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Abstract
We study geodesics in the complete family of expanding impulsive gravita-
tional waves propagating in spaces of constant curvature, that is Minkowski,
deSitter and anti-deSitter universes. Employing the continuous form of the
metric we rigorously prove existence and global uniqueness of continuously
differentiable geodesics (in the sense of Filippov) and study their interaction
with the impulsive wave. Thereby we justify the ‘C1-matching procedure’
used in the literature to derive their explicit form.

Keywords: impulsive gravitational waves, geodesics, expanding impulses

1. Introduction

Impulsive gravitational waves for some time now have served as simple yet interesting
models of exact radiative spacetimes in Einsteinʼs theory describing violent but short bursts of
gravitational radiation, see e.g. [1, chapter 20]. Also they are spacetimes of low regularity
described either by a (locally Lipschitz) continuous metric or even by a distributional metric.
Consequently, these geometries are also interesting from a mathematical point of view,
raising questions in non-smooth Lorentzian geometry—a topic that has recently attracted
some attention (e.g. [2–6]).

Indeed, in the case of impulsive pp-waves [1, section 20.2], i.e., nonexpanding impulsive
waves in Minkowski space, the discontinuous transformation between the distributional
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Brinkman form of the metric and the Lipschitz continuous Rosen form has been put into the
mathematically rigorous framework of nonlinear distributional geometry in [7]. At the heart of
this result lies a good mathematical understanding of the geodesics in both forms of the metric.
With the long-term objective in mind to generalise this result to nonexpanding impulsive waves
propagating on all backgrounds of constant curvature with any cosmological constantΛ,
recently their geodesics have been studied in the continuous form [8] as well as in the dis-
tributional form [9] (using a 5D-formalism). In particular, in the continuous form it was
essential to use a general solution concept due to Filippov [10]—well known in ODE-theory—
to cope with the geodesic equation which has a discontinuous but bounded right-hand side.

In this work we transfer this approach to expanding impulsive waves, see e.g. [1, section
20.4–5]. More precisely, we consider the entire class of expanding impulsive waves propa-
gating on spaces of constant curvature—Minkowski space, de Sitter and anti-de Sitter uni-
verses (with vanishing, positive and negative cosmological constant Λ, respectively). It is
well known that the mathematical intricacies connected with the distributional form of the
metric and its relation to the continuous form are much more severe in the expanding case.
Nevertheless relevant progress has been achieved in [11–14]—although partly only formal.
On the other hand, using the continuous form of the metric the geodesics have been explicitly
described in [15] for Minkowski background and in [16] for general Λ. Both of these works
used a ‘C1-matching procedure’: the geodesics of the background spacetime on both ‘sides’ of
the impulsive wave were matched on the wave surface. However, to obtain the correct
number of equations to match all integration constants ‘before’ and ‘behind’ the wave
impulse it had to be assumed—without proof—that the geodesics are continuously differ-
entiable curves. It is the main objective of this work to supply such a proof.

We begin, however, in section 2 with a rather detailed review of the complete class of
expanding impulsive gravitational waves in spaces of constant curvature, including various
methods of their construction. In particular, we collect all the main forms of the metric in a
unified notation to also provide a point of reference for future work. We focus on particle
motion using the continuous form of the metric in section 3. We briefly review previous work
[15, 16] and derive the equations for the real form of the metric in section 3.1. Then, in
section 3.2 we employ the Lipschitz property of the continuous form of the metric which
allows for an application of Filippovʼs solution theory for ordinary differential equations with
discontinuous right-hand sides to solve the geodesic equations. In this way the existence and
the C1-regularity of the geodesics is obtained from a general result [17]. However, the quest
for uniqueness becomes delicate since it is no longer possible to argue on general grounds
(see [8, section 3.3]) but we have to combine arguments exploiting the geometry of the
spacetimes at hand with basic facts from Filippovʼs theory. In particular, we provide a
detailed study of the interaction of the geodesics with the wave impulse and in this way we
prove in section 3.3 that the geodesic equations possess globally unique continuously dif-
ferentiable solutions. This turns the ‘C1-matching procedure’, employed in [15, 16] and
reviewed in section 4, into a mathematically valid technique to explicitly derive the geodesics
that cross the impulse. Moreover, we also find (spacelike) geodesics that touch the impulse
which have not been considered in the context of the matching procedure so far.

2. Exact expanding impulsive gravitational waves in spacetimes of constant
curvature

Physically, impulsive gravitational waves arise most naturally as a limit of a suitable family of
sandwich waves with profiles of ever ‘shorter duration’ ε which simultaneously become
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‘stronger’ as e-1. Mathematically, this amounts to a distributional limit of a sequence of
sandwich profiles which converges to the profile δ, the Dirac function. An impulsive grav-
itational wave is thus localised on a single wave-front, which is a null hypersurface.

Interestingly, there exist several alternative methods of construction of such exact
expanding solutions to Einsteinʼs vacuum field equations. They will now be summarised and
compared, together with the appropriate references to original works.

2.1. The Penrose ‘cut and paste’ method

A fundamental geometric method for constructing impulsive (purely) gravitational spherical
waves, expanding in backgrounds of constant curvature, was introduced (for flat space) by
Penrose in his seminal work [18]. The general method starts with the following unified form
of Minkowski (L = 0) or (anti-)deSitter (L ¹ 0) spacetime
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In these coordinates, the hypersurface =U 0 is a future null cone (a sphere expanding
with the speed of light) since  hh- = - =U V U 0( ) ¯ . The Minkowski or (anti-)
deSitter manifold can thus be divided into two parts, namely <- U 0( ) inside the null
cone , and >+ U 0( ) outside of it.

