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This work is concerned with suitable choices of tetrad fields and coordinate systems for the Hamiltonian
formalism of a spinning particle derived in [E. Barausse, E. Racine, and A. Buonanno, Phys. Rev. D 80,
104025 (2009)]. After demonstrating that with the originally proposed tetrad field the components of the
total angular momentum are not preserved in the Schwarzschild limit, we analyze other hitherto proposed
tetrad choices. Then, we introduce and thoroughly test two new tetrad fields in the horizon penetrating
Kerr–Schild coordinates. Moreover, we show that for the Schwarzschild spacetime background the
linearized in spin Hamiltonian corresponds to an integrable system, while for the Kerr spacetime we find
chaos which suggests a nonintegrable system.

DOI: 10.1103/PhysRevD.93.044004

I. INTRODUCTION

The motion of a spinning particle in the spacetime
background of a black hole, particularly the Kerr space-
time, is of great astrophysical interest. Namely, it approx-
imates the motion of a stellar compact object (e.g., a black
hole) around a supermassive black hole. Such binary
systems are expected to lie at the center of galaxies (see,
e.g., [1] and references therein) and to be good candidates
for sources of gravitational radiation [2].
Even though the equations describing the motion of a

spinning particle in a curved spacetime have been provided
several decades ago by Mathisson [3] and Papapetrou [4],
many issues of this motion are still open. The problem lies
in the fact that the Mathisson-Papapetrou (MP) equations
are not a closed system of first order differential equations.
Hence, a spin supplementary condition (SSC) is needed in
order to close them. Several such SSCs have been proposed
(see, e.g., [5,6] for a review), each of which introduces a
different reference frame. Physically, the ambiguity in the
choice of a SSC is related to the fact that a spinning body
cannot be treated as a point particle but must have a finite
size in order to be prevented from rotating at superluminal
speed [7]. In particular, each SSC corresponds to an
observer who sees the reference worldline fixed by the
SSC as the center of mass of the extended body. Previous
studies have shown that the choice of the SSC depends on
the question one wants to investigate [5–12].
Within the MP equations the motion of spinning test

particles in the Schwarzschild or Kerr spacetime have been

investigated in [13–15], and several papers have been
devoted to the investigation of the appearing chaotic motion
[16–19]. Beyond the pole-dipole approximation, the quad-
rupole moment of the test particle has already been taken
into account [20,21].
The dynamics of spinning test particles has not only

been worked out in Lagrangian formalisms (MP equa-
tions) [22], but in Hamiltonian formalisms [23–28] as
well. Hamiltonian dynamics has a long tradition in
astronomy and a large number of problems there (e.g.,
perturbative problems or chaotic motion) are typically
studied from a Hamiltonian perspective [29]. In general
relativity the Hamiltonian formalisms have been applied,
for example, in the framework of the canonical Arnowitt-
Deser-Misner (ADM) formalism [30] and in the effective-
one-body approach (EOB) [31–33], which studies the
dynamics of spinning bodies of compact objects using
the Hamiltonian description of a one-body problem [34].
Due to the significance of a Hamiltonian approach the
Hamiltonian description of spinning particles is important
despite the fact that it mostly neglects terms quadratic
in spin.
In our previous work [8], we have compared the

Tulczyjew (T) SSC [35] with the Newton-Wigner (NW)
SSC [36] as supplements to the MP equations. In a second
step, we compared the MP equations supplemented by the
NW SSC to the corresponding Hamilton equations derived
in [23] based on the same NW SSC. In this work we focus
on the latter, i.e., on a canonical Hamiltonian formalism
which should be equivalent to the MP equations up to the
linear order of the test particle spin.
In contrast to the T SSC, the NW SSC, which is used

within the framework of the Hamiltonian formalism, does
not provide a unique choice of reference frame. It rather
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defines an entire class of observers, each characterized by a
different tetrad field. Thus, the Hamiltonian formalism
proposed in [23] depends on the choice of a reference basis
given by such a tetrad field. Each choice of a tetrad field
basically determines the form and the properties of the
resulting Hamiltonian function. The fact that tetrads pro-
viding certain frames of reference are involved in a
definition of the spin variable can also be seen as a
consequence of the fact that in the Hamiltonian description
the spin is a vector with prescribed canonical relations to
coordinates and momenta. Still, one might conclude that
the tetrad dependence of the Hamiltonian description of the
spinning particle is against covariance principles of general
relativity. Yet, when we numerically solve equations of
motion we have to use some coordinates anyway. The
involvement of tetrads simply means we use different
coordinates for external and inner degrees of freedom of
the spinning particle. As, e.g., Boyer-Lindquist coordinates
are comfortable for solving equations of motion in Kerr
geometry there may well be some other tetrad fields more
suitable for the definition of the Hamiltonian spin.
We discuss the advantages and the drawbacks of

Hamiltonian functions arising from tetrad fields already
proposed in [23,37]. Then, we introduce two new tetrad
fields in Kerr–Schild coordinates which yield Hamiltonian
functions with desirable properties using both analytical
and numerical analysis. Namely in order to have a good
choice of a tetrad field, the corresponding Hamiltonian
should reflect the symmetries of the background spacetime,
i.e., preserve the integrals of motion, and avoid any
coordinate effects evoked by coordinate dependent tetrad
basis vectors. For the above discussion, we focus on the
Schwarzschild limit and show that the well behaving
Hamiltonian functions based on our tetrads have as many
integrals of motion as degrees of freedom. Thus, it is shown
that in the Schwarzschild limit these Hamiltonians describe
an integrable system. We view this as an important test, as
in general, for different tetrad fields the description [23]
provides Hamiltonians nonequivalent beyond the given
approximation. In any Hamiltonian system the integrals
of motion play a crucial role, when the integrability issue is
studied. If we have several possible descriptions of the
same system in the given approximation, those respecting
all background symmetries are the obvious choice. We use
the case of spinning particle in Schwarzschild spacetime
as such an exact problem with many integrals of motion to
demonstrate shortcomings of certain coordinate-tetrad
choices. Even though the considered approximations
assume small spins, to clearly demonstrate (non)integra-
bility we also use large spin values in numerical tests.
As for the Kerr spacetime, it was shown in [38] that if the

MP equations supplemented by the T SSC are linearized in
the spin, an integral of motion associated with a Killing-
Yano tensor appears. This led to the impression that, up to
linear order in the spin, the motion of a spinning particle is

integrable in general [39]. However, according to our
numerical calculations, this seems not to be the case for
the Hamiltonian function depending on the tetrad field
choice introduced in [37].
This paper is organized as follows. In Sec. II we give a

short overview of the Hamiltonian formalism introduced in
[23]. After that, in Sec. III, we present two different choices
of coordinate systems, the Boyer-Lindquist and the
Cartesian isotropic coordinates, for a tetrad corresponding
to a ZAMO observer which is already given in [23,37]. We
analyze the properties of both with the help of analytical
calculations and numerical integrations. Then we present
our new tetrads in Kerr-Schild coordinates in Sec. IV.
Finally, in Sec. V, we summarize our results. We add a
description of our numerical tools in the Appendix.
We use geometric units, i.e., ðG ¼ c ¼ 1Þ, and the

signature of the metric is ð−;þ;þ;þÞ. Greek letters denote
the indices corresponding to spacetime (running from 0 to
3), while Latin letters denote indices corresponding only to
space (running from 1 to 3).

