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An explicit Robinson-Trautman solution with a minimally coupled free scalar field was derived and
analyzed recently. It was shown that this solution possesses a curvature singularity which is initially naked
but later enveloped by a horizon. However, this study concentrated on the general branch of the solution
where all free constants are nonzero. Interesting special cases arise when some of the parameters are set to
zero. In most of these cases, the scalar field is still present. One of the cases is a static solution which
represents a parametric limit of the Janis-Newman-Winicour scalar field spacetime. Additionally, we
provide a calculation of the Bondi mass which clarifies the interpretation of the general solution. Finally, by
a complex rotation of a parameter describing the strength of the scalar field, we obtain a dynamical
wormhole solution.
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I. INTRODUCTION

The Robinson-Trautman family of spacetimes contains
nonsymmetric dynamical generalizations of several impor-
tant solutions to the Einstein field equations—e.g.,
Schwarzschild and Vaydia solutions or the C metric.
Notably, these solutions generally contain gravitational
waves and offer the possibility to study the evolution of
initial generic data towards a final stationary situation. This
family is defined by the presence of a nontwisting, non-
shearing, and expanding null geodesic congruence.
Recently, we presented a Robinson-Trautman solution

minimally coupled to a free massless scalar field [1] (a
broader overview of the standard Robinson-Trautman
solutions with many references can be found there). In
this case, it was not possible to use the original form of
the Robinson-Trautman metric which admits only pure
radiation and the Maxwell field stress energy tensor
aligned with the principal null direction or a cosmologi-
cal constant. The reason was that the scalar field wave
equation cannot be satisfied for a scalar field whose
gradient is aligned. The scalar field had to become
nonaligned, and the Robinson-Trautman metric had to
be generalized to accommodate a broader class of energy-
momentum tensors. A complete classification of such
geometries including general forms of the curvature
tensors is shown in Ref. [2].
To help us with the interpretation of our solution, we

compute the Bondi mass [3], which is the most suitable
description of the energy content of the spacetime for the
Robinson-Trautman class and was used in this context
previously (see, e.g., [4] for the vacuum case computation
by means of a conformal factor). We use the definition

based on an asymptotic twistor equation adapted to a
massless scalar field in Ref. [5]. The computation confirms
the expectation based on an asymptotic form of the
solution. Namely, the energy content of the spacetime is
completely determined by a scalar field, and there is no
contribution of a Schwarzschild-type “mass.”
Next, we show the specific subcases which are all

spherically symmetric, and we connect them with previ-
ously analyzed solutions. This brings a certain degree of
justification for considering the whole class as physically
relevant.
Finally, inspired by a relation between a static subcase of

our solution and a simple wormhole spacetime, we analyze
a wormhole version of the general Robinson-Trautman
solution with a scalar field. Unlike the original solution, the
wormhole version naturally does not satisfy any energy
conditions and thus is not very physical. On the other hand,
it provides a dynamical wormhole which gets created and
then disappears while having surprising asymptotic behav-
ior which is connected to the Kundt class. This family of
solutions to the Einstein equations is closely related to the
Robinson-Trautman geometry and is defined by the pres-
ence of a nontwisting, nonshearing, but (unlike Robinson-
Trautman) nonexpanding null geodesic congruence. Most
important members of this family are exact radiative
spacetimes which generalize simple planar gravitational
waves (e.g., pp-waves).

II. VACUUM ROBINSON-TRAUTMAN METRIC
AND FIELD EQUATION

First, let us review the standard Robinson-Trautman
solution for comparison and reference.
The vacuum Robinson-Trautman spacetime (possibly

with a cosmological constant Λ) can be described by the
line element [6–9]
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ds2 ¼ −2H du2 − 2du drþ r2

P2
ðdx2 þ dy2Þ; ð2:1Þ

where 2H ¼ ΔðlnPÞ − 2rðlnPÞ;u − 2m=r − ðΛ=3Þr2, and

Δ≡ P2ð∂xx þ ∂yyÞ: ð2:2Þ

The metric generally contains two functions, Pðu; x; yÞ
and mðuÞ. The function mðuÞ might be set to a constant
by a suitable coordinate transformation [8,9], and we
consider this to be fulfilled for the coordinates of (2.1).
The Einstein equations then reduce to a single nonlinear
partial differential equation (PDE)—the Robinson-
Trautman equation