The Penrose ‘cut and paste’ construction is based on re-attaching these two parts- and
+ with a particular ‘warp’ along , generated by an arbitrary complex valued function
h Z( ), see figure 1. Specifically, the Penrose junction conditions prescribe the identification
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ZZ

V

h

1
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of the corresponding points from the two re-attached parts across the expanding
sphere =U 0.

In [18] Penrose only considered the case L = 0,  = 0, see also [19, 20]4. The gen-
eralisation to the cases L ¹ 0,  = 0 and L = 0,  = +1 was found by Hogan in [22, 23],
respectively (see also [20] for arbitrary  ). The completely general form (3) and (4) was
subsequently found by Podolský and Griffiths [11, 12, 24].

2.2. Continuous coordinates

The Penrose ‘cut and paste’ method, although illustrative, does not provide explicit metric
forms of the complete spacetimes. We now do so, following and extending Hogan [23, 25],

4 A similar (yet different) ‘cut and paste’ construction was employed by Gleiser and Pullin [21] to obtain a specific
solution, namely a spherical impulse generated by a ‘snapping’ cosmic string in flat space, see also section 2.4.
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and perform another transformation of (1), generalising (2) but still linear in U and V, given
by
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and =h h Z( ) is as above. Interestingly, the coefficients (6) satisfy the non-trivial identities

       - = - = - + - - =0, , 1, 7¯ ¯ ¯ ¯ ( )
implying hh - = -U V U¯ ( ). The null cone  is thus again located along =U 0.

With the transformation (5) and (6), the metric (1) of any constant curvature space
becomes

⎡⎣ ⎤⎦
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥




=

+ + -

+ L -

=
¢¢¢
¢

-
¢¢
¢

s
V p Z UpH Z U V U

U V U

H Z
h

h

h

h

d
2 d d 2d d 2 d

1
,

with
1

2

3

2
. 8

0
2

2 2

1
6

2

2

∣( ) ¯ ¯∣

( )

( ) ( )

Figure 1.Minkowski or (anti-)de Sitter space is cut into two parts- and+ along a
future null cone . These parts are then re-attached with an arbitrary ‘warp’ in which
points on both sides of are identified. Such a construction generates spherical
impulsive gravitational waves expanding in these constant-curvature backgrounds.
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Notice that (5) and (6) reduce to (2) for the simplest choice =h Z Z( ) implying =H 0. We
now combine the line element (8) for >U 0 with the metric (3) for <U 0 to obtain

⎡⎣ ⎤⎦
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+ L -

+s
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U V U
d
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2 2

1
6

2

∣( ) ( ) ¯ ¯∣
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( )

where +U U( ) is the kink function defined as º+U U 0( ) for U 0 and º+U U U( ) for U 0,
i.e., = Q+U U U( ) where Θ is the Heaviside step function. This metric was presented for
L = 0 in [19, 23, 25, 26], for L ¹ 0 in [22], and in the most general form in [11, 12]5.

Since the kink function is Lipschitz continuous the metric (9) is locally Lipschitz in the
variable U. Thus, apart from possible singularities of the function H, the spacetime is locally
Lipschitz. Recall that by Rademacherʼs theorem a locally Lipschitz metric g (denoted by
Îg C0,1) possesses a locally bounded connection, and so the metric is well within the

‘maximal’ distributional curvature framework as identified by Geroch and Traschen [28]:
Indeed a metric of Sobolev regularity Ç ¥H Lloc

1
loc allows to (stably) define the curvature in

distributions, see also [29, 30]. Since locally Lipschitz metrics possess no bound on the
curvature (in ¥L ), the discontinuity in the derivatives of the metric introduces impulsive
components in the Weyl and curvature tensors, namely dY = p H V U4

2( ) ( ) and
dF = p HH V U U22

4 2( ¯ ) ( ). Clearly, the spacetime is thus conformally flat everywhere
except on the impulsive wave surface =U 0. It is a vacuum solution everywhere except at
=V 0 on the wave surface =U 0 where a curvature singularity (‘origin of the impulse’) is

located, and at possible poles of the function p H2 . Hence it is most natural to only consider
the region >V 0 of the spacetime.

The above procedure is an explicit version of the ‘cut and paste’ construction since by
comparing the transformations (2) at = -U 0 with (5), (6) at = +U 0 , we obtain exactly (4).

2.2.1. The geometrical meaning of the function h ðZ Þ. The generating complex function h Z( )
provides a geometric interpretation of the junction conditions (4), see [12, 19]: evaluating the
ratio h using (2) and (5) for <U 0 and >U 0, respectively, we find that on the impulse

 
h h

= = = =- +Z U h Z Ufor 0 , and for 0 . 10( ) ( )

By (1) we have h = + -x y t zi( ) ( ) in Minkowski and also (anti-)deSitter space, see [1,
chapter 4–5] or [16]. This is the relation for a stereographic projection from the North pole of
the sphere onto its equatorial plane. This permits us to represent the wave surface =U 0
either as a Riemann sphere or as its associated complex plane parametrised by the coordinate
Z. Accordingly, the Penrose junction condition (4) can equivalently be understood as a
mapping on the complex plane Z h Z( ).