II. THE HAMILTONIAN FORMALISM

The Hamiltonian formalism in [23] has been achieved by
linearizing the MP equations of motion for the NW SSC.
The MP equations describe the motion of a particle with
massm2 ¼ −pμpμ, satisfying the mass shell constraint, and
spin Sμν in a given spacetime background gμν. Their
reformulation in [40] reads

Dpμ

dσ
¼ −

1

2
Rμ

νκλvνSκλ; ð1Þ

DSμν

dσ
¼ pμvν − vμpν; ð2Þ

where pμ is the four-momentum, vμ ¼ dxμ=dσ is the
tangent vector to the worldline along which the particle
moves, σ is an evolution parameter along this worldline,
and Rμ

νκλ is the Riemann tensor. The NW SSC reads

Sμνωμ ¼ 0; ð3Þ

where ωμ is a sum of timelike vectors. This sum in [23] has
the form

ων ¼ pν −m~eνT; ð4Þ

where ~eνT is a timelike future oriented vector (throughout
the article we use T instead of 0), which together with three
spacelike vectors ~eμI, denoted by capital latin indices, is
part of a tetrad field ~eμΔ.
This tetrad field has to satisfy two conditions: the first

condition ensures the orthonormality of the tetrad given by

~eμΓ ~eνΔgμν ¼ ηΓΔ; ð5Þ
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where ηΓΔ is the metric of the flat spacetime and gμν its
analogon for the curved spacetime background. The capital
indices are raised and lowered by the flat metric ηΓΔ, the
small ones by gμν. The second condition is implied by (5)
and reads

~eμΔ ~eνΔ ¼ δμν ; ð6Þ

where δμν is the Kronecker delta.
When a tensor is projected on the tetrad field, then it is

denoted with capital indices. For example, ωΔ ¼ ~eνΔων

is the projection of the timelike vector (4) on the tetrad
field, i.e.,

ωT ¼ pν ~eνT −m;

ωJ ¼ pν ~eνJ: ð7Þ

Then, the spin tensor Sμν projection reads

SIJ ¼ Sμν ~eμI ~eνJ: ð8Þ

In [23], the authors do not work with this tensor but rather
employ the spin three vector

SI ¼
1

2
ϵIJLSJL; ð9Þ

where ϵIJL is the Levi-Civita symbol.
Now, the Hamiltonian function H for a spinning particle

H ¼ HNS þHS; ð10Þ

splits in two parts. The first,

HNS ¼ βiPi þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ γijPiPj

q
; ð11Þ

is the Hamiltonian for a nonspinning particle, where

α ¼ 1ffiffiffiffiffiffiffiffiffiffi
−g00

p ; ð12Þ

βi ¼ g0i

g00
; ð13Þ

γij ¼ gij −
g0ig0j

g00
; ð14Þ

and Pi are the canonical momenta conjugate to xi of
the Hamiltonian (10). They can be calculated from the
momenta pi with the help of the relation

Pi ¼ pi þ EiΓΔSΓΔ;

¼ pi þ
�
2EiTJ

ωC

ωT
þ EiJC

�
ϵJCLSL; ð15Þ

where the spin connection

EνΓΔ ¼ −
1

2

�
gκλ ~eκΓ

∂ ~eλΔ
∂xν þ ~eκΓΓκνλ ~eλΔ

�
; ð16Þ

is a tensor which is antisymmetric in the last two indices,
i.e., EνΓΔ ¼ −EνΔΓ, and Γκνλ are the Christoffel symbols.
The second part of the Hamiltonian,

HS ¼ −

0@βiFC
i þ FC

0 þ αγijPiFC
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ γijPiPj

q
1ASC; ð17Þ

provides the contribution of the particle’s spin to the
motion, with

FC
μ ¼

�
2EμTI

ω̄J

ω̄T
þ EμIJ

�
ϵIJC; ð18Þ

and

ω̄Δ ¼ ω̄ν ~eνΔ;

ω̄ν ¼ P̄ν −m~eνT;

P̄i ¼ Pi;

P̄0 ¼ −βiPi − α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ γijPiPj

q
;

ω̄T ¼ P̄ν ~eνT −m;

ω̄J ¼ P̄ν ~eνJ: ð19Þ

The equations of motion for the canonical variables as a
function of coordinate time t read

dxi

dt
¼ ∂H

∂Pi
; ð20Þ

dPi

dt
¼ −

∂H
∂xi ; ð21Þ

dSI
dt

¼ ϵIJC
∂H
∂SJ S

C: ð22Þ

The phase space of a canonical Hamiltonian system is
equipped with a binary operation, i.e., the Poisson bracket.
If the dynamical system is subject to (secondary) con-
straints ξi, the Poisson bracket has to be replaced by the
Dirac bracket [41]

fQ;RgDB ≔ fQ;Rg − fQ; ξig½C−1�ijfξj; Rg; ð23Þ

where Q and R are functions on phase space and C−1 is the
inverse of the matrix consisting of the Poisson brackets of
the set of constraints C ¼ fξi; ξjg. In the case of a spinning
particle the constraints are given by the supplementary
condition, here the NW SSC (3), and, in order to retain the
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symplectic structure, by the choice of the timelike body-
fixed tetrad vector to be aligned with the four momentum

χμ ≔ eμT −
pμ

m
¼ 0;

where eμA is related to the local frame ~eμA by a Lorentz
transformation (for more details see [23]). In order to derive
the canonical structure of the phase space variables, the new
defined momenta Pμ in Eq. (15) are treated as functions of
the kinematical momenta pμ, the position, and of the spin
which result in the following bracket relations

fxi; PjgDB ¼ δij þOðS2Þ;
fSI; SJgDB ¼ ϵIJKSK þOðS2Þ: ð24Þ

All the other bracket relations between the variables vanish
at linear order in spin [23]. At this approximation, even if
the mass m2 ¼ −pνpν is not a constant of motion for the
exact MP equations with NW SSC, actually it scales
quadratically in the particle’s spin (see, e.g., [8]), the mass
is preserved at first order in the spin and treated as a
constant in the linearized Hamiltonian formalism [23].
When we restrict the scheme to the linearized

Hamiltonian formalism, and consider the Pi no longer as
functions but as independent phase space variables, then the
terms ofOðS2Þ are dropped in all the above Dirac brackets,
i.e., in (24) and all the other bracket relations between the
variables fxi; Pi; SIg. Profoundly, in the linearized
Hamiltonian formalism a quantity I is a constant of motion,
if it holds for its Dirac bracket with the Hamiltonian
function H

fI; HgDB ¼ 0: ð25Þ

This means that if the system is evolved by the Eqs. (20)–
(22), then the quantity I is preserved during the evolution.
The formulation provided up to this point is general,

namely it does not depend on the specific coordinate
system or on the specific tetrad field. These two factors,
however, are essential for the Hamiltonian function (10). In
particular, the nonspinning part of the Hamiltonian function
(11) depends on the coordinate system which the metric is
written in, while the spinning part (17) depends on the
tetrad we choose. In Sec. III and Sec. IV, we present three
different combinations tetrad ↔ coordinates for the Kerr
spacetime background and discuss the advantages and
shortcomings of the respective setups.

