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Abstract. Recently developed method of regularized analytic continuation (RAC) is applied to determi-
nation of the 2Πg resonance of acetylene anion. The method is based on continuation of the electron
affinities calculated for the anion in presence of an external perturbation field. Its independence on the
correlation treatment of the many-electron system allows application of accurate coupled-clusters methods
for electronic structure calculations utilized in determination of the resonance position and width.

1 Introduction

The knowledge of energies and lifetimes of electronically
metastable anions plays important role in a wide variety
of applications in nanotechnology [1], cancer research [2],
astrochemistry [3], etc. These metastable anions are also
called resonances and possess a higher energy than the
ground state of the corresponding parent neutral system.
Their energy is a complex quantity E = ER − iΓ/2, with
the imaginary part related to the lifetime of the resonance
and the real part determining the resonance position ER.
The full treatment of these states lies within the realm of
the electron-molecule scattering theory. In general, contin-
uum states cannot be addressed using conventional elec-
tronic structure techniques. However, over the last four
decades, a considerable number of methods was proposed
for extraction of the resonant parameters by application of
quantum chemistry methods for bound and excited states.
The underlying idea of these methods is an implemen-
tation of an additional confinement to the studied nega-
tive ion system. Role of the confinement is to dampen the
asymptotic part of the resonant wave function while the
short-range part of the wave function remains preferably
unaltered. Such procedure transfers the decaying contin-
uum states into the bound states that are amenable to
treatment by the electronic structure techniques.

Multiple variants of these methods differ in imple-
mentation of the confinement. The confinement can be
enforced by an additional complex absorbing potential
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(CAP) [4–6], by a rotation of the coordinate into the com-
plex plane (complex scaling methods) [7,8], or even by a
scaling of the exponents of the Gaussian basis [9] thereby
scaling the space available for the resonant wave function.

The method employed in the present study was ori-
ginally developed in the field of nuclear physics as the
method of analytic continuation in coupling constant
(ACCC) [10–12]. Its modifications for electronic structure
applications have been applied with a considerable suc-
cess to molecular anions of nitrogen [13], ethylene [14],
carbon dioxide [15], and even to some of the DNA build-
ing blocks [16]. In contrast to the confinement methods,
the ACCC method is based on a short-range modification
of the Hamiltonian by a real attractive potential V

H(λ) = H + λV. (1)

Such modification pulls the resonant state from the con-
tinuum to the bound space. These bound states of the
anions and the corresponding positive electron affinities
E(λ) = κ2(λ) can be computed by commercially avail-
able quantum chemical programs. The idea of the ACCC
method is based on the analytic continuation of the func-
tion κ(λ) (or more precisely of its inverse function λ(κ))
from the bound-state domain of the positive affinities E(λ)
back to the continuum where κ(λ) becomes complex and
λ → 0.

Acetylene, the smallest unsaturated hydrocarbon mo-
lecule, is isoelectronic with N2 and may serve as one of the
simplest prototypes to study π∗ shape resonances often
present in larger polyatomic systems. It has been, together
with other hydrocarbons, employed in plasma processing
in nanotechnology. Acetylene plasmas are used for prepa-
ration of diamond-like carbon thin films [17]. Acetylene
represents a carbon-rich gas utilized for production of
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carbon nanotubes by dissociation of C2H2 and following
self-assembly in plasma-enhanced chemical vapor decom-
position (PECVD) process [18]. Acetylene has also been
detected in natural environments where an interaction
with free electrons may occur, including the interstellar
medium [19] and the planetary atmospheres [20,21].

Many different aspects of the electron-acetylene col-
lisions have been treated in previous experimental and
theoretical studies. Since the focus of the present anal-
ysis is in the determination of the resonance position and
width of the 2Πg resonance, only the studies dealing with
this resonance will be reviewed here. Early DEA experi-
ments [22–24] revealed a π∗-shape resonance in the energy
region of 2.6–2.8 eV. This 2Πg resonance was also reported
in vibrational excitation experiments [24–26] at the colli-
sion energies of 2.5–2.6 eV. The 2Πg resonance was found
to dominate cross sections in absolute-value measurements
of DEA of acetylene molecule. The peak in the DEA cross
section was observed at 2.95 eV [27].