This insight can be used to construct explicit solutions: for example, we may assume that
the region <U 0 inside the impulse represented by = fZ Z ei∣ ∣ covers the complete sphere,
f p pÎ - ,[ ). However, the range of the function h Z( ) in general will not cover the entire
sphere outside the spherical impulse for >U 0. In particular, the complex mapping

= d-h Z Z , 111( ) ( )

where d > 0, covers the plane minus a wedge as d p d pÎ - - -h Zarg 1 , 1( ) [ ( ) ( ) ). This
represents Minkowski, de Sitter, or anti-deSitter space with a deficit angle pd2 , which may
be considered to describe a snapped cosmic string in the region outside the spherical

5 Another continuous metric generalising (9) for L = 0 was found in [27], extending results for spherical shock
waves [20]. It contains an additional parameter related to acceleration of the coordinate system.
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impulsive wave. The string has a constant tension and is located along the axis h = 0. The
corresponding metric takes the form (9) with H generated from (11), i.e.

d d= - -H Z1 ,1

2

1

2
2( ) see [12] for more details. Also quantum fluctuations and aspects of

particle creation on such expanding spherical impulsive and shock waves were analysed (in
different coordinates) by Hortaçsu [26, 31] and his collaborators [32–34]. More generally one
may, e.g., construct impulsive waves generated by two colliding and snapping cosmic strings
[19], see also [12, 35].

2.2.2. Contracting and expanding impulses. Hogan in [36] has considered a natural
extension in which the impulse in addition to the future null cone is also located along the
past null cone. Such a spacetime contains both imploding and exploding impulses, with a
curvature singularity at the common vertex. We now extend Hoganʼs construction [36] to
arbitrary Λ and by introducing ¢ = -V V U and modifying (9) to


=

¢ + + + ¢ - ¢ + ¢

+ L ¢

+ +s
V U p Z U U H V V V G p Z U V
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d

2 d d 2 d d

1
. 122

2

1
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Here the two complex functions H Z( ) and G Z( ) characterise the expanding and the
contracting impulse, respectively. The complete null cone is now given by

hh - = ¢ =UV 0¯ , and the Weyl tensor components are dY = ¢p H V U4
2( ) ( ) and

 dY = - ¢p G U V0
2( ¯ ) ( ), with Y4 and Y0 representing the exploding and the imploding

impulse, respectively. Such a spacetime is algebraically general. At = = ¢U V0 there is a
highly complicated physical singularity.

2.3. Limits of sandwich waves

We now turn to the construction of expanding impulsive waves as distributional limits of
sandwich waves in a suitable family of exact radiative spacetimes—as mentioned at the
beginning of this section. It was explicitly argued in [11] that the full family of solutions for
expanding spherical gravitational waves can be considered to be an impulsive limit of the
class of vacuum Robinson–Trautman typeN solutions with a cosmological constant.

2.3.1. Robinson–Trautman sandwich waves. The standard metric [37, 38] of Robinson and
Trautman (see also [39] and [1, 40]6) reads

z z= + - + - Ls
r

P
u r r P r ud 2 d d 2 d d 2 2 log d , 13u

2
2

2 ,
1
3

2 2( )¯ ( ) ( )

in which the function z zP u, ,( ¯ ) has the general form [41]

= + z z
-P FF F F1 , 14, ,

1 2( ¯)( ¯ ) ( )¯

where z=F F u,( ) is an arbitrary complex valued function of u, holomorphic in ζ, and
 = - +1, 0, 1 determines the Gaussian curvature =K 2 of each wave surface =u const.
on =r 1, spanned byζ. For the simplest case z=F and L = 0 we obtain the metric (3) of
Minkowski space, with the identification =u U , =r V , z = Z , and =P p.

As shown in [37, 38] and the work by Newman and Unti [42], recently reviewed and
generalised in [43], the coordinates employed in (13) are the most natural ones for twist-free
spacetimes, having a clear geometrical meaning: consider any worldline γ in flat space. At

6 To achieve a consistency throughout this review we introduced an inversion  -u u as compared to [1]. Also
notice a different scaling gauge z z 2 , u u2 , r r 2 which gives the factor 2 in the term 2 .
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any event  on γ construct the future null cone t= =tC u{ }, where τ is the parameter value
of  along γ. The resulting family of null cones (locally) foliates the spacetime. Now,
introduce the coordinate r as the affine parameter along the null generators of Cτ, normalised
such that =r 0 labels  gÎ .7 Finally, introduce two spatial coordinates to label all points on
the sections =r const. on tC . In the case  = +1 this is a 2-sphere, most naturally
parameterised by q pÎ 0,[ ], f p pÎ - ,[ ) via z q fº tan 2 exp i( ) ( ).

The simplest choice is to consider special geodesic trajectories with velocity normalised
to - , i.e., a static timelike observer ( = +1), a null geodesic ( = 0), or a spacelike
(tachyonic with infinite speed) geodesic ( = -1). For these choices the hypersurfaces Cτ are
shown in figure 2. It can be seen that the most natural choice is  = +1 which gives a (global)
foliation of the spacetime. The cones nicely fit one into another and the wave surfaces at any
time form concentric spheres. It is thus the best candidate for performing the impulsive limit
of sandwich gravitational waves, resulting in the impulse located on a single
wavefront =u 0.

The family of such sandwich waves was introduced by Griffiths and Docherty in [44] and
further studied in [13] for all possible values of Λ and signs of  . The metric has the
Robinson–Trautman canonical form (13) and (14), with the function zF u,( ) taken to be

z z=F u, , 15g u( ) ( )( )

where g u( ) is any positive function of the retarded time u. Consequently

⎛
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( )

Figure 2. Upper part: the family of future null cones Cτ with vertices along a timelike
( = +1), null ( = 0), or a spacelike ( = -1) line foliate in three different ways
Minkowski space in the Robinson–Trautman form. Analogous foliations apply to
(anti-)de Sitter space, see [1]. Lower part: sandwich gravitational waves at a fixed time
for different values of are indicated by the shaded regions. All wavefronts =u const.
are spherical (hemispherical for  = -1) and expand with the speed of light. The inner
region <u 0 is free of topological defects, while the external region > >u u 01

contains a cosmic string (thick line) which ‘disintegrates’ within the sandwich (zigzag
line), generating the wave.