III. THE HAMILTONIAN FUNCTION IN BOYER-
LINDQUIST COORDINATES COMPARED WITH

CARTESIAN ISOTROPIC COORDINATES

A. A tetrad in Boyer-Lindquist coordinates

A Hamiltonian function for the Kerr spacetime back-
ground in Boyer-Lindquist (BL) has been provided in [23].

The line element of the Kerr spacetime in BL coordinates
reads

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2

þ grrdr2 þ gθθdθ2; ð26Þ
with

gtt ¼ −1þ 2Mr
Σ

;

gtϕ ¼ −
2aMrsin2θ

Σ
;

gϕϕ ¼ Λsin2θ
Σ

;

grr ¼
Σ
Δ
;

gθθ ¼ Σ; ð27Þ
and

Σ ¼ r2 þ a2cos2θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2;

Λ ¼ ϖ4 − a2Δsin2θ: ð28Þ
M denotes the mass and a the spin parameter of the central
Kerr black hole.
The tetrad field given in [23] reads

~eμT ¼ δtμ

ffiffiffiffiffiffiffi
ΔΣ
Λ

r
;

~eμ1 ¼ δrμ

ffiffiffiffi
Σ
Δ

r
;

~eμ2 ¼ δθμ
ffiffiffi
Σ

p
;

~eμ3 ¼ −δtμ
2aMr sin θffiffiffiffiffiffiffi

ΛΣ
p þ δϕμ sin θ

ffiffiffiffi
Λ
Σ

r
; ð29Þ

where for the small indices the numbers have been replaced
with the corresponding coordinates, i.e., t; r; θ;ϕ stand for
0,1,2,3, respectively. The proposed tetrad corresponds to an
observer in the zero angular momentum frame (ZAMO)
which intuitively yields a reasonable choice. Moreover, the
coordinate system is based on the spherical coordinates in
flat spacetime which respects the symmetries of the
spacetime. In the Schwarzschild limit the above tetrad
field reduces to ða → 0Þ

~eμT ¼ δtμ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
;

~eμ1 ¼ δrμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−1

q
;

~eμ2 ¼ rδθμ;

~eμ3 ¼ r sin θδϕμ ; ð30Þ
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where fðrÞ ¼ 1 − 2M
r . In the flat spacetime limit

(M → 0; a → 0) we get

~eμT ¼ δtμ;

~eμ1 ¼ δrμ;

~eμ2 ¼ rδθμ;

~eμ3 ¼ r sin θδϕμ : ð31Þ

This yields the flat spacetime in spherical coordinates.
Let us have a closer look at the dynamics in

Schwarzschild spacetime. The corresponding metric in
Schwarzschild spacetime results in

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2ðθÞdϕ2Þ;
with fðrÞ ¼ 1 − 2M=r and the corresponding tetrad field is
(30). The Hamiltonian

H ¼ HNS þHS;

is expressed in terms of the new phase space variables
ðr; θ;ϕ; Pr; Pθ; Pϕ; SBLI Þ where SBLI stands for the spin
projected onto the spatial background tetrad in spherical
coordinates (reduced from the Boyer-Lindquist coordi-
nates). All told, we have

H ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp ffiffiffiffi

Q
p

þ M
r3ð1þ ffiffiffiffi

Q
p Þ

�
PθSBL3 −

Pϕ

sinðθÞS
BL
2

�
−

fðrÞ
r2

ffiffiffiffi
Q

p
�

cosðθÞ
sin2θ

ffiffiffiffiffiffiffiffiffi
fðrÞp PϕSBL1 −

Pϕ

sinðθÞS
BL
2 þPθSBL3

�
;

ð32Þ

where Q ¼ m2 þ fðrÞP2
r þ 1

r2 P
2
θ þ 1

r2sin2ðθÞP
2
ϕ.

In [23] a criterion for the behavior of the Hamiltonian
in the flat spacetime limit was introduced in order to
check whether the choice of coordinates is a “good” one.
Ideally, the contributions from the spin to the
Hamiltonian HS vanish, since we no longer have curva-
ture which the spin could couple to and the trajectory of
the spinning particle should simply be the one of a
straight line. Thus, the motion of the particle should be
completely independent of the spin. However, in the case
of spherical coordinates the Hamiltonian is given by (32)
and the contribution from the spin part HS does not
vanish representing an evolution of the spin in the
absence of spin-orbit coupling, as was noted in [23],
which might imply a coordinate effect for this choice of
tetrad. Following the latter line of thought, we might say
that the basis vectors are coordinate dependent, since they
are oriented along the direction of the coordinate basis
vectors in spherical coordinates. Therefore, they introduce
an additional evolution to the dynamical system which
affects the equations of motion for the spinning particle,

i.e., the equations of motion do not only contain the
physical dynamics of the spinning object, but also the
coordinate dynamics. On the other hand, the coordinate
effect might not be the only interpretation, for instance
for a long time the helical motion of a spinning particle
with Pirani SSC in the flat spacetime was considered
unnatural, until it was explained in terms of a hidden
momentum in [10]. Anyhow, such effects make it harder
to gain insights into the physical behavior of the
particle’s motion, since it is not so easy to distinguish
between coordinate effects and physical effects in the
results. Therefore, we prefer to focus on a more solid
criterion for the Hamiltonian to check whether the choice
of coordinates is a “good” one, and this criterion comes
from the symmetries of the system.
Generally, according to Noether’s theorem each space-

time symmetry is related to a conserved quantity. In the
case of spinning particles moving in a particular spacetime
geometry equipped with a symmetry described by a Killing
vector ξμ, the associated quantity conserved by MP
equations reads

C ¼ pμξμ −
1

2
Sμνξμ;ν: ð33Þ

In Schwarzschild spacetime we have three spatial Killing
vectors yielding the three components of the total angular
momentum [16]

Jx ¼ −pθ sinðϕÞ − pϕ cotðθÞ cosðϕÞ
þ r2Sθϕ sin ðθÞ2 cosðϕÞ þ rSϕr sinðθÞ cosðθÞ cosðϕÞ
− rSrθ sinðϕÞ;

Jy ¼ pθ cosðϕÞ − pϕ cotðθÞ sinðϕÞ þ r2Sθϕ sin ðθÞ2 sinðϕÞ
þ rSϕr sinðθÞ cosðθÞ sinðϕÞ þ rSrθ cosðϕÞ;

Jz ¼ pϕ − r sin ðθÞ2ðSϕr − rSθϕ cotðθÞÞ;

where pi are the kinematical momenta and Sij the spin
components written in coordinate basis. In order to check
whether the components of the total angular momentum are
constants of motion within the Hamiltonian formulation we
have to transform the expression to canonical variables Pi
and SBLI with the relations given in (8) and (15). Therewith
we obtain