ΔΔðlnPÞ þ 12mðlnPÞ;u ¼ 0: ð2:3Þ

These spacetimes are then generally of algebraic type II.
As required by the definition of the Robinson-Trautman

family, the spacetime admits a geodesic, shear-free, twist-
free, and expanding null congruence generated by l ¼ ∂r
with r being an affine parameter along this congruence, u is
a retarded time, and u ¼ const hypersurfaces are null.
Spatial coordinates x, y span a transversal 2-space which
has the Gaussian curvature (for r ¼ 1)

Kðx; y; uÞ≡ ΔðlnPÞ: ð2:4Þ

For general r ¼ const and u ¼ const, the Gaussian curva-
ture is K=r2 so that, as r → ∞, these 2-spaces become
locally flat. As usual, we will assume that the transversal
2-spaces are compact and connected, which leads to a
subclass that contains the Schwarzschild solution (consid-
ering a vanishing cosmological constant for simplicity)
corresponding to K ¼ 1 (consistent with a spherical sym-
metry). This subclass thus represents its generalization to a
nonsymmetric dynamical situation.
For analysis of the Robinson-Trautman equation (2.3), it

is useful to introduce the following parametrization:

P ¼ fðx; y; uÞP0; ð2:5Þ

where f is a function on a 2-sphere S2, corresponding to
P0 ¼ 1þ 1

4
ðx2 þ y2Þ (such a choice gives K ¼ 1). By a

rigorous analysis of Eq. (2.3) together with the
decomposition (2.5), Chruściel [10,11] proved that, for
arbitrary, sufficiently smooth initial data fðx; y; uiÞ on an
initial hypersurface u ¼ ui, the Robinson-Trautman
type-II vacuum spacetimes (2.1) exist globally for all
u ≥ ui. Moreover, they asymptotically converge to the
Schwarzschild–(anti–)de Sitter metric with the correspond-
ing mass m and the cosmological constant Λ as u → þ∞.
This convergence is exponentially fast, since f behaves
asymptotically as

f ¼
X
i;j≥0

fi;juje−2iu=m; ð2:6Þ

where fi;j are smooth functions of the spatial coordinates
x, y. For large retarded times u, the function P given by
(2.5) exponentially approaches P0, which describes the
corresponding spherically symmetric solution.
There is a closely related family of exact solutions

possessing a null congruence which is nonexpanding
(unlike in the case of the Robinson-Trautman class) but
still nontwisting and nonshearing—namely, the Kundt
family [12,13]. The general line element can be given in
the form [8,9] (we use the same coordinate labels as in the
Robinson-Trautman case to stress the similarities and
differences)

ds2 ¼ −H du2 − 2dudr − 2W1dudx

− 2W2dudyþ
dx2 þ dy2

Pðu; x; yÞ2 ð2:7Þ

with H, W1, and W2 being functions of all the coor-
dinates. Note that the coordinate r is absent from the
transversal part of this metric, which is given by the last
two terms of (2.7) [compare with the Robinson-Trautman
metric (2.1)]. This directly leads to the privileged null
congruence ∂r being nonexpanding. As we will see in
Sec. VII, this solution is closely related to an asymptotic
state of the Robinson-Trautman geometry with an imagi-
nary scalar field.

III. ROBINSON-TRAUTMAN SOLUTION
COUPLED TO A SCALAR FIELD

The Robinson-Trautman solution generalized to
accommodate a scalar field is given in the following
form [1]:

ds2 ¼ −2ðhðu; rÞ þ Kðu; x; yÞÞdu2 − 2dudr

þ Rðu; rÞ2
Pðx; yÞ2 ðdx

2 þ dy2Þ: ð3:1Þ

The scalar field is assumed to be a function of u and r only
[φðu; rÞ]. The dependence on rmeans that the scalar field is
not aligned (with respect to the direction given by its
gradient). From the Einstein equations and the field
equation for the scalar field

□φðu; rÞ ¼ 0 ð3:2Þ

[where □ is a standard d’Alembert operator for our metric
(3.1)], we obtained [1] the following expressions for
unknown metric functions and the scalar field:
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hðu; rÞ ¼ r
2UðuÞ

∂UðuÞ
∂u ;

Rðu; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðuÞ2r2 − C2

0

UðuÞ

s
;

Kðu; x; yÞ ¼ kðx; yÞ
2UðuÞ ;

kðx; yÞ ¼ ΔðlnPðx; yÞÞ;
Δkðx; yÞ ¼ α2;

UðuÞ ¼ γeω
2u2þηu;

