where |Ψαβ
i ⟩ is the spin-adapted product of the diatomic

wavefunction |ψαβ
i ⟩ and the wavefunctions of electrons that

are not included in Ĥαβ,

|Ψαβ
i ⟩ = ŝ|ψαβ

i ⟩


n,α,β

| χn
i ⟩. (9)

The overlap element ⟨Ψαβ
i |Ψm⟩ = Bαβ

im can generally be
determined by symmetry consideration.34,36 Using Eqs. (5),
(6), and (8), the DIM Hamiltonian in the matrix form is

HDIM =

α


β

Bαβ†ϵαβBαβ − (N − 2)

α

eα, (10)

where ϵαβ and eα are diagonal matrices built with the diatomic
and atomic fragment energies, respectively, and Bαβ is the
overlap matrix. The electronic states of the system are then
obtained by diagonalization of the DIM Hamiltonian matrix.

C. ICD widths in the DIM approach

We consider here a cluster constituted of N rare-gas
(Rg) atoms in which ICD is triggered by ionization. The
system is left in one or a manifold of excited states
which lie above the double ionization threshold. This is
typically achieved by ionization in the inner-valence shell or
simultaneous ionization-excitation of outer-valence electrons.
This is summarized as

RgN

Ionization−→ (Rg+∗−RgN−1) ICD−→ (Rg+−Rg+−RgN−2), (11)

where Rg+∗ illustrates that the ion is in an electronic excited
state. The last term indicates that the cluster ends with two
charges which may lead to two atomic ions or to larger ionic
fragments.
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The manifold of non-interacting resonant states |Ψd⟩ and
the energies are obtained in this approach by diagonalizing the
DIM Hamiltonian (Eq. (10)) which is built for Rg+∗−RgN−1
system. We thus have

Ed = UHd
DIMU†, (12)

where U and Ed contain the eigenvectors and eigenvalues,
respectively. The matrix Hd

DIM is constructed as in Eq. (10)
with the energies of the (Rg−Rg) and (Rg+∗−Rg) diatomic
and atomic fragments.

After the decay, the system is doubly ionized. The
diagonalization of the corresponding matrix provides the states
|Ψf ⟩ (≡ W ) and the associated energies (≡ E f ),

E f = W H f
DIMW †. (13)

The matrix H f
DIM is built using the energies of the neutral

(Rg−Rg), singly (Rg+−Rg), and doubly (Rg+−Rg+) ionized
states of the diatomic and atomic fragments. The matrices
U and W provide the |Ψd⟩ and |Ψf ⟩ states within the
DIM basis set, respectively. The coupling matrix between
these states in the DIM approach has a similar form as
Eq. (10),43

V DIM
d, f
= U




α


β

Bαβ†Vαβ

d, f
Cαβ − (N − 2)


α

Vα

d, f


W †,

(14)

where Vαβ

d, f
and Vα

d, f
are constructed with the partial widths

of the αβ diatomic and α atomic fragments (Γf , see
Eqs. (2) and (3)). The matrices Bαβ and Cαβ are the
overlap matrices (as in Eq. (10)) between the DIM basis
functions (Eq. (6)) and the diatomic fragment wavefunc-
tions (Eq. (9)) for the decaying and final states, respec-
tively.

Within the DIM approach, it is thus only necessary
to compute the couplings between the decaying and the
continuum final states (Eq. (2)) of all atoms and all pairs
of atoms forming the cluster. It reduces to the calculations
of widths of atomic and diatomic systems which can be
handled by ab initio methods already available as for instance
the Fano-ADC approach. It should be mentioned that decay
widths of large heteroatomic clusters have been estimated
in a pairwise additivity approximation:45,46 the total width
is given by the sum of the widths of all individual pairs
forming the cluster. The DIM approach goes beyond this
approximation since delocalization of the charges in the
decaying and final states is taken into account. Furthermore,
partial widths can also be computed within the DIM
method.