7 In fact, the vector field ¶r generates the (quadruply degenerate) principal null congruence which is geodesic, shear-
free, twist-free and expanding in the case of metric (13).
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where ¢ =g g u, , and z z z zY = - + ¢-r g g1 g g
4

1

2
2( )( ¯ )(∣ ∣ ∣ ∣ ) ( ) is the only nontrivial

component of the Weyl tensor. The solution is thus conformally flat (i.e., Minkowski or
(anti-)de Sitter background) if and only if g is a constant. In general, this is an exact
Robinson–Trautman gravitational wave with an arbitrary profile determined by g u( ).
Interestingly, the term Plog u,( ) in (13) and also Y4 are both proportional to the same wave
profile, namely ¢g g.

The simplest sandwich-wave is obtained using the continuous function g u( ) given by

= < = - Î = - > 17g u u g u au u u g u au u u1  for 0, 1  for 0, , 1  for ,1 1 1 ( )( ) ( ) [ ] ( )

where a u, 1 are positive constants [44], [1, section 19.2.3] so that ¢ = -g a within u0, 1[ ].
Outside this wavezone ¢ =g 0 so that the spacetime is (conformally) flat. However, ahead of
this sandwich wave in the region > >u u 01 there is a topological defect at z = 0 or z = ¥
(since <g 1) representing a cosmic string with the deficit angle pau2 1. The region <u 0
behind the wave contains no such defect (because =g 1). The solution (15) and (17) has thus
been interpreted as a breaking of a cosmic string in a conformally flat background in which
the tension of the string (deficit angle) reduces uniformly to zero. Such a cosmic string decay
generates a gravitational wave, see the lower part of figure 2.

The derivative of the function g given by (17) has discontinuities ¢ =g a∣ ∣ at =u 0 and
=u u1, so that there are shocks on the initial and final wave surfaces of the sandwich (for

discussion of spherical shocks see [20]). More general families of sandwich waves without
such discontinuities in the metric and Y4 can be constructed by considering smooth functions
g u( ). Moreover, if =g 1 on both sides of the sandwich, the Minkowski or (anti-)deSitter
background does not contain a cosmic string either in front of nor behind the wave.

2.3.2. Robinson–Trautman impulses. Using the model (17), it is easy to perform the
impulsive limit of such Robinson–Trautman sandwich waves by taking the limit u 01 ,
keeping g º >au 01 fixed. This yields the function [14]

g= < = - >g u u g u u1 for 0, 1 for 0, 18( ) ( ) ( )

i.e., = Qg u c uexp( ) [ ( )], where g= - <c ln 1 0( ) and Θ is the step function, in which
case

d¢ =g g c u , 19( ) ( )

where d u( ) is the Dirac delta. We thus indeed obtain an impulsive gravitational wave, with
the Weyl curvature tensor localised on the single wavesurface =u 0. Notice that the Dirac δ
also directly enters the metric via the Plog u,( ) term in (16). This leads us out of the Geroch–
Traschen class [28] of metrics, but due to the simple geometrical structure it is still possible to
calculate the curvature as a distribution. The ansatz (15) has also been generalised to obtain
sandwich and impulsive waves with a richer structure, for example two impulses or a bending
string, see [13].

Alternatively, the family of Robinson–Trautman typeN metrics (13) can also be
expressed in terms of García–Plebański coordinates [45, 46] as

y x= - + - - - Ls r f u u r rQ r ud 2 d d 2 d d 2 d , 202 2 2 1
3

2 2( )( ) ∣ ∣ ( )

where y xx= +1 ¯ , xf u,( ) is an arbitrary complex valued function, holomorphic in ξ, and
y x x= + - +x x

-Q f f f f2, ,
1( ¯ ) (¯ ¯)¯ , see also [20, 38]. This line element is related to (13) via

the transformation x zº F u,( ) with z=F f F u u, ,u, ( ( ) ), see [11, 47]. With the specific
choice (15) convenient for sandwich and impulsive waves, this corresponds to [14]
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x x x= ¢f u g g, log . 21( ) ( ) ( )

In particular, for (18) and (19) which represents a snapping string accompanied by an
impulsive spherical gravitational wave localised at =u 0, the functions are

⎛
⎝⎜

⎞
⎠⎟




x x d
xx
xx

x d= = +
-
+

f c u Q c ulog , 2 1
1

1
log , 22( )

¯
¯ ∣ ∣ ( ) ( )

see [14]. However, observe that the form of the metric (20) with (22) has to be considered as
being only formal, since it is quadratic in f and so explicitly contains a square of the Diracδ.

Finally, the Robinson–Trautman impulsive spacetimes (20) with x dºf f u( ) ( ) can also
be rewritten in the alternative form

⎡⎣ ⎤⎦




y x x d x d
=

- + - -

+ L -
s

v f u u u v u v Q u u

u v u
d

2 d d 2d d 2 d d

1
, 232

2 2 2 2

1
6

2

( ) ∣ ( ) ( ¯) ¯∣ ¯ ¯ ( ) ( ¯) ¯

¯ ( ¯)
( )

where the profile function xf ( ) is any complex valued (holomorphic) function of the spatial
coordinates ξ. This is obtained from the García–Plebański coordinates (20) by the
transformation

 ò=
+ L -

=
- L

=  =r
v

u v u
u

u

u
u u

1
,

d

1
such that 0 0, 24

1
6

1
6

2¯ ( ¯)
¯

¯
¯ ( )

implying d d=u u u ud d( ) ( ¯) ¯, with the spherical impulse again located on the null surface
=u 0¯ . Clearly, for any ¹u 0¯ the metric (23) is the Minkowski or (anti-)deSitter background

in the form (3) with the identification =u U¯ , =v V , x = Z (so that y = p). However, it also
has to be considered as only formal since again a square of the Dirac delta enters the metric.