φðu; rÞ ¼ 1ffiffiffi
2

p ln

�
UðuÞr − C0

UðuÞrþ C0

�
; ð3:3Þ

with this constraint between the constants appearing
above

ω ¼ α

2C0

: ð3:4Þ

Unlike the case of the vacuum Robinson-Trautman
spacetime (2.1), one needs to solve three Einstein equations
with the nontrivial right-hand side given by the stress
energy tensor of the scalar field. The relation corresponding
to the original Robinson-Trautman equation (2.3) is now
transformed into

2

�
2
R;r

R
H;r þH;rr

�
ðH þ KÞ þ 2

R;r

R
ðH þ KÞ;u

−
2

R
ðR;uH;r þ R;uuÞ þ

P2

R2
ðK;xx þ K;yyÞ ¼ φ2

;u: ð3:5Þ

One can recognize the double Laplacian in the last term on
the left-hand side [note the expression for K in (3.3)], and
the second term of (2.3) has its analog at the beginning of
the second line of (3.5). The main reason for the difference
between the vacuum (2.1) and the scalar field (3.1) case is
an incompatible separation of variables for the metric
function standing in front of the spatial part dx2 þ dy2.
In the vacuum case the dependence on coordinates is split
into frg and fu; x; yg, while in the scalar field case it is
fu; rg and fx; yg. Additionally, the scalar field case has
more nontrivial Einstein equations and also the scalar field
equation to satisfy. This led to a solution which is more
explicit rather than being left unintegrated as usual for the
vacuum Robinson-Trautman metric where it is possible to
prove the existence of a solution for the single Robinson-
Trautman PDE (2.3). Although both the vacuum (even with
pure radiation) and the scalar field Robinson-Trautman
solutions are of algebraic type II (see the Appendix), the
Ricci (or Segre) type is different, and, most importantly, the
scalar field is not aligned with the principal direction ∂r of
the Weyl tensor.

In the previous study [1], only a situation in which the
constants C0, α, η, γ, and ω satisfy C0 > 0, α > 0, η > 0,
and γ > 0 was studied and the position of a curvature
singularity and the existence of horizons was analyzed.
Namely, it was shown that the singularity seems initially
naked and only later it gets covered by the horizon. The
asymptotic behavior of the metric was only hinted at in the
original paper, and since it shares its form with the special
cases investigated later, we will first derive the metric form
when u → ∞.

IV. ASYMPTOTIC BEHAVIOR

To arrive at the asymptotic form of the general metric
(3.1) when u goes to infinity, one first notes that

Rðu; rÞ≃ r
ffiffiffiffiffiffiffiffiffiffiffi
UðuÞ

p
ð4:1Þ

for large values of u when parameter ω is nonzero in the
solution (3.3). Combining functions P and U together

Pðu; x; yÞ ¼ Pðx; yÞffiffiffiffiffiffiffiffiffiffiffi
UðuÞp ; ð4:2Þ

it is easy to see that

Kðu; x; yÞ ¼ kðx; yÞ
2UðuÞ ¼

ΔðlnPÞ
2

where kðx; yÞ ¼ ΔðlnPÞ ¼ P2ð∂xx þ ∂yyÞ lnP. Moreover,
noting that

P;u ¼ −
P

2
ffiffiffiffi
U

p ðlnUÞ;u;

one can express another metric function in a familiar form:

hðu; rÞ ¼ r
2
ðlnUÞ;u ¼ −rðlnPÞ;u:

Collecting these pieces together, we arrive at the metric

ds2 ¼ −½ΔðlnPÞ − 2rðlnPÞ;u�du2 − 2du dr

þ r2

P2
ðdy2 þ dx2Þ; ð4:3Þ

which is exactly of the original Robinson-Trautman form
(2.1) when m ¼ 0 and Λ ¼ 0. So in the asymptotic region
the generalized form of the Robinson-Trautman metric
evolves into a standard one with a vanishing mass param-
eter and without a cosmological constant. Such solutions
belong to the algebraic type-N subclass of the original
Robinson-Trautman spacetimes [8,9] and contain (apart
from a trivial flat solution) radiative solutions possessing a
singularity for certain values of x, y on each wave surface.
These combine into singular lines in the spacetime. As
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noted in Ref. [1] and repeated in the Appendix, the scalar
field family of the Robinson-Trautman type does not
contain these undesirable nontrivial type-N solutions,
and therefore the final asymptotic state is just a flat
spacetime (consistent with the vanishing scalar field in
the asymptotic region). The specific reason for the absence
of type-N solutions with singular lines is the separated form
of P (4.2), which is the result of the selected form of the
metric (3.1).
Note that the approach to the final asymptotic state

differs from the vacuum case. In the vacuum case the
behavior is described by a simple exponential (2.3), while
for the scalar field case the exponential depends quadrati-
cally on the retarded time [see (4.2) and (3.3)] provided
ω ≠ 0. In this case the solution with a scalar field can
additionally be extended to a negative infinite retarded
time, unlike in the vacuum case where the evolution
generally blows up due to the parabolic nature of (2.3).