III. APPLICATION OF THE DIM APPROACH
TO ICD IN He3

A. General formulas

General formulas for the application of the DIM to
compute the PES of homogeneous noble gas ionic clusters

are given in Ref. 36. In the following, we report first the
DIM matrices adapted from these formulas for the states of
helium trimers relevant for the ICD process, namely, ionized-
excited into the 2p shell (He+∗(2p)−He2) and doubly ionized
(He+(1s)−He+(1s)−He).

The DIM basis set for the ionized-excited states ({|2Ψd
m⟩})

used here are defined as follows:

|2Ψd
1x⟩ = Â| χ1

He+(2px)⟩| χ2
He(1s2)⟩| χ3

He(1s2)⟩,
|2Ψd

2x⟩ = Â| χ1
He(1s2)⟩| χ2

He+(2px)⟩| χ3
He(1s2)⟩,

|2Ψd
3x⟩ = Â| χ1

He(1s2)⟩| χ2
He(1s2)⟩| χ3

He+(2px)⟩,

where | χi
He+(2px)⟩ and | χi

He(1s2)⟩ denote the atomic state
He+(2px/

2Px) and He(1s2/1S) of the atom i (Fig. 1),
respectively. There are 6 similar DIM functions (3 for the
y and z directions) included in the calculations. The DIM
basis set for the singlet final states ({|1Ψ f

m⟩}) is given
as

|1Ψ f
1 ⟩ = Â(| χ1

He+(1s)⟩| χ2
He+(1s)⟩| χ3

He(1s2)⟩

− | χ1
He+(1s)⟩| χ2

He+(1s)⟩| χ3
He(1s2)⟩)/

√
2,

|1Ψ f
2 ⟩ = Â(| χ1

He+(1s)⟩| χ2
He(1s2)⟩| χ3

He+(1s)⟩

− | χ1
He+(1s)⟩| χ2

He(1s2)⟩| χ3
He+(1s)⟩)/

√
2,

|1Ψ f
3 ⟩ = Â(| χ1

He(1s2)⟩| χ2
He+(1s)⟩| χ3

He+(1s)⟩

− | χ1
He(1s2)⟩| χ2

He+(1s)⟩| χ3
He+(1s)⟩)/

√
2,

where the overline indicates a spin down (β). The expression
for the triplet final states is given by the corresponding spin
function.

For convenience, we introduce the following notation
for the helium diatomic fragment energies used in this
work:

FIG. 1. Geometry of the trimer: the atoms lie on the xz plane. The distance
between the atoms A and B is kept fixed at R12= 4 Å.
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Si j = EHe2,(1Σ+g )(Ri j),
Ci j = EHe++2 ,(1Σ+g )(Ri j),
C̄i j = EHe++2 ,(3Σ+u)(Ri j),

Q̃i j =
1
2
(EHe+2,(2Σ+u)(Ri j) + EHe+2,(2Σ+g )(Ri j)),

J̃i j =
1
2
(EHe+2,(2Σ+u)(Ri j) − EHe+2,(2Σ+g )(Ri j)),

Qi j =
1
2
(EHe+∗2 ,(2Σ+u)(Ri j) + EHe+∗2 ,(2Σ+g )(Ri j)),

Ji j =
1
2
(EHe+∗2 ,(2Σ+u)(Ri j) − EHe+∗2 ,(2Σ+g )(Ri j)),

Q̄i j =
1
2
(EHe+∗2 ,(2Πg )(Ri j) + EHe+∗2 ,(2Πu)(Ri j)),

J̄i j =
1
2
(EHe+∗2 ,(2Πg )(Ri j) − EHe+∗2 ,(2Πu)(Ri j)).