There have been several computational studies dealing
with analysis of the 2Πg resonance. Tossell [28] utilized the
continuum MS-Xα approach and identified the resonance
at 2.6 eV as a maximum in the calculated elastic cross
section. Later Krumbach et al. [29] employed the method
of configuration interaction (CI) and computed the com-
plex resonant curve as a function of C≡C distance. The
resonance position and width at the equilibrium geome-
try were reported as 2.92 eV and 1.11 eV, respectively.
Single-centre expansion method with different parameter-
free model potentials was utilized in two studies [30,31].
Computed fixed-nuclei elastic cross sections revealed max-
ima attributed to the 2Πg at 2.0 eV and 2.5 eV in the
two studies. The resonance position of 2.5 eV was also
confirmed by calculations [32] employing Schwinger mul-
tichannel method (SMC). Complex scaling in combina-
tion with dilated electron propagator method has been
used [33] in investigation of the 2Πg resonance. While the
reported resonance position of 2.58 eV agrees well with the
previous data, computed width of 0.23 eV appears too
low. More recently, equation-of-motion coupled-clusters
(EOM-CC) method with the complex absorbing poten-
tial (CAP) was applied to identify this resonance [34].
Reported energy and width are 2.61 eV and 0.76 eV,
respectively.

Three-dimensional resonant surface has been calcu-
lated in the most detailed computational study [35] of the
electron-acetylene resonant collisions. The resonant sur-
face computed by employing complex Kohn variational
method was also used as input for the study of the disso-
ciation dynamics with the local complex potential model.
Authors reported resonance at 2.72 eV for the equilibrium
geometry.

While most of the reported energy positions of the 2Πg

resonance agree reasonably well (2.5–2.9 eV) only a few
attempts to determine the lifetime of this resonance can
be found in the literature. Moreover, corresponding reso-
nance widths range from 0.23 eV [33] up to 1.11 eV [29].
Such discrepancy motivated our present study in which
we apply the Regularized Analytic Continuation (RAC)

method and CCSD-T level of many-body theory to study
the 2Πg shape resonance of acetylene.

2 RAC method

The method of Regularized Analytical Continuation
(RAC) has been introduced and described in detail in our
previous paper [36]. Here we give only brief summary and
correct some typographical errors of the paper [36]. As
mentioned in the introduction, the idea of the RAC ap-
proach is to replace the Hamiltonian H describing the
electron molecule resonance state by a new Hamiltonian
H + λV where V (r) is an attractive perturbation able to
transform the resonances state into a bound state. The
coupling constant λ as function of κ with the bound state
energy −E = −κ2, has the following properties [10–12]:
– λ(κ) is a real function for real κ increasing at

positive κ.
– For nonzero angular momentum l the inverse function

κ(λ) behaves close to the threshold κ = 0 as κ(λ) ∼√
λ − λ0. As a direct consequence the function λ(κ) ∼

λ0 + bκ2 at small values of κ and has therefore a local
minimum at the threshold κ = 0.

– For real potentials the function λ(κ) may have three
types of zeros: (i) bound states lying on the physical
sheet with κ positive, (ii) virtual states at negative
values of κ, and (iii) pairs of resonances with Im(k)
negative (k = iκ) resulting in real parts of κ-plane
zeros of λ(κ) function being negative.