Jx ¼ cosðϕÞðSBL1 cscðθÞ − Pϕ cotðθÞÞ − Pθ sinðϕÞ;
Jy ¼ Pθ cosðϕÞ þ sinðϕÞðSBL1 cscðθÞ − Pϕ cotðθÞÞ;
Jz ¼ Pϕ;

for the components of the total angular momentum, with
which we may now compute the evolution equations for Ji
via the Dirac brackets with the Hamiltonian. Indeed, they
result in
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fJx; HgDB ¼ OðS2Þ;
fJy; HgDB ¼ OðS2Þ;
fJz; HgDB ¼ 0;

and

fJ2x þ J2y þ J2z ; HgDB ¼ OðS2Þ:

Although we consistently keep the linearization in the
Hamiltonian and the corresponding bracket structure, we
find that the Dirac brackets for Jx, Jy and Jz contain
contributions from higher orders in the particle’s spin.
Indeed, Jx and Jy start oscillating when the Hamiltonian
system corresponding to the tetrad field (30) is numerically
evolved through the equations of motion (20)–(22). It is
visible from the relative error

ΔJi ¼
����1 − JiðtÞ

Jið0Þ
���� i ¼ x; y; ð34Þ

at time t of the Jx and Jy (gray line) in Fig. 1, that the
Hamiltonian function resulting from the tetrad (30) appa-
rently violates the symmetry properties of the
Schwarzschild spacetime. Consequently, the total angular
momentum J2 is not preserved, because the x and y
components of the total angular momentum exhibit inap-
propriate behavior. On the other hand, the respective
evolution using the MP equation supplemented with NW
SSC, instead, shows the expected preservation of the
angular momentum components (black curves in Fig. 1).
This shows that even in the above linear in spin
Hamiltonian approximation a quantity is a constant of
motion only when its Dirac brackets with the Hamiltonian
are exactly zero, while when the brackets have contribu-
tions from the higher in spin orders, the quantities show no
constancy. The violation of the expected symmetries results

in a system that exhibits chaotic motion (scattered dots in
the left panel of Fig. 2), which contradicts with the
integrability of the Hamiltonian for the spinning particle
on the Schwarzschild background we prove in Sec. III B.
It is true, however, that the relative error of the Jx; Jy
components, and therefore of J2 scale with S (right panel of
Fig. 2). However, this should be anticipated since as S → 0
the system basically ignores the spin contribution and tends
to reproduce geodesic trajectories.
In this work we focus on the properties of the equations

of motion, and not so much on the astrophysical implica-
tion of these equations. The spin of the particle makes the
trajectories to deviate from their geodesic paths. Thus, we
can interpret the spin as a perturbation parameter of the
system. A constant of motion cannot dependent on the
magnitude of the spin, even if the given value might be
astrophysically irrelevant. This independence from the spin
magnitude holds also for the integrability of a spinning
particle Hamiltonian (excluding of course the case when
S ¼ 0). In our numerical calculations we measure the spin
in units ofmM, i.e. σ ¼ S=ðmMÞ, and set both masses to 1,
thus the spin parameter σ ¼ S is dimensionless. Large
values of the dimensionless spin, like S ¼ 1, might be
astrophysically questionable, but do not have implications
on the dynamics (see, e.g., [16,17] for relevant discus-
sions). In our paper large values of the spin serve mainly as
a tool to amplify the effects we want to point out, since
these effects become less prominent when S ≪ 1.
Moreover, we find that

fL2
x þ L2

y þ L2
z ; HgDB ¼ OðS2Þ;

with

Lx ¼ −pθ sinðϕÞ − pϕ cotðθÞ cosðϕÞ;
Ly ¼ pθ cosðϕÞ − pϕ cotðθÞ sinðϕÞ;
Lz ¼ pϕ;

FIG. 2. In the left panel is a detail from the surface of section
θ ¼ π=2, Pθ > 0. The parameters of the orbits are H ¼ 0.95,
Jz ¼ Pϕ ¼ 3, S ¼ M ¼ m ¼ 1, a ¼ 0, the common initial con-
ditions are ϕ ¼ 0, Pr ¼ 0, S1 ¼ S2 ¼ 0, S ¼ S3 ¼ 10−2, while
the initial Pθ is defined numerically by the Hamiltonian function
H. The right panel shows how the maximal value of the relativity
error ΔJ2 ¼ j1 − J2ðtÞ=J2ð0Þj for evolution intervals t ¼ 103

scales with the spin measure S.

FIG. 1. The left panel shows the relative error of ΔJx, and the
right of ΔJy as a function of time in logarithmic scale for the
Schwarzschild background. The gray lines show the relative error
of these quantities when the system is evolved using the
Hamiltonian function corresponding to the tetrad (30), while
the black lines show the relative error of these quantities when the
system is evolved using the respective MP equations. Both
evolutions share the same initial conditions, where a ¼ 0,
M ¼ m ¼ 1, and S ¼ 1.
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which also have to be rewritten in terms of the canonical
momenta Pi. The conservation of the measure of the orbital
momentum L2 of the linearized in spin MP equation in the
case of the Schwarzschild spacetime background has been
thoroughly discussed in [42] for the Pirani SSC [9].When the
measure of the spin S2 ¼ SISI and the total angular momen-
tum J2 are preserved, the integral of motion L2 is equivalent

to the conservation of ~L · ~S. However, as in the case of the
total angular momentum, we recover the same numerical
problems for the measure of the orbital angular momentum.
These two oscillations issues can be traced back to the
coordinate dependence of the basis vectors in the spherical
coordinate system, as we will see in the next subsection.
So far, these coordinate effects have been investigated in

Schwarzschild spacetime. Since the Schwarzschild space-
time is the nonrotating limit of the Kerr spacetime we
would like to ensure that such coordinate effects can be
eliminated in the nonrotating limit, i.e., the coordinate
effects should vanish for nonrotating or slowly rotating
black holes. Thus, we were wondering whether there are
more suitable choices of a coordinate system and of a tetrad
for rotating black holes which do not show any unphysical
coordinate effects in the Schwarzschild limit. Hence, the
question arises as to which coordinates are best used?
Therefore, in the rest of Sec. III we study the

Hamiltonian formulation in an isotropic coordinate systems
for the same kind of observer (ZAMO), introduced by [37].

B. The Hamiltonian function in isotropic
Cartesian coordinates

A revised Hamiltonian function for the Kerr spacetime
background in BL has been provided in [37]. The formu-
lation starts in Cartesian quasi-isotropic coordinates. The
line element in these coordinates for an axisymmetric
stationary metric is

ds2 ¼ gttdt2 þ 2gtXdXdtþ 2gtYdYdtþ 2gXYdXdY

þ gXXdX2 þ gYYdY2 þ gZZdZ2; ð35Þ
with

gtt ¼ e−2ν½B2ω2ðX2 þ Y2Þ − e4v�;
gtX ¼ e−2νωB2Y;

gtY ¼ −e−2νωB2X;

gXY ¼ −
ðe−2νB2 − e2μÞXY

X2 þ Y2
;

gXX ¼ e2μX2 þ e−2νB2Y2

X2 þ Y2
;

gYY ¼ e2μY2 þ e−2νB2X2

X2 þ Y2
;

gZZ ¼ e2μ; ð36Þ
where ω; eμ; eν; B are functions of X; Y; Z.