V. BONDI MASS

There are many possibilities for how to compute a
“mass” characterizing a given spacetime and its content.
The definitions are built in such a way that they give
expected results in situations where the correct answer
seems obvious, like for the Schwarzschild solution with its
mass parameter. When the spacetime geometry is suitable
for a spacelike slicing, the most natural one is either the
Arnowitt-Deser-Misner mass [14] (asymptotic flatness is
usually assumed for the construction) or the Komar mass
[15] (suitable for stationary spacetimes). But because of the
standard formulation of the initial conditions for the
Robinson-Trautman class (they are given on a null hyper-
surface) and the ensuing evolution in the retarded time
direction, we use the concept best suited to such a situation
—the Bondi mass [3]. First, let us transform the original
metric (3.1) by the following change of variables (inspired
by Ref. [2]) and one redefinition of a function:

ρ ¼ r
ffiffiffiffi
U

p
; χ ¼ C0ffiffiffiffi

U
p ; d ~u ¼ duffiffiffiffi

U
p : ð5:1Þ

In terms of the new variables and the function χ, the scalar
field becomes

φð ~u; ρÞ ¼ 1ffiffiffi
2

p ln

�
ρ − χð ~uÞ
ρþ χð ~uÞ

�
ð5:2Þ

(note the similarity with the potential of a finite rod in
prolate ellipsoidal coordinates), and the metric simplifies
into the following one:

ds2 ¼ −kðx; yÞd ~u2 − 2d ~udρþ ρ2 − χð ~uÞ2
Pðx; yÞ2 ðdy2 þ dx2Þ;

ð5:3Þ

which gives an easier interpretation for the special cases in
the next section and is also suitable to investigate the global
evolution of the energy content in our spacetime. On the
other hand, the coordinate ~u cannot be integrated in a
closed analytic form.
Now, we perform a conformal transformation of (5.3), so

that the corresponding unphysical metric can be extended
to the future null infinity Iþ in a standard way. Since the
vector ∂ρ is normal to Iþ, we select an appropriate
conformal factor Ω ¼ 1=ρ and introduce a new coordinate
l ¼ 1=ρ for convenience. The unphysical metric d~s2 ¼
Ω2ds2 then reads

d~s2 ¼ −kðx; yÞl2d ~u2 þ 2d ~u dlþ 1 − χð ~uÞ2l2
Pðx; yÞ2 ðdy2 þ dx2Þ:

ð5:4Þ

The coordinates of this metric represent the asymptotic
Bondi coordinates near Iþ, and the tetrad adapted to Iþ
has the following form:

l ¼ −∂l;

k ¼ ∂ ~u þ
kðx; yÞl2

2
∂l;

m ¼ Pðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − χ2l2Þ

p ð∂x þ i∂yÞ: ð5:5Þ

Since our spacetime contains a free massless scalar field,
we have to use a generalization of the standard covariant
formula for the calculation of the Bondi mass (based on a
twistor equation) given in Ref. [5] (note the sign change
due to a different signature convention):

M ¼ 1

2
ffiffiffi
π

p
I

½Ψð0Þ
2 þ 2Λð0Þ þ σð0Þ _̄σð0Þ�dS: ð5:6Þ

In the above formula, there appear the leading-order terms
of expansions of the standard Newman-Penrose quantities
near the future null infinity. The integration is taken over a
constant u (or, equivalently, constant ~u) spatial sections of
Iþ. Since our spacetime is shear-free, the last term is
identically zero, while the first two combine to give

M ¼ −
1

2
ffiffiffi
π

p
I

χð ~uÞ2; ~udS ¼ C2
0UðuÞ;uffiffiffi
π

p
UðuÞ32

I
dS: ð5:7Þ

The surface area in the last expression is a finite positive
constant, and by inspecting the explicit form of UðuÞ we
can see that asymptotically the Bondi mass smoothly
decreases to zero. Also, the Bondi mass is completely
given by the scalar field and is identically zero when the
scalar field is switched off by putting C0 ¼ 0. This
confirms the previous result that our solution is related
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to the standard Robinson-Trautman geometry with a
vanishing mass parameter, since otherwise the Bondi mass
would contain an additional contribution proportional to
this parameter [4]. The natural interpretation of these
results is that asymptotically the scalar field completely
disappears, being radiated away along ∂ρ.