The relation of (23) to the continuous metric form (9) for expanding impulsive waves
was found in [11]. Performing the discontinuous transformation

= + Q -x X U X X Xi i i j i
inv( )[ ( ) ], where xºx u v, ,i ( ¯ ), ºX U V Z, ,i ( ), and X Xi j

inv ( ) are
specific functions obtained by composing the inverse of (2) with (5), it is possible to put (23)
formally into the continuous form (9). This relation is obvious for ¹U 0 using the identity

 - = -u v u U V U¯ ( ¯) ( ) (trivially valid for <U 0 since =x Xi i, and also for >U 0 where
=x X Xi i j

inv ( ) since hh - = -U V U¯ ( ) due to the first identity in (7)). Keeping the
distributional terms arising from Θ and its derivative in the transformation, we formally
obtain also the impulsive terms proportional to δ and d2 in (23) with

x º = -f Z U Z0inv( ) ( ) . Of course, much technical work is still required before such a
discontinuous transformation can be put into a mathematically sound context.

2.4. Impulses generated by infinitely accelerating sources

Specific expanding spherical impulses can also be obtained from exact solutions for accel-
erating sources in the limit of unbounded acceleration. It was realised by Bičák and Schmidt
[48, 49] and corroborated by Podolský and Griffiths [50, 51] that such impulses can be
obtained from the family of boost-rotation symmetric solutions [52, 53] which describe the
gravitational field of uniformly accelerating objects, typically attached to conical singularities.

2.4.1. Limit of the Bonnor–Swaminarayan and related solutions. Of particular interest is a
special case of the Bonnor–Swaminarayan solution [54, 55] described by Bičák, Hoenselaers
and Schmidt in [56, 57] which represents two particles of the Curzon–Chazy type
accelerating in opposite directions. In the limit of infinite acceleration such a metric can be
written as
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f c= - + + -m m l-s v u v u u vd e d e d e d d , 252 1
4

2 2 1
4

2 2( ˜ ˜) ( ˜ ˜) ˜ ˜ ( )

where m = - =M const., l = Q - Q -uv uv M[ ( ˜ ˜) ( ˜ ˜)] for the two semi-infinite receding
cosmic strings located along the axis r º - =u v 01

2
( ˜ ˜) . The metric is only locally bounded

with λ suffering a finite jump of M2 on the null cone =uv 0˜ ˜ which again brings us out of the
Geroch–Traschen class [28]. The resulting spacetime is locally flat except on the expanding
sphere which is the impulsive gravitational wave, generated by two null particles which move
apart in the flat background and are connected to infinity by two semi-infinite strings.

It is possible to perform a transformation to coordinates in which the metric is Lipschitz
continuous [50]. It actually brings (25) exactly in the form of Gleiser and Pullin [21]
constructed via their ‘cut and paste’ method. Moreover, as shown in [50], this metric can be
cast in the classic form (9) with a real constant function H, for which, however, the geometric
interpretation in terms of the stereographic correspondence is more obscured.

The above construction has been extended in [50] to a much larger class of boost-
rotationally symmetric spacetimes allowing to attribute an arbitrary multipole structure to the
receding particles [57], which, however, vanishes in the impulsive limit.

2.4.2. Infinitely accelerating black holes. In the subsequent paper [51] Podolský and
Griffiths also investigated null limits of another well-know class of solutions with boost-
rotation symmetry, namely the C-metric. As shown in 1970 by Kinnersley and Walker [58],
such a metric represents a pair of uniformly accelerating black holes, each of mass m. Their
acceleration A is caused either by a strut between the black holes or by two semi-infinite
strings connecting them to infinity. In [51] the limit  ¥A was investigated,
demonstrating that (scaling m to zero such that =mA const.) it is again identical to the
metric of a spherical impulsive gravitational wave generated either by a snapping string, or
an expanding strut.

It was natural to expect that the analogous null limit of infinite acceleration  ¥A of a
more general C-metric with a cosmological constant L (see [59–62]), would generate an
expanding spherical impulsive wave (9) in the (anti-)deSitter Universe. Such limit turned out
to be mathematically more involved but was finally performed in [14] using the Robinson–
Trautman form extending (13) to typeD spacetimes. The limit yielded exactly the impulsive
metric form with z z=F u, g u( ) ( ) where = Qg u c uexp( ) [ ( )] and c is determined by mA, that
is (15), (18) and (19).

Further details on the various construction methods, related topics and references can be
found in the reviews [1, 63, 64].

3. Geodesics in expanding impulsive waves

In this section we focus on geodesics in expanding spherical impulsive waves propagating in
background spacetimes of constant curvature. Thereby we will exclusively use the continuous
form (9) of the metric. Also previous work on geodesics in these geometries was solely
concerned with this form of the metric. Note that this is in contrast to nonexpanding impulsive
waves where the distributional forms of the metric have also widely been used, see [8, section
3.1] for a brief overview as well as the recent work [9]. The reason is that in the expanding
case the distributional forms of the metric (13), (20), and (23) are more complicated than
those in the nonexpanding case and that (20) and (23), in addition, contain much wilder
singularities.
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Indeed, the explicit form of the geodesics in Minkowski spacetime with expanding
spherical gravitational impulses were presented in [15] using the metric (9) with L = 0. As
indicated in the introduction the method employed was a matching procedure where the
geodesics of the background on either side of the impulse were pasted together in a C1-
manner, i.e., by equating the corresponding positions and velocities at the time of interaction
with the impulse at =U 0. Strictly speaking, this procedure is mathematically justified only
in the case of the geometrically privileged family of geodesics with =Z const. while in the
general case it was assumed without proof that the geodesics indeed are C1-curves. In [16]
this procedure was generalised to the L ¹ 0 cases. To again employ the ‘C1-matching’
procedure it had to be assumed that all geodesics crossing the impulsive wave actually are
continuously differentiable curves. With this assumption, in all cases L > 0, L = 0, L < 0
the general results on the explicit form of the geodesics have been obtained and employed for
a physical discussion of geodesic motion in specific impulsive solutions, such as the
refraction of geodesics caused by the spherical impulse generated by a snapping cosmic
string, i.e., (9) with (11).