Several analytical expressions for the ground electronic
state of neutral He2 (S) have been proposed.47–49 However,
the ICD widths obtained within the DIM approach are
nearly independent of the neutral potential energy curve.
The diatomic fragment energies used for the lowest ionized
states (G̃ and Ũ) are obtained from Ref. 50 and those of
the ionized-excited states (G, U, Ḡ, and Ū) are taken from
Ref. 51. For the potential of the doubly ionized dimer (C and
C̄), we used a purely Coulombic potential, which is correct in
the interatomic distance range considered here.51

The trimers are described in the Cs point group and the
atoms are chosen to lie in the xz-plane as shown in Fig. 1.
The vector going from atom i to atom j is denoted R⃗i j. For
the decaying states, the DIM matrices have block structure of
6 × 6 A′ and 3 × 3 A′′ matrices,

HDIM
d(2A′) =

*...........
,

q1 + q2 + S12 p1 + p2 j2 k2 j1 k1

p1 + p2 q̄1 + q̄2 + S12 k2 j̄2 k1 j̄1

j2 k2 Q12 + q2 + S13 p2 J12 0
k2 j̄2 p2 Q̄12 + q̄2 + S13 0 J̄12

j1 k1 J12 0 Q12 + q1 + S23 p1

k1 j̄1 0 J̄12 p1 Q̄12 + q̄1 + S23

+///////////
-

(15)

and

HDIM
d(2A′′) =

*...
,

Q̄13 + Q̄23 + S12 J̄23 J̄13

J̄23 Q̄12 + Q̄23 + S13 J̄12

J̄13 J̄12 Q̄12 + Q̄13 + S23

+///
-

. (16)

The general form of the matrices presented above is the same as in Ref. 36. However, the diatomic fragments energies
that enter the matrix elements are that of the ionized-excited dimer states. The singlet and triplet final states can be considered
separately. The corresponding DIM matrices are 3 × 3 A′ matrices. For the singlet states, the matrix reads

HDIM
f (1A′) =

*...
,

Q̃13 + Q̃23 + C12 J̃23 J̃13

J̃23 Q̃12 + Q̃23 + C13 J̃12

J̃13 J̃12 Q̃12 + Q̃13 + C23

+///
-

. (17)

The matrix corresponding to the triplet states is obtained by
replacing Ci j by C̄i j in the above matrix. The symbols used in
the matrices are defined as follows:

qi = Q̄i3 sin2 βi +Qi3 cos2 βi,

q̄i = Qi3 sin2 βi + Q̄i3 cos2 βi,

pi = (Qi3 − Q̄i3) sin βi cos βi,
ki = (Ji3 − J̄i3) sin βi cos βi,
ji = J̄i3 sin2 βi + Ji3 cos2 βi,

j̄i = Ji3 sin2 βi + J̄i3 cos2 βi,

where βi defines the angle between R⃗i3 and R⃗12 (see Fig. 1).
The atomic energies are not included in the above

matrices. They lead to a global energy shift and do not
play a role in the calculations of the widths: if the energy
of the neutral cluster is set to zero, the energy shift of the

decaying states is E(He+(n = 2)) = 65.4 eV and that of the
final states is 2E(He+(1s)) = 49.1 eV.

The diatomic coupling matrix elements are taken from
Ref. 51 and are used as follows:

Λ
S+
i j =

1
2
√
π
(

Γ

2Σ+g→ 1Σ+g (Ri j) +

Γ

2Σ+u→ 1Σ+g (Ri j)),

Λ̄
S+
i j =

1
2
√
π
(

Γ

2Πg→ 1Σ+g (Ri j) +

Γ

2Πu→ 1Σ+g (Ri j)),

Λ
S−
i j =

1
2
√
π
(−

Γ

2Σ+g→ 1Σ+g (Ri j) +

Γ

2Σ+u→ 1Σ+g (Ri j)),

Λ̄
S−
i j =

1
2
√
π
(

Γ

2Πg→ 1Σ+g (Ri j) −

Γ

2Πu→ 1Σ+g (Ri j)),

where the superscript S denotes singlet final states. Similar
matrix elements are defined for the triplet final states.
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It should be noted that intra-atomic decay channels are
energetically closed in helium clusters. The atomic coupling

matrix elements are thus set to zero. The DIM coupling
matrices for the singlet final states are