VI. SPECIAL CASES

Now we focus on special values of the parameters
determining the general solution. Specifically, we consider
the simplified form of metric (5.3) for the analysis.

A. Case C0 = 0

If we assume C0 is zero (χ ¼ 0), it means that the scalar
field vanishes, and the condition for ω (3.4) (if it should
remain finite) means that α should approach zero as well,
which leads to Δk ¼ 0. If we assume that the 2-spaces
spanned by x, y are compact, then the solution of the
Laplace equation is necessarily a constant (the only
harmonic functions on compact surfaces are constants).
Since we assume the 2-spaces to be regular, its Gaussian
curvature (determined by k) should be positive. Without
loss of generality, this constant can be chosen to be 1, and
we obtain a spherically symmetric situation, i.e.,

P2 → P2
0; k → 1;

where

P2
0 ¼ 1þ 1

4
ðx2 þ y2Þ:

It is convenient to choose dΩ2 ¼ ðdy2þdx2Þ
P2
0

so the metric

would be

ds2 ¼ −d ~u2 − 2d ~u dρþ ρ2dΩ2;

which is obviously a flat spacetime and all the components
of the Weyl spinor are zero.
As shown in Sec. IV, the final state of the asymptotic

evolution corresponds to a flat solution as well, so the case
of a vanishing scalar field just considered is the future
attractor for the general solution in the class.

B. Case α= 0

In this case, we have

Δkðx; yÞ ¼ α2 ¼ 0;

or, in other words, as in the previous case, kðx; yÞ is a
constant (k ¼ 1) and P ¼ P0. The metric functionsU and h
become [note that now ω ¼ 0 from (3.4)]

UðuÞ ¼ γeηu; hðu; rÞ ¼ ηr
2
;

so the original metric can be written in the following form:

ds2¼−
�
ηrþ 1

U

�
du2−2dudrþ

�
Ur2−

C2
0

U

�
dΩ2; ð6:1Þ

and all the Weyl scalars are zero except Ψ2:

Ψ2 ¼
C2
0

3UR4
ðU;ur − 1Þ:

Using the set of coordinates of the line element (5.3), the
metric simplifies to the form

ds2 ¼ −d ~u2 − 2d ~udρþ ðρ2 − χ2ÞdΩ2; ð6:2Þ

and the scalar field is retained in the form (5.2) with the
function χ having a specific form derived below. Since
ω ¼ 0, it is possible to solve the integral defining ~u in the
transformation (5.1) analytically, namely,

~u ¼ −
2

η
ffiffiffiffiffiffiffiffiffi
γeηu

p þ C; ð6:3Þ

where we can fix the constant of integration C by
demanding u ¼ 0 ⇒ ~u ¼ 0 to obtain

C ¼ 2

η
ffiffiffi
γ

p :

Now we can write U explicitly in terms of ~u:

Uð ~uÞ ¼ γ

ð1 − η
ffiffi
γ

p
2

~uÞ2
: ð6:4Þ

This expression has moreover a reasonable limit for η → 0
due to our choice of the constant C. In terms of the new
variables, the scalar field becomes

φð ~u; ρÞ ¼ 1ffiffiffi
2

p ln

�
Cρ − χ0ðC − ~uÞ
Cρþ χ0ðC − ~uÞ

�
; ð6:5Þ

where χ0 ¼ C0ffiffi
γ

p .

The Ricci scalar and the Kretschmann invariant are
giving the position of a curvature singularity

RicciSc ¼ 2χð2ρχ; ~u þ χÞ
ðρ2 − χ2Þ2

¼ 2C2χ20ð ~u − CÞ½2ρ − ðC − ~uÞ�
½C2ρ2 − χ20ðC − ~uÞ2�2 ð6:6Þ

(using a specific form of the solution)
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Kretschmann ¼ 3ðRicciScÞ2:

Obviously, the position given by the root of denominator
changes linearly in ~u. If one looks for an apparent or a
trapping horizon possibly covering the singularity, one
arrives at the following equation for the horizon hypersur-
face (derived from the condition for vanishing expansion of
a congruence orthogonal to a spherically symmetric section
of the horizon hypersurface):

ρh ¼ −ðχ2Þ; ~u: ð6:7Þ

For convenience, it is possible to write χ in terms of ~u,
namely,

χð ~uÞ ¼ χ0
C
ðC − ~uÞ;

so (6.7) would be

ρh ¼
2χ0
C

χð ~uÞ: ð6:8Þ

At the same time, we know that the singularity is at ρsin ¼
�χð ~uÞ using (6.6).
By a simple coordinate transformation, the metric (6.2)

and the scalar field (6.5) can be shown to exactly corre-
spond to the “nonstatic spherically symmetric massless
scalar field” solution discussed by Roberts [16]. The
presence of a horizon in this solution for certain values
of parameters is briefly mentioned in Ref. [17], where more
general spherically symmetric scalar fields with nontrivial
potentials are discussed.
Introducing a reparametrization of the retarded time v ¼