It is the main aim of this article to prove that the ‘C1-matching’ procedure is actually a
mathematically valid technique. This, in particular, includes an argument that the geodesics
are indeed curves of regularity C1, but actually more is needed (see [8, remark 4.1]). In fact,
we have to prove the following facts on the geodesics in the impulsive wave spacetimes:

• the geodesics heading towards the impulse cross it,
• they are unique, and
• they are continuously differentiable, i.e., of C1-regularity.

It is only under these circumstances that the matching of the geodesics of the background
spacetimes—by equating their positions and velocities at the instant of interaction with the
impulsive wave—is guaranteed to give the correct answer.

3.1. The geodesic equations

We will start out by explicitly deriving the geodesic equations in the real version of the
continuous metric (9) which will also enable us to perform a detailed analysis of the form and
the regularity of the resulting system of ordinary differential equations. We consider the
metric in the form (9):

⎡⎣ ⎤⎦



=

+ + -

+ L -

+s
V p Z U p H Z U V U

U V U
d

2 d d 2d d 2 d

1
, 262

2 2

1
6

2

∣( ) ¯ ¯∣

( )
( )

where = +p ZZ1 ¯ ,  = - +1, 0, 1, and again = ¢¢¢ ¢ - ¢¢ ¢H Z h h h h3 21

2
2( ) [ ( )( ) ] is the

Schwarzian derivative of an arbitrary complex function h Z( ). However, it will be more
convenient to work with the real form of (26) which we obtain by setting = +Z X Yi1

2
( ),

namely

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟R I





=
+ L -

+ +

+ - - + -

+

+

s
U V U

V

p
U p H X Y

U V H X Y H X Y U V U

d
1

1
d d

2 d d 2 d d 2d d 2 d ,

27

2
1
6

2

2

2
2 2 2 2 2

2 2 2

[ ( )]
∣ ∣ ( )

[ ( ) ( ) ( ) ]

( )
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which we will write as


w

= + -s
U V

g U V X X X U V Ud
1

,
, , d d 2 d d 2 d , 28ij

k i j2
2

2( )( )
( ) ( )

where

w = + L -U V U1 . 291
6

( ) ( )

Here R H( ) and I H( ) denote the real and imaginary parts of the complex valued function H,
respectively, and =X X Y,i ( ), =i 1, 2. The components of gij are explicitly given by

R= + ++ +g V p U p H U V H2 , 3011
2 2 2 2 2∣ ∣ ( ) ( )

R= + -+ +g V p U p H U V H2 , 3122
2 2 2 2 2∣ ∣ ( ) ( )

I= - +g U V H2 . 3212 ( ) ( )

Observe that—apart from singularities of pH—the first two components g11, g22 contain (in
that order) a smooth term, a term which is C1,1 (its first derivative is Lipschitz continuous),
and a Lipschitz continuous term, denoted as C0,1. The term g12 is just Lipschitz continuous.
Moreover, these three Lipschitz continuous terms in (30)–(32) are the only ingredients of
critical regularity, i.e., belowC1,1. Recall that by Rademacherʼs theorem, (locally) Lipschitz
continuous functions are differentiable almost everywhere with derivative belonging
(locally) to ¥L . Derivatives of the metric coefficients +U , +U2 will always be understood in
this sense.

The non-trivial contravariant components corresponding to the metric (28) are

w w w= = =g g g g, 2 , 0, and , 33UV VV UU ij2 2 2 ( )

where gij is the inverse matrix to gij. The only non-zero Christoffel symbols of (28) are:


w

w w
w
w

G = - + G = -g g
2

,
1

2
, 34UU

U
U V ij

U V
ij ij V, ,

,
,( ) ( )

  
w
w

w
w w

w wG = - G = G = - +2 , 2 ,
2

2 , 35VV
V V

VU
V V

UU
V

U V
, ,

, ,( ) ( )

⎜ ⎟⎛
⎝

⎞
⎠ 

w
w wG = + - +

g
g g2

1

2
, 36ij

V ij
U V ij V ij U, , , ,( ) ( )

d
w
w

d
w
w

G = - + G = - + G = Gg g g g
1

2
,

1

2
, . 37Vj

i
j
i V il

jl V Uj
i

j
i U il

lj U jk
i s

jk
i,

,
,

, ( )( )

Here Gs
jk

i( ) denotes the Christoffel symbols of the ‘spatial metric’ gij, and

w w= L = L -U V U, 2 . 38V U,
1
6 ,

1
6

( ) ( )

Observe that Gs
jk

i( ) , G ij
U , and G Vj

i , are Lipschitz continuous, while the Christoffel symbols

containing a U-derivative of gij, namely G ij
V and G Uj

i , are merely ¥L loc. All other Christoffel
symbols are at least Lipschitz continuous, hence not of critical regularity.