The RAC algorithm now proceeds as follows: the pertur-
bation potential V (r) is selected and bound state energy
calculations are performed for a series of values λi for
which the resonance state is transformed into a bound
state. The function λ(κ) represented in the form of Padé
approximation is fit to the calculated data and its complex
zeros describing the complex energy of the resonance state
are determined. The use of Padé approximation to repre-
sent the function λ(κ) allows us to extend its range for
positive values of κ to the complex plane. The lowest ap-
proximation which fulfills all the requirements above can
be written as

λ[2/1](κ) = λ0
κ2 + 2α2κ + α4 + β2

α4 + β2 + 2α2κ
. (2)

This function has two complex conjugate zeros

κ1,2 = −α2 ± iβ ,

giving in k-space

k1,2 = ±β − iα2 ,

and obviously describes one pair of resonances with the
energy E = β2 − α4 and width Γ = 4α2|β|.

Similarly one may construct higher approximations. If
the pair of resonances is extended by an addition of one
virtual state, we obtain [3/1] PA

λ[3/1](κ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ)
α4 + β2 + κ(2α2 + δ2(α4 + β2))

. (3)
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In this case there is one additional parameter −δ to fit.
This parameter determines the energy of the virtual state
Ev = −δ−4. The PA [2/1] is usually a very good approx-
imation and the resonance parameters obtained at the
lower level can be used to start the fitting procedure at
higher level by setting δ = 0. Even higher approximations
can be constructed in a similar manner. For example the
PA[3/2] approximation may take the form

λ[3/2](κ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ)

α4 + β2 + κ(2α2 + δ2(α4 + β2)) + ε2κ2
.

(4)
To incorporate two resonances in the fit we can write PA
[4/2] expression as

λ[4/2](κ)

= λ0
(κ2 + 2α2κ + α4 + β2)(κ2 + 2γ2κ + γ4 + δ2)

(α4 + β2)(γ4 + δ2) + μ2κ + ω2κ2
(5)

where

μ2 = 2(α2(γ4 + δ2) + γ2(α4 + β2)). (6)

All these functions satisfy the three physical conditions
described above and in all the cases the resonance energy
is obtained as ER = β2−α4 and the width as Γ = 4α2|β|.
In the PA [4/2] fit the energy of the second resonance
is obtained as E2 = δ2 − γ4 and the width is given by
Γ2 = 4γ2|δ|. As the order of PA increases the stability of
the calculated resonance parameters decreases. Our prac-
tical experience indicates that in case of the π∗ shape res-
onances present in anions of ethylene [14], diacetylene [36]
and acetylene the [3/1] approximation represents the best
compromise between accuracy and stability. Therefore,
only the result for [3/1] model will be presented in this
paper.

3 Affinities of acetylene

Ab initio calculations were done using the CCSD-T met-
hod [37,38] as implemented in the MOLPRO 10 pack-
age of quantum-chemistry programs [39] and Dunning’s
augmented correlation-consistent basis set of quadruple-
zeta quality (aug-cc-pVQZ) [40]. Resulting equilibrium
C≡C and C−H bond distances are, 1.206 Å and 1.064 Å,
respectively.

Two aspects of the 2Πg resonance make this case quite
challenging for the RAC method:

1. The lowest partial wave contributing to the 2Πg sym-
metry is the d-wave. The l = 2 wave modifies higher
polynomial orders of the continued function when com-
pared to previously studied cases [14,36] of the p-wave
resonances and therefore it becomes more unstable to
extract corresponding resonance parameters.

2. It will be shown below that the width of the resonance
becomes quite large for shorter C≡C separations. Such
conditions always possess difficulties for extraction of
the resonance parameters.
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Fig. 1. Vertical electron affinity E(λ) as a function of the
charge parameter λ for three different perturbation potentials
defined by equations (7)–(9) and for the equilibrium geometry
of acetylene.

As a result of these complications we decided to examine,
in more detail, an influence of the form of the perturba-
tion potential V applied to the molecular Hamiltonian.
We have studied three different Coulomb potentials

A. λ V (r) = −λ

r
, (7)

B. λ V (r) =
2∑

i=1

− λ

|r − Ri| , i = {C1, C2}, (8)

C. λ V (r) =
4∑

i=1

− λ

|r − Ri| , i = {C1, C2, H1, H2}, (9)

where the case A describes a single Coulomb potential po-
sition in the centre of the molecule, the case B represents
two Coulomb potentials position on the carbon atoms, and
in the case C the additional Coulomb potential is placed
on the all atomic centers.