V DIM
2A′,1A′

= U2A′

*...........
,

0 Λ
S+
13 cos β1 − Λ̄S+

13 sin β1 Λ
S−
23 cos β2 − Λ̄S−

23 sin β2

0 Λ
S+
13 sin β1 + Λ̄

S+
13 cos β1 Λ

S−
23 sin β2 + Λ̄

S−
23 cos β2

Λ
S−
12 0 Λ

S+
23 cos β2 − Λ̄S+

23 sin β2

Λ̄
S−
12 0 Λ

S+
23 sin β2 + Λ̄

S+
23 cos β2

Λ
S+
12 Λ

S−
13 cos β1 − Λ̄S−

13 sin β1 0
Λ̄

S+
12 Λ

S−
13 sin β1 + Λ̄

S−
13 cos β1 0

+///////////
-

W1A′
† (18)

and

V DIM
2A′′,1A′

= U2A′′

*...
,

0 Λ̄
S−
13 Λ̄

S+
23

Λ̄
S+
12 0 Λ̄

S−
23

Λ̄
S−
12 Λ̄

S+
13 0

+///
-

W1A′
†. (19)

The DIM coupling matrices for the triplet final states
are obtained by replacing in the above matrices the diatomic
fragment coupling matrix elements by that corresponding to
the triplet.

B. Total decay widths

The three helium atoms in the trimer are weakly bound
such that the average interatomic distance is about 10.4 Å 52,53

and there is no preferential equilibrium geometry.53,54 In this
study, we have investigated the trimer in equilateral and
isosceles geometries. As shown in Fig. 1, the three atoms lie
on the xz plane and the distance between the two atoms 1 and
2 is kept fixed at R12 = 4 Å. The distance between the center
of mass of the two fixed atoms and the third atom is denoted
Q.

The electronic states of the trimer are labeled according
to their spatial symmetry classification in the Cs point
group (A′ or A′′) and their spin multiplicity (doublet
for the decaying states and singlet/triplet for the final
states) and according also according to the symmetry
of the asymptotic atomic and diatomic fragments. For
example, 2A′(1Σ+g/2Px) is used for the decaying state that
converges at large Q to He2(1Σ+g ) and He+∗(2Px). The label
2A′(2Πu/

1S) is employed for the decaying state corresponding
to He+∗2 (2Πu)–He(1s2/1S). The final state converging to singlet
He+2(2Σ+g ) and He+(2S) is labeled 1A′(2Σ+g/2S) and that converg-
ing to He2+

2 (1Σ+g )–He(1s2/1S) is named 1A′(1Σ+g/1S), for
instance.

The total decay widths for each decaying electronic state
at an equilateral geometry (R12 = R13 = R23 = 4 Å) are shown
in Table I. Details on the Fano-ADC calculations and a
thorough discussion of decay widths in helium trimer as well
as a comparison with helium dimer data can be found in
Ref. 55. The widths obtained from the DIM calculations differ
from the ab initio Fano-ADC results by at most 20%. Owing

to the complexity to evaluate accurate resonance widths, such
agreement is satisfactory.

The dependence of the total decay widths with respect to
Q (see Fig. 1) is shown and compared to the Fano-ADC results
in Figs. 2 and 3. Results for the A′ states (Fig. 2) of the DIM
approach compare quantitatively with that of the Fano-ADC
calculations for Q above 2-3 Å (i.e., R = 2.8-3.6 Å). For
smaller distances, the agreement is less satisfactory. This is
due to the limited DIM basis set used and the stronger 3-body

TABLE I. Total decay widths at equilateral geometry (R12=R13=R23

= 4 Å) obtained with the DIM and Fano-ADC approaches.

ΓDIM (10−5 a.u.) ΓFano−ADC (10−5 a.u.)

2A′(1Σ+g/2Px) 1.21 1.46
2A′(1Σ+g/2Pz) 3.09 2.70
2A′(2Σ+g/1S) 2.89 2.67
2A′(2Σ+u/1S) 2.89 2.74
2A′(2Πg/

1S) 1.29 1.49
2A′(2Πu/

1S) 1.29 1.46

2A′′ (1Σ+g/
2Py) 0.83 0.85

2A′′ (2Πg/
1S) 0.80 0.83

2A′′ (2Πu/
1S) 0.90 0.89

FIG. 2. Total widths for the A′ decaying states. DIM and Fano-ADC results
are shown in dots and in lines, respectively.
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FIG. 3. Total widths for the A′′ decaying states. DIM and Fano-ADC results
are shown in dots and in lines, respectively.

effects, expected at short interatomic distances, not accounted
for by the DIM approach. However, the DIM results agree
well in the relevant interatomic distance range since the mean
He–He distance in clusters goes from 10.4 Å (trimer) to
3.6 Å (superfluid liquid helium).39 The DIM calculations
reproduces well the widths for the A′′ states (Fig. 3), even
at short interatomic distances. The corresponding orbitals are
perpendicular to the trimer plane and therefore overlap less
than that for the A′ states, which explains the better agreement.