The geodesic equations thus take the following explicit form

⎜ ⎟⎛
⎝

⎞
⎠

w
w w

w
w

- + + - =U U g g X X¨ 2 1

2
0, 39U V

V
ij ij V

i j
, ,

2 ,
,( ) ˙ ˙ ˙ ( )
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⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

  

 

w
w

w
w w

w w

w
w w

- + - +

+ + - + =

V V VU U

g
g g X X

¨ 2 4
2

2

2
1

2
0, 40

V V
U V

ij
U V ij V ij U

i j

, 2 ,
, ,

2

, , , ,

˙ ˙ ˙ ( ) ˙

( ) ˙ ˙ ( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠d

w
w

d
w
w

- - - - + G =X g g VX g g UX X X¨ 2 2 0. 41i
j
i V il

jl V
j

j
i U il

jl U
j s

jk
i j k,

,
,

,
˙ ˙ ˙ ˙ ˙ ˙ ( )( )

In terms of regularity, observe that all of the above equations contain Lipschitz continuous
terms, which, from the perspective of classical ODE-theory, pose no problem at all. However,
the V- and the X-equations in addition contain the ¥L loc-terms gij U, , which force us to go
beyond classical existence theory for ODEs. Also observe that the system is ‘fully coupled’—
in contrast to the nonexpanding case and pp -waves in particular—so that we cannot decouple
either of the equations from the rest of the system.

To apply the Filippov solution theory in the following subsection, we need to rewrite the
geodesic equations (39)–(41) in first order form. Thus, the resulting system is

= = =U U V V X X, , , 42i i˙ ˜ ˙ ˜ ˙ ˜ ( )

⎜ ⎟⎛
⎝

⎞
⎠

w
w w

w
w

= + - -U U g g X X
2 1

2
, 43U V

V
ij ij V

i j
, ,

2 ,
,

˜̇ ( ) ˜ ˜ ˜ ( )

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

  

 

w
w

w
w w

w w

w
w w

= - + +

- + - +

V V VU U

g
g g X X

2 4
2

2

2
1

2
, 44

V V
U V

ij
U V ij V ij U

i j

, 2 ,
, ,

2

, , , ,

˜̇ ˜ ˜ ˜ ( ) ˜

( ) ˜ ˜ ( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠d

w
w

d
w
w

= - + - - GX g g VX g g UX X X2 2 , 45
i

j
i V il

jl V
j

j
i U il

jl U
j s

jk
i j k,

,
,

,
˜̇ ˜ ˜ ˜ ˜ ˜ ˜ ( )( )

which is now a first-order system with discontinuous right-hand side.

3.2. Existence of C1-geodesics

Geodesic equations with discontinuous right-hand side have recently been solved in the class
of nonexpanding impulsive gravitational waves by going beyond classical ODE-theory. More
precisely, in [65] the geodesics in impulsive pp-waves have been treated using Car-
athéodoryʼs solution concept (see e.g. [10, chapter 1]), using the fact that there the U-equation
decouples from the rest of the system. In the case of nonexpanding impulsive waves with
non-vanishing Λ, the U-equation is coupled to the spatial equations, which made it necessary
to go even beyond Carathéodory theory. In fact, employing the more general Filippov
solution concept [10, chapter 2] in [8] we were able to prove existence, uniqueness, and C1-
regularity of the geodesics in all nonexpanding impulsive gravitational waves on constant
curvature backgrounds, thus justifying the previous use of the ‘C1-matching procedure’ in
these geometries.

Given the fact that in the present case the geodesic equations (42)–(45) are all coupled
together, we will also employ the Filippov solution concept. For a short review we refer to
[66] and for the present context to [8, appendix]. The key idea is to replace the discontinuous
right-hand side  Ê F D: d d of a first order system of ODEs
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=z t F z t t Iin some interval , 46˙ ( ) ( ( )) ( ) ( )

by the set-valued function defined as

 º
d m

d
> =

F z F B z Sco ,
S0 0

[ ]( ) ⋂ ⋂ ( ( ( )⧹ ))
( )

where Aco( ) denotes the closed convex hull of a set A (i.e., the intersection of all closed and
convex supersets of A), dB z( ) is the closed Euclidean ball around z of radius δ, and μ is the
Lebesgue measure. Hence  F[ ], the Filippov set valued map associated with F, averages the
values of F in a neighbourhood of a point z of discontinuity in the following precise sense:
 F z[ ]( ) is given as the intersection of convex hulls of the images under F of shrinking closed
balls around z, while ignoring sets S of measure zero. Clearly at points Îz D where F is
continuous the set  F z[ ]( ) is the singleton F z{ ( )}, hence if F is continuous everywhere, the
classical theory is recovered.

Finally, a Filippov solution of (46) on an interval Ía b I,[ ] is an absolutely continuous
curve z a b D: ,[ ] , that satisfies the differential inclusion

Îz t F z t 47˙ ( ) [ ]( ( )) ( )

almost everywhere. Recall that a curve z a b: , d[ ] is said to be absolutely continuous if
for every e > 0 there is a d > 0 such that for all collections of non-overlapping intervals

=a b,i i i
m

1([ ]) in a b,[ ] with då - <= b ai
m

i i1( ) we have that eå - <=  z b z ai
m

i i1 ( ) ( ) .
Moreover, recall that an absolutely continuous curve is continuous and differentiable almost
everywhere.

Of course, if on a subdomain of D the right-hand side F is continuous, any Filippov
solution is also a classical C1-solution of (46) there. However, Filippov solutions exist under
much more general conditions. In particular, the question of existence and regularity of the
geodesics follows from a general result for locally Lipschitz continuous semi-Riemannian
metrics, as in [8]:

Theorem 3.1 (Theorem 2 in [17]). Let M g,( ) be a smooth manifold with a C0,1-semi-
Riemannian metric g. Then there exist Filippov solutions of the geodesic equations which are
C1-curves.