Electron affinities E(λ) in the presence of the addi-
tional fields (7)–(9) are calculated as differences between
the ground state energy of the neutral molecule E0(λ) and
the ground state energy E−(λ) of the negative ion

E(λ) = E0(λ) − E−(λ). (10)

A typical dependence of the affinity E(λ) on the field
strength for the equilibrium geometry is shown in Fig-
ure 1 for all the three cases (7)–(9). It is obvious that
fewer Coulomb centers in the perturbation potential V
result in larger additional nuclear charge λ necessary to
turn the resonance into a bound state.

Strictly speaking, the theory of analytic continuation
outlined in Section 2 is valid only for short-range pertur-
bation potentials V . Hence, it may seem contradictory to
employ the Coulomb fields (7)–(9) in the present study.
However, in our previous paper [36] we have demonstrated
that Coulomb fields may be utilized in the ACCC methods
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Fig. 2. Resonance positions and widths as functions of the
C≡C bond length for three different perturbation potentials
defined by equations (7)–(9). Full lines show the resonance
positions ER while the broken curves display the resonance
widths Γ . The circles correspond to the widths calculated by
Krumbach et al. [29].

if the problematic low affinity region is avoided. In this
region the affinity curves switch from the valence states
(shown in Fig. 1) to the Rydberg states (not shown in
Fig. 1) and they become disturbing for the analytic con-
tinuation procedure. Therefore, only the affinity curves in
the energy region from 0.3 eV to 12 eV (see Fig. 1) were
utilized in the present study.

4 Analysis for the 2Πg resonance

Calculated resonance positions and widths for all the three
perturbation potentials (7)–(9) are displayed in Figure 2
as functions of the C≡C bond length. Data in the fig-
ure exhibit very good agreement between the potential
models B and C. The results for a single central poten-
tial A are slightly different and we attribute the difference
to a suboptimal nature of such potential since the 2Πg

resonance is formed dominantly by p-orbitals of the two
carbon atoms. Moreover, with respect to the width of the
resonance such deviations between different perturbation
potential models are not surprising. Recommended results
of the present RAC method are then results of the model B
and they are summarized in Table 1. Figure 2 also reveals
very good agreement of calculated resonance widths with
previous calculations of Krumbach et al. [29].

In Figure 3 the complex potential energy curves of the
neutral acetylene and the 2Πg resonance are displayed.
The neutral ground state 1Σg curve of reference [29] is
practically identical with the CCSD-T curve of the present
study and hence it is not displayed in Figure 3. In con-
trast to the widths displayed in Figure 2, the resonance
positions of reference [29] shown in Figure 3 are system-
atically higher than present results. This difference may

Table 1. Resonance parameters of the 2Πg negative ion state
of acetylene calculated at various C≡C bond-length changes
ΔR. The calculation was carried out for the perturbation po-
tential B and the PA [3/1] continuation model.

ΔR (Å) Energy (eV) Width (eV)
−0.28 0.77 3.81
−0.24 1.35 3.74
−0.20 1.86 3.28
−0.16 2.20 2.69
−0.10 2.37 2.17
−0.08 2.42 1.77
−0.04 2.38 1.45

0.00 2.29 1.19
+0.04 2.19 0.96
+0.08 2.06 0.77
+0.12 1.91 0.62
+0.16 1.76 0.50
+0.20 1.60 0.40
+0.24 1.43 0.33
+0.28 1.27 0.27
+0.32 1.11 0.21
+0.36 0.97 0.17
+0.40 0.83 0.13
+0.44 0.71 0.10
+0.48 0.60 0.08
+0.52 0.50 0.06
+0.56 0.40 0.05
+0.60 0.33 0.04

Table 2. Comparison of available results for the 2Πg resonance
of acetylene at the equilibrium geometry.