For this coordinate system the authors propose the tetrad
field

~eβT ¼ eνδtβ;

~eβ1 ¼
BωY
eν

δtβ þ
eμX2 þ e−νBY2

X2 þ Y2
δXβ

þ ðeμ − e−νBÞXY
X2 þ Y2

δYβ ;

~eβ2 ¼ −
BωX
eν

δtβ þ
ðeμ − e−νBÞXY

X2 þ Y2
δXβ

þ eμY2 þ e−νBX2

X2 þ Y2
δYβ ;

~eβ3 ¼ eμδZβ ; ð37Þ

corresponding to an infalling observer with zero 3-
momentum. This tetrad becomes Cartesian, i.e., ~eβT ¼ 1,
~eβI ¼ δIβ, in the flat spacetime limit.
The Cartesian quasi-isotropic coordinates relate with the

BL coordinate system through the transformation

X ¼ RðrÞ sin θ cosϕ;
Y ¼ RðrÞ sin θ sinϕ;
Z ¼ RðrÞ cos θ;

RðrÞ ¼ 1

2
ðr −M þ

ffiffiffiffi
Δ

p
Þ: ð38Þ

The above relation between r and R holds outside the black
hole’s horizon [43].
When we go back to the Schwarzschild spacetime where

a → 0,

ds2 ¼ −fðRÞdt2 þ hðRÞðdX2 þ dY2 þ dZ2Þ; ð39Þ

the tetrad (37) reduces to the isotropic tetrad given in [23]:

~eβT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
δtβ ¼

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
δtβ;

~eβ1 ¼
r
R
δXβ ¼

�
1þ M

2R

�
2

δXβ ;

~eβ2 ¼
r
R
δYβ ¼

�
1þ M

2R

�
2

δYβ ;

~eβ3 ¼
r
R
δZβ ¼

�
1þ M

2R

�
2

δZβ ; ð40Þ

where
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r ¼ R

�
1þ M

2R

�
2

;

fðRÞ ¼ ð2R − 1Þ2
ð2Rþ 1Þ2 ;

hðRÞ ¼
�
1þ M

2R

�
4

:

In order to check the behavior of these so called isotropic
Cartesian coordinates ðX; Y; ZÞ we analyze the conserva-
tion of the constants of motion given by the symmetries of
the system. The spherical symmetry of the spacetime can be
described in Cartesian-like coordinates xμ by the following
three Killing vectors

ξμK ¼ ϵKLMxLδμM: ð41Þ

Using (33) we thus get the three conserved components of
the total angular momentum as a combination of the
kinematical momentum pμ and the components of the spin
tensor Sμν. On the other hand, in the canonical description,
the conservation of the total angular momentum

JK ¼ ϵKLMxLPM þ SK; ð42Þ
is demonstrated by vanishing Dirac brackets

fJK;HgDB ¼ 0: ð43Þ
Contrary to the previous case the canonical momenta PM
and tetrad components of the spin appear in this formula.
The relations between the two sets of quantities, the
kinematical and the canonical, are given by (15) and (8).
By computing the difference of projection of (33) and (42)
it can be shown, that if the Lie derivatives of the three
spatial tetrad vectors obey the Cartesian-like rule

ð£ξK ~eμLÞ~eμM ¼ −ϵKLM and ξ0K ≡ 0; ð44Þ

the two conserved quantities, one in kinematical variables
and the other in canonical ones, are identical. Indeed,
this formula holds in the flat Minkowski spacetime for
the Cartesian tetrad ~eμA ¼ δAμ , which naturally leads to the
intuition, that a tetrad, that reduces to a Cartesian one in the
flat spacetime, is a good tetrad choice. [In (44) the fact that
the time component of the Killing vectors is required to
vanish is explicitly stated, since it is written as a covariant,
coordinate independent formula, but it has been derived
using the above coordinate assumption.]
The general condition (44) can now be applied to the

particular case of the Schwarzschild limit (39). As Lie
derivatives can be written using partial rather than covariant
derivatives, one can easily check, that the tetrad field (40)
satisfies (44).
Yet, as an example, that the equivalence between total

angular momentum expressed in kinematical and canonical

variables is not so obvious, let us consider a symmetry of
the Schwarzschild spacetime with respect to rotation along
the z-axis

ξμz ¼ ½0;−Y; X; 0�: ð45Þ

It yields the related component of the total angular
momentum

Jz ¼ Xpy − Ypx þ Sxy
�
hðRÞ þ ðhðRÞÞ0

2R
ðX2 þ Y2Þ

�
−
ðhðRÞÞ0
2R

ZðXSyz þ YSzxÞ:

Here, pi represents the kinematical MP momenta and Sij the
coordinate spin components, the prime denotes a derivative
with respect to R. In the Hamiltonian approach we use the
canonical momenta Pi and the projected spin components
SI , so it is necessary to perform a transformation from
ðpi; SijÞ to ðPI; SIÞ using the relations given in (15) and (8).
By doing this, terms proportional to h0ðRÞ get absorbed into
Px and Py and the corresponding component of the total
angular momentum can be written as

Jz ¼ XPy − YPx þ S3: ð46Þ

The corresponding Hamiltonian in these coordinates, cf. [23]
reads

H ¼ HNS þHS;

with

HNS ¼
1ffiffiffiffiffiffiffiffiffiffi
fðRÞp ffiffiffiffi

Q
p

; ð47Þ

HS ¼
1 − M

2R þ 2ð1 − M
4RÞ

ffiffiffiffi
Q

p

ð1þ M
2RÞ6R3

ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
M
m

ð~L · ~SÞ; ð48Þ

and Q ¼ m2 þ 1
hðRÞ ~P

2. Notice, that setting M → 0, i.e., no

gravitational field, we indeed obtain that the spin part of the
Hamiltonian HS becomes zero, as it should in the
Minkowskian spacetime.
Next, we can easily compute the evolution equations for

the Jx, Jy and Jz as

fJx; HgDB ¼ 0;

fJy; HgDB ¼ 0;

fJz; HgDB ¼ 0;

which is thus also true for the measure of the total angular
momentum J2. Moreover, it holds that fL2; Hg ¼ 0 where
L2 ¼ L2

x þ L2
y þ L2

z is the measure of the orbital angular
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momentum. Its respective components are defined as
Li ¼ εijkqjPk, with qi ¼ ðX; Y; ZÞ and Pi ¼ ðPx; Py; PzÞ.
In fact, since the linearized in spin Hamiltonian system

given by (47), (48) has five degrees of freedom, the
five independent and in involution constants of motion
ðJz; J2; L2; S2; HÞ of the Schwarzschild limit make the
system integrable. The integrability for the Schwarzschild
background seems to result from the linearized in spin
Hamiltonian approximation, because in [16] it has been
shown that for the full MP equations with T SSC chaos
appears for a spinning particle moving in the
Schwarzschild background. However, the integrability
seems to vanish in the Hamiltonian approximation once
we turn on the spin of the central body. Namely, in the
case of a Kerr spacetime background chaos appears again
(scattered dots in Fig. 3), which suggests the nonintegr-
ability of the corresponding Hamiltonian system. The
existence of chaos in the Kerr background case for the
Hamiltonian approximation is not just a confirmation of
previous studies concerning the full MP equations with T
SSC, see, e.g., [17,18]. It shows that the linearized in spin
Hamiltonian function given in [37] is nonintegrable. This
result contradicts with statements in the literature saying
that up to the linear order in spin the motion of a spinning
particle corresponds to an integrable system, see, e.g.,
[39]. A thorough investigation of chaos in the Kerr
spacetime for the linearized in spin Hamiltonian function
will be provided in [44].
The above results match exactly the expectations we had