C − ~u (notice the reversal of the time direction) and an
auxiliary parameter a ¼ χ0=C, we can understand the
relative positions of the singularity and the horizon by
plotting them as in Fig. 1. From the plot, one sees that for
the range of values a ¼ −1=2…1=2 the singularity is
permanently naked while for the rest of the values the
horizon is always present above the singularity for positive
times v.
One can immediately recognize that the above time

reversal corresponds to changing from the retarded to the
advanced time. If one would not reverse the time orienta-
tion, one would start (for jaj > 1=2) with a singularity
covered by a large horizon at a negative time which would
gradually shrink and merge with the singularity at
time zero.
Note that now the original asymptotic value of u ¼ ∞

translates according to (6.3) into ~u ¼ C or v ¼ 0. There we
immediately obtain χ ¼ 0, and the scalar field (6.5)
vanishes as well.
Interestingly, the Bondi mass now becomes proportional

to the horizon position, which indicates that in this spheri-
cally symmetric and dynamical case the Bondi mass

(completely generated by the scalar field) plays the role
similar to a variable mass in the Vaidya spacetime [18] in
determining the horizon position.

C. Case ω= 0 and η= 0

If we assume both ω and η to be vanishing, then UðuÞ
becomes a constant

U ¼ γ;

and the whole geometry becomes obviously static and
spherically symmetric. In this case, the line element (6.2)
will simplify into

ds2 ¼ −d ~u2 − 2d ~ud~ρþ ð~ρ2 − χ20ÞdΩ2; ð6:9Þ

where ~ρ ¼ r
ffiffiffi
γ

p
and d ~u ¼ duffiffi

γ
p . Like in the previous case, all

the Weyl scalars are zero except Ψ2, which becomes

Ψ2 ¼ −
χ20

3ð~ρ2 − χ20Þ2
:

The scalar field is static as well:

φð~ρÞ ¼ 1ffiffiffi
2

p ln

�
~ρ − χ0
~ρþ χ0

�
: ð6:10Þ

The Ricci scalar and the Kretschmann invariant are,
respectively,

FIG. 1. Plot of the positions of the horizon (gray) and the
singularity (green) for a range of the advanced time v ¼ C − ~u
and the parameter a ¼ χ0=C.
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RicciSc ¼ 2χ20
ð~ρ2 − χ20Þ2

; ð6:11Þ

Kretschmann ¼ 3ðRicciScÞ2:

One can easily see that the singularity is naked in this case,
either directly from the metric (6.9) or by looking for
marginally trapped surfaces. The Bondi mass is now
vanishing, which might seem surprising at first but it is
exactly in accordance with the observation made in the
previous case that related the Bondi mass to the horizon
position—now the horizon is absent.
We can compare this static solution with the spherically

symmetric static solution of Janis, Newman, and Winicour
[19] in the coordinates given in Refs. [20,21]:

ds2 ¼ −fð ~RÞdt2 þ 1

fð ~RÞ fd
~R2 þ ð ~R2 −M2ÞdΩ2g; ð6:12Þ

in which

fð ~RÞ ¼
�
~R −M
~RþM

�1
μ ð6:13Þ

and the scalar field is ϕ ¼ A ln½fð ~RÞ� with the following
relation between constants: μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A2

p
. One immedi-

ately sees that in the limit μ → ∞ both the metric and the
scalar field become identical (up to a trivial introduction of
a null coordinate) to the static case given by (6.9)
and (6.10).
Another connection to the previously studied spacetime

can be found in the paper by Morris and Thorne [22]
studying traversable wormholes. Namely, the toy model of
a wormhole spacetime proposed there can be obtained from
(6.9) by a simple complex transformation of a constant
χ0 → iχ0. This evidently means that the curvature scalars,
e.g., (6.11), do not diverge anywhere and such a spacetime
avoids the region with singularity by possessing a sphere
with a minimal areal radius which is nonzero. The scalar
field becomes purely imaginary:

φ ¼ iffiffiffi
2

p arg

�
~ρ − iχ0
~ρþ iχ0

�
;

so its stress energy tensor (being quadratic in φ) violates
energy conditions as expected for a wormhole. Note that we
consider the change χ0 → iχ0 as a parametric transition in
our original Einstein-scalar field system of equations,
which means that we use the same definition for the stress
energy of a scalar field as in Ref. [1], namely, the standard
stress energy of a real scalar field. Of course, the stress
energy tensor of a true complex scalar field does not lead to
such a violation of the energy conditions needed here.
When ~ρ → ∞, the scalar field is still vanishing in this

case. The metric (6.9) is also evidently asymptotically flat.