C. Partial decay widths and limit of the DIM approach

We have shown that the DIM approach can be successfully
employed to compute accurate total decay widths. In order to
give a full description of ICD, the partial widths to each of the
singlet and triplet final states must be well reproduced within
the DIM approach. The DIM partial widths to these states
for two A′′ decaying states are compared to the Fano-ADC
results in Figs. 4 and 5.

FIG. 4. Partial widths to the singlet final states for the A′′(1Σ+g/2Py) decaying
state. DIM and Fano-ADC results are shown in dots and in lines, respectively.
The sharp peaks around Q= 3.5 Å are attributed to strong mixing between
the decay channels near equilateral geometry.55

FIG. 5. Partial widths to the singlet final states for the A′′(2Πg/
1S) decaying

state. DIM and Fano-ADC results are shown in dots and in lines, respectively.
The sharp peaks around Q= 3.5 Å are attributed to strong mixing between
the decay channels near equilateral geometry.55

The partial widths for the A′′ (1Σ+g/
2Py) decaying state

are well reproduced by the DIM approach. The partial
widths corresponding to the deexcitation of the He+(2Py)
and ionization of He2 show a 1/R6 behavior as expected
by the virtual photon exchange mechanism.16,56 The width
corresponding to the double ionization of the He2 is at
least 2 order of magnitude smaller. This channel corresponds
to Electron-Transfer-Mediated-Decay (ETMD)57,58 in which
one electron from He2 is transferred to He+ and a second
electron from He2 is ionized. This process is efficient only at
short interatomic distances for which significant spatial orbital
overlap is possible.

For the A′′(2Πg/
1S) decaying state, the DIM approach

reproduces well the asymptotic widths for the dominant
channel (i.e., two-site double ionization of the He2) but fails for
the weakest ones (i.e., ionization of the third helium atom). For
the 2A′′(2Πg/

1S) → 1A′(2Σ+u/2S) transition, the DIM underesti-
mates the asymptotic widths by a factor of 2. Furthermore,
the ab initio widths for the 2A′′(2Πg/

1S) → 1A′(2Σ+g/2S) transi-
tion exhibit a 1/R10 behavior demonstrating a dipole-forbidden
transition. Indeed, as shown in Ref. 55, the decay to
these channels is asymptotically mediated by a quadrupole-
quadrupole interaction. In this limit, the deexcitation of the
dimer from 2Πg to 2Σ+g is dipole-forbidden. This is a 3-body
effect that is not accounted for in the DIM approach and
represents a limit to the calculations of partial ICD widths
with the DIM method. It should, however, be noted that these
channels are always weak and do not significantly contribute
to the decay. Same conclusions are drawn for the partial
widths of the last A′′ state and that of the A′ states (not
shown). The DIM approach can therefore be used to describe
ICD in rare-gas clusters.

IV. CONCLUSION

A method combining the projection-operator approach
of resonant scattering theory and the diatomics-in-molecules
technique is reported. This combined approach is applied to the
helium trimer for which working formulas are given. The total
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ICD widths and the dominant partial widths obtained from
this approach compare quantitatively to the full ab initio Fano-
ADC results over a large set of geometries. Disagreements
between some weak channels are explained by strong three-
body effects which are not accounted for in the DIM method.
The present approach has fairly low computational costs
since the DIM matrices for the decaying and final states are
small even for systems having hundreds of atoms. It therefore
constitutes an efficient tool for studying polyatomic clusters
and paves the way to a complete description of ICD in large
systems.
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