from the symmetries.
Up to this point, we have discussed the properties of a

ZAMO tetrad in spherical and Cartesian coordinates in
Schwarzschild spacetime. Taking the conservation of the
constants of motion for numerical calculations as an

important criterion to be satisfied, promising indicators
for a “good” tetrad choice are the reduction to Cartesian
tetrad in flat spacetime as well as the vanishing of the spin
dependent Hamiltonian. Two questions arise with this
statement: First, are there other coordinates we may choose
providing us with “good” tetrads, and second, since we
were focusing on a ZAMO tetrad, we ask whether a non-
ZAMO tetrad yields the same properties if the coordinate
basis is not changed. We expect the properties of the tetrad
to depend on the choice of the coordinates, so that in the
following we take Kerr-Schild coordinates and analyze two
tetrads, one ZAMO and one non-ZAMO tetrad.

IV. THE HAMILTONIAN FUNCTION
IN KERR-SCHILD COORDINATES

The Kerr-Schild coordinates have the great advantage
that they are horizon penetrating so that they are well
behaved in the vicinity of the horizon, which simplifies
numerical calculations in this domain, probably improving
the numerical treatment compared to isotropic coordinates
for events in the strong field. Here we shall introduce a
Hamiltonian function using the Kerr-Schild (KS) coordi-
nates. The line element in KS coordinates reads [45]

ds2 ¼ gμνdx̄μdx̄ν;

gμν ¼ ημν þ flμlν; ð49Þ

where (0,1,2,3) correspond to ðt̄; x̄; ȳ; z̄Þ,

lt̄ ¼ −1;

lx̄ ¼ −
r̄ x̄þaȳ
r̄2 þ a2

;

lȳ ¼ −
r̄ ȳ−ax̄
r̄2 þ a2

; ð50Þ

lz̄ ¼ −
z̄
r̄
; ð51Þ

and

f ¼ 2Mr̄3

r̄4 þ a2z̄2
; ð52Þ

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄4 þ 4a2z2

p
2

s
;

ρ̄2 ¼ x̄2 þ ȳ2 þ z̄2 − a2: ð53Þ

For simplicity in the rest of the section we drop the bar
notation over the KS coordinates.
Independently on the tetrad field the choice of coordi-

nates implies the non-spinning part of the Hamiltonian

FIG. 3. A detail from the surface of section θ ¼ π=2, Pθ > 0.
The parameters of the orbits are H ¼ 0.9449111825230683,
Jz ¼ 3.5, S ¼ M ¼ m ¼ 1, a ¼ 0.1, the common initial con-
ditions are ϕ ¼ 0, Pr ¼ 0, S1 ¼ 0, while by solving numerically
the system Pθ ¼ −S2, Jz ¼ Pϕ þ S3, and S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22 þ S23

p
we

define the rest.
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HNS ¼ α2fliPi þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ PiPi − fα2ðliPiÞ2

q
; ð54Þ

where liPi ¼ δijliPj and

α ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p : ð55Þ

In the following we present two tetrad choices correspond-
ing to different types of observers.

A. ZAMO tetrad

In the previous section, we focused on a tetrad field
associated to the observers with vanishing momenta
Pi ¼ 0, i.e., zero angular momentum observers (ZAMO),
in two different coordinate systems, isotropic Cartesian and
Boyer-Lindquist coordinates. Therefore, it is reasonable to
first consider such an observer in KS coordinates as well.
Here, we choose a tetrad corresponding to an observer
infalling with the radial velocity Ur ¼ −αf:

~eβT ¼ αδ0t ;

~eβI ¼ δIβ þ ðα−1 − 1 − αfÞlIδ0β þ ðα−1 − 1ÞlIlβ:

Again, this tetrad becomes Cartesian, i.e., ~eβT ¼ δTβ ,
~eβI ¼ δIβ, in the flat spacetime limit, which is a first
indicator for being a good tetrad choice. The next step is
to analyze the behavior in the Schwarzschild limit a → 0.
Then, following the procedure introduced in [23], we
obtain the Hamiltonian H̄Schw ¼ H̄Schw

NS þ H̄Schw
S with

H̄Schw
NS ¼ α

�
m̄ −

2Mα

r2
~r · ~P

�
; ð56Þ

H̄Schw
S ¼ M

m̄

�
2α2

αþ 1
−
α5 þ 3α3

r
~r · ~P
ωT

− α4
m̄
ωT

� ~L · ~S
r3

; ð57Þ

where

m̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~P2 −

fα2

r2
ð~r · ~PÞ2

r
;

ωT ¼ −m − m̄: ð58Þ

Since the total Hamiltonian is merely a function of certain

scalar combinations of ð~r; ~P; ~SÞ [where ~r ¼ ðx; y; zÞ],
namely H̄ ¼ H̄ðj~rj2; j~Pj2; ~r · ~P; ~L · ~SÞ with Li ¼ εijkrjPk,
we can deduce that

f~Lþ ~S;HgDB ¼ 0; ð59Þ

by using the canonical structure of the variables. Moreover,
we would like to stress here again, that the conservation
of L2 in Schwarzschild spacetime is equivalent to the

conservation of ~L · ~S so that it suffices to express the

Hamiltonian in terms of ~L · ~S in order to show (59). In fact,
it reflects the integrability of the system at linear order
in spin.
However, we cannot simply infer that ~J ¼ ~Lþ ~S is valid

in the new canonical coordinates. The conserved total
angular momentum is already given by (33) and by the
Killing vectors (41) of the Schwarzschild spacetime we get

Ji ¼ ~Li þ Si; ð60Þ

where the tilde denotes the quantities to be written in terms
of the kinematical momenta pi ðLi ¼ εijkrjpkÞ and the
index i in Si refers to the coordinate basis. This relation is
valid in KS coordinates, independent of the tetrad choice.
In order to relate the conserved quantities to the

canonical momenta Pi and the tetrad components of the
spin SI , we have to perform a transformation from ðpi; SiÞ
to ðPi; SIÞ using the relations given in (15) and (8).
Therewith, we indeed find the components Ji to be given
by (46), which yields vanishing Dirac brackets for each
component of the total angular momentum according to the
argument mentioned in Sec. III B. In order to support this
statement we performed a numerical check shown in Fig. 4.
It is immediately obvious that the conservation of these

components is ensured up to numerical errors which do not
accumulate over the integration time but stay at the same
level. These results are similar to the ones obtained in
isotropic Cartesian coordinates, so that the quality of
the outputs is comparable. Therefore, if one can choose
between KS and isotropic Cartesian coordinates, there is no
preferred choice between those two in Schwarzschild
spacetime. However, if the dynamics of plunging orbits
is considered in a Kerr spacetime background, it may be
more sensible to change to KS coordinates since they are
horizon penetrating and avoid numerical divergence close
to the horizon (see Appendix B).
Second, we consider the contribution from the spin part

of the Hamiltonian in flat spacetime. From (57) we see that

0.5 1. 1.5 2. 2.5 3.
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log10t
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0.5 1. 1.5 2. 2.5 3.
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10
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0

log10t
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g 1

0
J y

FIG. 4. The left panel shows the relative error of Jx, and the
right of Jy as a function of time in logarithmic scale for the
ZAMO tetrad in KS coordinates as evolved by the Hamiltonian
with a ¼ 0, M ¼ m ¼ 1, and S ¼ 1.
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for M → 0 the contributions from HS vanish as it should.
Hence, also additional coordinate effects which arise in
spherical coordinates are avoided, further supporting such a
choice of tetrad and coordinates.