But the area of the spherical surfaces ~ρ ¼ const, u ¼ const
grows quadratically with the coordinate ~ρ only far from the
central region, while close to the singularity ~ρ ¼ χ0 it grows
just linearly.

VII. IMAGINARY SCALAR FIELD

Inspired by Morris and Thorne traversable wormholes
[22], and the simple relationship between their wormhole
and our static solution (6.9), we apply a complex trans-
formation to the appropriate constant C0 → iC0 in the
general solution (3.1). First, the scalar field becomes purely
imaginary:

φðu; rÞ ¼ 1ffiffiffi
2

p ln
�
UðuÞr − iC0

UðuÞrþ iC0

�

¼ iffiffiffi
2

p arg

�
Ur − iC0

Urþ iC0

�
; ð7:1Þ

and the stress energy tensor (being quadratic in φ) violates
all energy conditions. Second, the metric functions change
accordingly:

Rðu; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðuÞ2r2 þ C2

0

UðuÞ

s
;

UðuÞ ¼ γe
− α2

4C2
0

u2þηu
: ð7:2Þ

The metric sourced by a purely imaginary scalar field
becomes

ds2 ¼ −
��

−
α2

2C2
0

uþ η

�
rþ kðx; yÞ

U

�
du2 − 2dudr

þ
�
Ur2 þ C2

0

U

� ðdx2 þ dy2Þ
Pðx; yÞ2 : ð7:3Þ

The Ricci scalar is

RicciSc ¼ 2C2
0UðU;ur − kÞ

ðU2r2 þ C2
0Þ2

; ð7:4Þ

and the Kretschmann invariant is again just its quadratic
expression (using the specific form of the solution)

Kretschmann ¼ 3ðRicciScÞ2:

This means that the curvature scalars do not diverge
anywhere and curvature singularities are absent in this
spacetime.
If we compute the expansion of the congruence asso-

ciated with the vector field ∂r,
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Θ∂r ¼
2U2r

U2r2 þ C2
0

; ð7:5Þ

we can see that by continuing the coordinate r to negative
values (note that r ¼ 0 is now neither a curvature singu-
larity nor a coordinate one) we have a spacetime where the
congruence ∂r changes sign at r ¼ 0. On the surface r ¼ 0,
u ¼ const (which has a nonzero area), we have not only
Θ∂r ¼ 0 but also ∂rΘ∂r > 0, so it is a genuine wormhole
throat satisfying the flare-out condition [23].
By looking at Fig. 2, one can recognize that the worm-

hole gets created only for a finite time close to the origin of
coordinate r. To show that this behavior is general (if we
consider α ≠ 0 and C0 ≠ 0), one can easily compute that
the expansion (7.5) has two extremes (a positive maximum

and a negative minimum) for u ¼ 2C2
0
η

α2
and r ¼ � C0

U .
Combining this with the asymptotic behavior of the
function U [its explicit form (7.2) shows that it vanishes
for both u → �∞] and the value of the expansion (7.5) for
r → �∞, one immediately concludes that the throat
structure analogous to that visualized in Fig. 2 is generic.
The asymptotic form of the metric (7.3) when u goes to

either positive or negative infinity is [note that now, unlike
in the case of a real scalar field (3.3), the function U
asymptotically vanishes exponentially fast (7.2)]

ds2 ¼ −
�
kðx; yÞ
U

�
du2 − 2dudrþ

�
C2
0

UP2

�
ðdx2 þ dy2Þ;

and the scalar field (7.1) becomes a constant − iπffiffi
2

p . The

absence of any dependence on the coordinate r in the two-
dimensional metric defined on the subspace spanned by x, y
evidently means that the expansion of the congruence
associated with the principal null vector ∂r is vanishing.
So this limiting form of geometry belongs to the Kundt
class [compare with (2.7) for vanishingW1 andW2], which
is a nonexpanding counterpart of the Robinson-Trautman
family.
The wormhole solution given above thus has genuine

Robinson-Trautman behavior for finite times but asymp-
totically (u → �∞) transforms into a Kundt geometry.
Specifically, it is related to a specific Kundt geometry
coupled to a scalar waves (with Λ ¼ 0) discussed in
Ref. [24].
The covariant (inverse trace) energy momentum tensor

and its trace are zero asymptotically, while the Weyl scalar

Ψ0 and the Ricci coefficient Φ00 →
−kðx;yÞ2
4C2

0

are nonzero.