Method Energy (eV) Width (eV)
Theory MS-Xα [28] 2.6 1.0
Theory MR-CI [29] 2.92 1.11
Theory complex scaling [33] 2.58 0.23
Theory CAP EOM-CC [34] 2.61 0.76
Theory CAP EOM-CC [5] 2.450 0.831
Theory scat. SCE [30] 2.0 –
Theory scat. SCE [31] 2.5 –
Theory scat. SMC [32] 2.5 –
Theory scat. Kohn [35] 2.72 –
Theory present results 2.29 1.19
Experiment vib. excit. [25] 2.6 >1.0
Experiment vib. excit. [26] 2.5 –
Experiment transmission [24] 2.6 –
Experiment DEA [27] 2.95 –

be caused by the different correlation threatment of pre-
viously used MRD-CI method [29] and present CCSD-T
approach. In our previous study [36] we already observed
that better correlation model generally results in lower
resonance energies while the widths change very little.
This observation is also in accord with different corre-
lation models employed in reference [29] where authors
report very weak dependence of the resonant widths on
the correlation treatment.

In Table 2 we attempt to summarize available results
for the parameters of the 2Πg resonance. It is evident
that the present study predicts the resonance position
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Fig. 3. Potential energy curve for the ground state 1Σg of the
neutral acetylene molecule (black curve) as a function of C≡C
bond length. Real part of the potential energy curve for the
temporary negative ion state 2Πg is displayed by the thick red
curve. Vertical height of the filled area shows the width Γ cor-
responding to the anion resonant state. Circles are the energies
of the resonant state calculated by Krumbach et al. [29].

lower than most of the previous calculations. Remark-
ably, Krumbach et al. [29] applied the resonant boomerang
model for calculations of vibrationally inelastic cross sec-
tions. They have shown that the peak of the vibrationally
inelastic cross section for the excitation 0 → 1 is posi-
tioned about 0.2 eV above their calculated equilibrium
resonant position. Hence, we believe the vibrational ex-
citation experiments may suggest that the vertical res-
onant position should be somewhere around 2.3–2.4 eV
in fairly good agreement with present results. Moreover,
peak of the DEA cross section computed at 2.998 eV in
reference [35] is localized again about 0.2 eV above the
computed vertical resonance position of 2.72 eV. Such a
coincidence may be fortuitous or it may point to a physi-
cal mechanism that is common for the two processes such
as the entry amplitude defined by the energy-dependent
Franck-Condon factor.

5 Conclusions

The RAC method is a variant of the known method of
analytical continuation in the coupling constant but, ow-
ing to the physical constraints imposed on the continued
function, it is considerably more stable and robust. In the
present study the RAC approach was employed to deter-
mine the position and width of the 2Πg resonance of acety-
lene anion. Because of the challenging nature of the res-
onance (mainly due to the large width) we examined the
impact of different choices for the perturbation potential.
We found that the resulting complex resonant energies
depend only weakly on the perturbation potential choice
thus reinforcing confidence in the capability of the RAC
procedure.

Since the RAC method is based on the analytical
continuation of affinities for a bound-state system, it is
independent of the correlation model employed for the
many-electron Hamiltonian. Such flexibility facilitated ap-
plication of coupled-clusters level of theory (CCSD-T) to
determine the 2Πg resonance. Calculated potential energy
curve for the width of the resonance is in excellent agree-
ment with previous calculations of Krumbach et al. [29].
However, present results predict the equilibrium vertical
position at 2.29 eV, which is lower (by 0.2–0.6 eV) than
most of the previous theoretical results (see Tab. 2). We
believe that present lower values may, in fact, be in a good
agreement with the experimental data for the vibrational
excitation that see the center of the excitation peak at
2.5–2.6 eV. This conclusion is based on the previous cal-
culations [29] demonstrating that the computed peaks for
the vibrational excitation of acetylene should be about
0.2 eV higher than vertical equilibrium resonant position.
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