B. Non-ZAMO tetrad

To simplify the Hamiltonian in Kerr-Schild coordinates
we change to another tetrad field, which is not required to
be a ZAMO observer. In particular, we take advantage of
the fact that for certain observers no square roots appear
due to normalization of the tetrad vectors

~eμT ¼
�
1 −

f
2
;
f
2
lx;

f
2
ly;

f
2
lz

�
; ð61Þ

~eμX ¼
�
−
f
2
lx; 1þ

f
2
lxlx;

f
2
lxly;

f
2
lxlz

�
; ð62Þ

~eμY ¼
�
−
f
2
ly;

f
2
lylx; 1þ

f
2
lyly;

f
2
lylz

�
; ð63Þ

~eμZ ¼
�
−
f
2
lz;

f
2
lzlx;

f
2
lzly; 1þ

f
2
lzlz

�
; ð64Þ

where we use the definitions from above, cf. Eqs. (50)–
(52). This is the tetrad of an infalling “non-ZAMO”
observer, as the observer’s specific angular momentum

~eϕT ¼
� ∂
∂ϕ

�
μ

~eμT ¼ −
1

2

fa
r
x2 þ y2

r2 þ a2
≠ 0; ð65Þ

and the observer’s radial coordinate velocity

~erT ¼
� ∂r
∂xμ

�
~eμT ¼ −

f
2
< 0:

Thus, we again compute the Hamiltonian in canonical
coordinates up to linear order in spin given by [23]

H ¼ HNS þHSO þHSS; ð66Þ

where HNS is given by (54),

HSO ¼ αf
Mm − 2emðM − frÞ

2MmωT

rϵijKlipjSK

r2 þ a2l2z
; ð67Þ

and

HSS ¼ −
af

4ωTMmða2l2z þ r2Þ × f½4flzemððm − αfemÞrþ αemMÞ − 2Mlzðmmþ αm2Þ

þ 2α½ðM þ 2rÞmflz þ ð3M − 2frÞPz�em�Sili þ 2αðmþ emÞ½MlzSiPi − emð2fr − 3MÞS3�

− 2
alzem
r2

ð3Mr − a2flz2 − 3fr2Þ½αðS1Py − S2PxÞ − ðαmþm − αfemÞðS1ly − S2lxÞ�g: ð68Þ

Here, instead of (58), we used

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ PiPi − fα2ðliPiÞ2

q
;

em ¼ αm − α2Pili;

ωT ¼ −m −
m
α
þ f

2
em; ð69Þ

which together with the usage of components of lμ instead
of coordinates significantly shortened expressions for HSO
and HSS. All vector components are grouped in such a way
that the relation fLz þ Sz;HgDB ¼ 0 is obvious.

Again, the complete angular momentum conservation is
restored in the Schwarzschild limit. Since H̄NS only
depends on the chosen coordinate basis, it is still given
by (56). The spinning part

HS ¼
�
α
M
m

�
1 −

M þ 2r
rðrþ 2MÞ

~r · ~P
ωT

�
−

M
ωT

1 − M
r

1þ 2M
r

� ~L · ~S
r3

;

ð70Þ

wherem and ωT are given by (69), can again be written as a

function H̄ ¼ H̄ðj~rj2; j~Pj2; ~r · ~P; ~L · ~SÞ so that we can
follow the reasoning of the preceding subsection to obtain
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FIG. 5. The left panel shows the relative error of Jx, and the
right of Jy as a function of time in logarithmic scale for the non-
ZAMO tetrad in KS coordinates as evolved by the Hamiltonian
with a ¼ 0, M ¼ m ¼ 1, and S ¼ 1.
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vanishing Dirac brackets (59). Therefore, we only have to
check the equations for the components of the total angular
momentum Ji in canonical coordinates ðPi; SIÞ. Using the
expressions for the total angular momentum with respect to
the coordinate basis (60), we again perform a transforma-
tion to the tetrad basis and the canonical momenta and
recover relation (46). Thus, in the Schwarzschild limit, the
non-ZAMO tetrad in KS coordinates has the same numeri-
cal properties as the ZAMO tetrad, as expected, which is
also visible in Fig. 5.
Consequently, it seems to be a good choice of coordinate

system for numerical investigations.
It is of course also possible to rewrite the coefficients of

the tetrad basis vectors in terms of any coordinate system
without changing the general properties of the Hamiltonian
system as long as the tetrad basis vectors remain oriented
along the isotropic coordinate (Cartesian like) basis vectors.
In [23], it was already mentioned that the coordinate effects
can be avoided by choosing the directions of the tetrad basis
vectors along a Cartesian coordinate system. However, if the
tetrad corresponds to a Cartesian frame, the spin variables
remain Cartesian whereas the position and momentum
variables are spherical ones. This approach is used in
effective-one-body theory or post-Newtonian methods in
order to compare the dynamical contributions from different
orders in spin, (see e.g., [23,46]) and may in fact also be used
for the computation of the equations of motion from the
Hamiltonian. Nevertheless, in that case it is more sensible to
be consistent in the choice of coordinates and spin variables
so that the Dirac brackets can be used for the calculation of
the equations of motion. This coordinate system does not
necessarily adapt to the symmetries of the spacetime as we
have seen. Generally, it is very useful to choose a coordinate
system and corresponding basis vectors that do not imply
coordinate effects if one aims at the analysis of the equations
of motion.