This behavior just means that certain tetrad projections are
nonvanishing in the limit due to the behavior of the tetrad
vectors (or, in other words, the metric). On the other hand,
inspecting the Ricci scalar (7.4) and the Kretschmann scalar
in the asymptotic limit, one can see that the mentioned
divergences do not occur as a result of a strong curvature
singularity presence. Nonzero Ψ0 and Φ00 correspond to
the Kundt-type gravitational and scalar waves for both the
negative and positive infinite values of u (see the form of
the function U). One can interpret such a spacetime as
containing a scalar wave (necessarily accompanied by a
gravitational wave [24]) coming from infinity and focusing
to create a wormhole which is not stable and gets again
radiated away in the form of waves of both fields.
It is possible to rewrite the metric in the form similar to

the real scalar field case (5.3) using the transformation
(5.1):

ds2 ¼ −kðx; yÞd ~u2 − 2d ~udρþ ρ2 þ χ2

P2
ðdy2 þ dx2Þ: ð7:6Þ

VIII. CONCLUSION AND FINAL REMARKS

We have presented additional properties of the
Robinson-Trautman spacetime with a minimally coupled
free scalar field. This important class of nonsymmetric and
dynamical spacetimes was endowed with a scalar field
source only recently. Using the asymptotic form of the
solution and the Bondi mass, we have shown that the scalar
field is the only contribution to the energy of this solution
and the energy content of the solution decreases to zero at
the infinite retarded time. Accordingly, the geometry itself
becomes flat asymptotically. We have compared the
asymptotic behavior of the vacuum and the scalar field
solutions. The original investigation of the vacuum solution
asymptotics required extensive analysis carried out mainly

FIG. 2. Plot of the expansion of the congruence associated with
the vector field ∂r in coordinates r and u. All the arbitrary
constants are set to 1 for simplicity. The extremes are at the
positions u ¼ 2, r ¼ �1=e.
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by Chruściel and led to the Schwarzschild solution (or its
variants) as the final asymptotic state.
Next, we have considered several special subcases of the

general solution which all resulted in spherically symmetric
situations. The C0 ¼ 0 case leads to a flat spacetime, while
α ¼ 0 and ω ¼ η ¼ 0 cases retain the scalar field. In the
α ¼ 0 case both the scalar field and the geometry are
dynamical, while the ω ¼ η ¼ 0 case is completely static.
We have shown that the dynamical case is similar to the
Roberts solution while the static case corresponds to a limit
of the Janis-Newman-Winicour solution and is closely
related to the simple version of the Morris-Thorne worm-
hole. This last correspondence led us to investigate a
dynamical wormhole-type solution based on the general
Robinson-Trautman spacetime with an imaginary scalar
field. We showed that the wormhole throat appearance is
generic and the asymptotics (both future and past) is related
to a subclass of the Kundt geometry with a scalar field. This
provides a nontrivial connection between these two fam-
ilies of solutions to the Einstein equations on the level of a
single spacetime.
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APPENDIX: WEYL SCALARS

We present the Weyl scalars for the general solution (3.1)
and (3.3). Note that in the original paper [1] there are

typos in the Weyl scalars presented there. Our preferred
tetrad for determining the Weyl scalars of our solution is
given by

~l ¼ ∂r;

~k ¼ ∂u − ðhþ KÞ∂r;

~m ¼ Pffiffiffi
2

p
R
ð∂x þ i∂yÞ; ðA1Þ

where i is a complex unit. The Weyl spinor computed
from this tetrad has only the following nonzero
components:

Ψ0 ¼ −
1

4UR2
½fP2ðk;x − ik;yÞg;x − ifP2ðk;x − ik;yÞg;y�;

Ψ1 ¼
ffiffiffi
2

p
PR;r

4UR2
ðk;x − ik;yÞ;

Ψ2 ¼
C2
0

3UR4
ðU;ur − kÞ: ðA2Þ

As correctly computed in Ref. [1], the general algebraic
type is II, and in the special case of kðx; yÞ ¼ const > 0
(constant positive Gaussian curvature of a compact
2-space spanned by x, y) the algebraic type becomes D
consistent with spherical symmetry. However, our family of
solutions does not contain nontrivial type-N radiative
geometries that contain line singularities penetrating each
wave surface.
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