V. CONCLUSIONS

In this work we have studied the Hamiltonian formalism
of a spinning particle provided in [23] with regard to
numerical investigations of the equations of motion. It was
already discussed in [23] that this Hamiltonian formalism
does not only depend on the tetrad field one uses, but also
on the coordinate system one chooses in order to express
the tetrad field or the Hamiltonian function. Using the Dirac
brackets to check the integrals of motion, we have shown
that an unfortunate choice of the coordinate system can lead
to a nonpreservation of quantities in numerical integration
which should, according to the symmetries of the system
and the linearized MP equations, be conserved. However,
we find that the type of the tetrads, i.e., whether the
observer is ZAMO or follows some other worldline which
does not correspond to a ZAMO does not affect the general
dynamical properties of the constants of motion. In fact,
we have examined both kinds of tetrads and found no

difference in their ability to be numerically applied, i.e.,
they possess the same properties with respect to numerical
computations. However, the formulas for the spinning part
of the Hamiltonian can be simplified and compactified,
which we think is worthwhile to be mentioned.
In order to obtain Hamiltonian systems without coordinate

effects smearing the actual physical behavior in numerical
solutions and still reliable in the vicinity of the central
object’s horizon, two new horizon penetrating Hamiltonian
functions were introduced. Both of them were constructed
on tetrad fields which were expressed in Kerr-Schild
coordinates. In particular, the non-ZAMO tetrad allows us
to express the Hamiltonian both in Schwarzschild and Kerr
spacetime in a simple and compact form. Future (numerical)
work may profit from this explicit Hamiltonian.
While studying the Dirac brackets in the Schwarzschild

limit, we have shown that in this limit the Hamiltonian
functions with acceptable properties are integrable. In
particular, we have shown that the system’s five degrees
of freedom admit five independent and in involution
integrals of motion. On the other hand, we have shown
by a numerical example that chaos appears when we go to
the Kerr background in the case of the Hamiltonian
function proposed in [37]. This suggests that this linearized
Hamiltonian function corresponds to a nonintegrable sys-
tem in the case of the Kerr background. Indeed, the
Hamiltonian formulation offers a wide range of applica-
tions in the context of chaos and perturbation theory, such
as Poincaré sections or recurrence plots. In order to answer
the question for chaos thoroughly, a detailed analysis of the
motion of spinning particles in the Kerr spacetime
described by the linearized in spin Hamiltonian approxi-
mation is in progress [44].
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APPENDIX A: NUMERICAL INTEGRATION
OF THE HAMILTONIAN EQUATIONS

Our numerical integrators rely on the considerations of
our previous work, cf. [[8], Secs. A and B], which can be
extended to all Hamiltonians in this work. Let us briefly
summarize the main points.
All Hamiltonian equations of this work possess a

so-called Poisson structure, i.e., for y ¼ ðP1; P2; P3; x1;
x2; x3; S1; S2; S3ÞT ∈ R9, they can be written as
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_y ¼ BðyÞ∇HðyÞ; ðA1Þ

where B∶R9 → R9×9 is the skew-symmetric matrix-valued
function

BðyÞ ¼

0B@ 0 −I3×3 0

I3×3 0 0

0 0 B1ðyÞ

1CA; ðA2Þ

with

I3×3 ¼

0B@ 1 0 0

0 1 0

0 0 1

1CA; ðA3Þ

B1ðyÞ ¼

0B@ 0 −S3 S2
S3 0 −S1
−S2 S1 0

1CA: ðA4Þ

Due to this special structure, the spin length S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

p
is conserved along solutions of the equa-

tions of motion (A1). Thus, the three dimensional spin
S ¼ ðS1; S2; S3ÞT can be represented by two variables α
and ξ via

S ¼ S

0B@
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
cosðαÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p

sinðαÞ
ξ

1CA; ðA5Þ

see, e.g., [47,48]. One can then show, cf. [48], that

_ξ ¼ −
∂H
∂α ; ðA6Þ

_α ¼ ∂H
∂ξ ; ðA7Þ

holds. Hence, in the transformed variables z ¼ ðP1; P2;
P3; ξ; x1; x2; x3; αÞ, the equations of motion take the sym-
plectic form

_z ¼ J−1∇HðzÞ; ðA8Þ

J ¼
�

0 I4×4
−I4×4 0

�
: ðA9Þ

As a nice consequence, we can evolve the system with
Gauss Runge–Kutta schemes which have already been
shown to yield very good results for little computational
costs in previous studies, see, e.g., [48,49].
An s-stage Gauss Runge-Kutta scheme is a collocation

method, i.e., an implicit Runge-Kutta scheme

ynþ1 ¼ yn þ h
Xs
i¼1

bifðYiÞ; ðA10Þ

Yi ¼ yn þ h
Xs
j¼1

aijfðYjÞ; i ¼ 1;…; s; ðA11Þ

with coefficients

aij ¼
Z

ci

0

ljðtÞdt; ðA12Þ

bj ¼
Z

1

0

liðtÞdt; ðA13Þ

where the stages c1;…; cs are chosen as

ci ¼
1

2
ð1þ ~ciÞ; ðA14Þ

with ~ci being the roots of the Legendre-polynomial of
degree s. Here, h denotes the time step size, Yi, i ¼ 1;…; s,
are the so-called inner stage values and yn denotes the
numerical approximation to the solution y at time
τ ¼ nh. The functions liðtÞ are the Lagrange-polynomials
of degree s,

liðtÞ ¼
Y
i≠j

t − cj
ci − cj

: ðA15Þ

Gauss Runge-Kutta methods have a convergence order
Oðh2sÞ which is the highest possible order among colloca-
tion schemes, e.g., [50]. Detailed information on their
implementation is given in [[48], Sec. 7], and [[51],
Chapters VIII.5 and VIII.6].
Very importantly, Gauss Runge–Kutta schemes almost

exactly preserve the Hamiltonian throughout the numerical
evolution, cf. [[8], Fig. 10]. Furthermore, it is known from
numerical analysis that the solution ynþ1 coincides with the
value at t ¼ h of the interpolation polynomial UðtÞ through
the points ð0; ynÞ and ðc1;Y1Þ…ðcs;YsÞ. This interpolation
polynomial can be shown to stay OðhsÞ close to the
exact solution of the equations of motion, see, e.g., [[51],
Chapter II.1]. Therefore, we can conveniently calculate
OðhsÞ approximations to surface sections, such as the one
presented in Fig. 3 above (for the procedure details see,
e.g., [48]).

APPENDIX B: PLUNGING ORBITS

The analytical properties of equations of motion have
also an impact on the behavior of their numerical solution.
In Fig. 6 we plot the relative error of the Hamiltonian
ΔH ¼ j1 −HðtÞ=Hð0Þj for plunging orbits using the
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Gauss Runge-Kutta method (Appendix A) with fixed time
step for equations of motion given by the Hamiltonian
function discussed in Sec. III B (BL) (top plot) and the one
discussed in section IV B (KS) (bottom plot) as functions
of the BL radius. The figure clearly shows that the KS case
covers smoothly the horizon of the Kerr black hole
(vertical dashed gray line), while the BL fails to do so
by definition.
The mass parameters are M ¼ m ¼ 1 and the Kerr

parameter is a ¼ 0.9. As initial conditions for the BL orbit
we use r ¼ 25, θ ¼ π=2;ϕ ¼ 0, and dr

dt ¼ dϕ
dt ¼ dθ

dt ¼ 0. The
first two conditions for the velocities determine the initial
values of S3, and Pr. The remaining initial conditions are
Pϕ ¼ Sx ¼ Sy ¼ Pθ ¼ 0. The time step is ΔtBL ¼ 0.1. The
initial conditions for the KS orbit are x ¼ 25; y ¼ z ¼ 0,
and Px ¼ Py ¼ Pz ¼ 0 with spin Sx ¼ Sz ¼ 0; Sz ¼ 0.9.
The time step is ΔtKS ¼ 0.1.
In fact, to test how much the pole-dipole approximation

of rotating body fails near the horizon has to be investigated
by other studies. But, one can assume that not having
equations of motion singular at the horizon helps to obtain
the right numerical results within the range of spins allowed
by the linear-in-spin approximation.
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