This immediately translates to our setting (28) to yield:

Corollary 3.2 (Existence). For the entire class of expanding impulsive gravitational waves
on any background of constant curvature described by the continuous form of the metric (9)
with smooth H we have: given a point  and any direction Îv T M there exists a solution in
the sense of Filippov to the geodesic equation with this initial data, which is a C1-curve.

The regularity of the geodesics is actually slightly better. Their velocity is even abso-
lutely continuous, a fact which we will also use in the next subsection.

Remark 3.3 (Local existence for non-smooth H). In physical models of expanding
impulses the function H may have singularities. For example, in the case of a spherical
impulse generated by a snapped cosmic string (11), described by d d= - -H Z11

2

1

2
2( ) ,

there is a pole at =Z 0 corresponding to the location of the string. However, in general we
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still have local existence of geodesics in any region where H is sufficiently smooth (for any
¹Z 0 in the above case).

Hence we are provided with the existence of C1-geodesics, and we now turn to the more
subtle issues of uniqueness and the fate of geodesics reaching the wave impulse.

3.3. Uniqueness of geodesics and crossing of the impulse

Observe that uniqueness of geodesics is lost in general locally Lipschitz spacetimes. In fact,
the threshold for unique (even classical) solvability of the geodesic equation is the regularity
class of C1,1-metrics. If one lowers the regularity only slightly below C1,1, e.g. by considering
metrics in any Hölder class aC1, with a < 1, classical counterexamples (in the Riemannian
case) due to [67, 68] not only show the failure of uniqueness but also of the usual local
convexity properties. However, in the present case the metric in addition to being locally
Lipschitz is also smooth off a null hypersurface. In particular, it is piecewise smooth and
uniqueness of geodesics only becomes an issue at points on the wave impulse. Indeed,
uniqueness of the geodesics can be established combining results from [10, section 2.10, p
106] with geometric arguments.

In fact, recently we have applied this approach to investigate geodesics in spacetimes
with nonexpanding impulses [8]. The core of this argument rested on the fact that the null
hypersurface which supports the impulse is totally geodesic. This is clearly not true in the
present case of expanding impulses since  = =U 0{ } is a null cone. Complementarily, the
methods to be employed here could not have been used for the nonexpanding case. To be
more precise, the main reasons allowing for a direct geometric approach are:

• the terms in the U-equation (39) are continuous (as opposed to the nonexpanding
case), and

• in case of geodesic velocities tangent to  , we exploit the fact that the essentials of the
geometry of null hypersurfaces are also valid in C0,1-spacetimes.

First, let us elaborate on the first point above. Let g = U V X, , i( ) be a geodesic given by
corollary 3.2 and recall that γ is C1. Thus, since ω is smooth, gij and gij V, are (Lipschitz)

continuous and U̇ , Xi˙ are continuous, we see that the terms in the U-equation (39) are
continuous. Consequently, the component of the Filippov set-valued map corresponding to
the U-equation is just singleton-valued (see section 3.2) and so U satisfies (39) almost
everywhere. Moreover, U̇ is absolutely continuous so Ü satisfies (39) everywhere, thus
U isC2.

Second, observe that even for a continuous metric it is true that vectors tangent to a null
hypersurface  , with null normal vector field L (i.e.,  = ^T L ), are either null and
proportional to L, or spacelike. Actually the classical argument carries over verbatim.
Moreover, in a locally Lipschitz spacetime we have that the Levi-Civita connection satisfies
the metric property (i.e.,  =g 0 almost everywhere, see [29, 30]) and hence again the
standard argument applies to show that the integral curves of L are geodesics that generate  .
Consequently, in our case, we may call ¶V the null generator of  . However, any geodesic
starting at a null cone in the direction of a spacelike tangent vector immediately leaves the
null cone. In our case this is manifestly seen from the fact that at  the equation for U takes
the form
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-
L

- + =U VU
V

p
X Y¨

3
0, 482

2
2 2˙ ( ˙ ˙ ) ( )

using that U is C2. Because we have >V 0 globally, this allows for trivial solutions =U 0
(and thus = =U U0 ¨˙ ) only if g = ¶ + ¶ + ¶V X Y0 V X Y˙ ( ) ˙ ˙ ˙ is proportional to ¶V , the null
generator of  (otherwise + ¹X Y 02 2˙ ˙ , violating (48)).

With these preliminary observations, our strategy is now to directly use results of [10,
section 10.2] and combine them with geometric arguments. To fix notations, assume that

ÍD d is connected and separated by a smooth hypersurface N into two domains +D and
-D . Let F and ¶

¶
F

xi , = ¼i d1, , , be continuous in +D and -D . Denote by +F (respectively -F )
the extensions of +F D∣ (respectively -F D∣ ) to the boundary N and write +Fn and -Fn for the
projections of + -F F, onto the normal to N directed from -D to +D at the points of N. Now
we have:

Lemma 3.4 (Sufficient conditions for uniqueness, lemma 2.10.2 in [10]). If for Îz N0 we
have >+F z 0n 0( ) , then in the domain +D there exists a unique Filippov solution of (46)
starting atz0. Analogous assertions hold for -D and <-F z 0n 0( ) .

We now translate our problem into the language of the above result. To this end we
rewrite the geodesic equations (39)–(41) in first order form (42)–(45) in the 8 variables

= ¼ = =m mz z z x x U V X U V X, , , , , , , , , 49i i1 8( ) ( ˙ ) ( ˜ ˜ ˜ ) ( )

(m = ¼0, ,3 and =i 1, 2) with the equation taking the form

= = -Gab
m g a bz F z U V X x x x, , , . 50i˙ ( ) ( ˜ ˜ ˜ ( ) ˙ ˙ ) ( )

Since the impulse is located at the null hypersurface  = =U 0{ } we define
 >+ U 0≔ { } to be the ‘outside’ of the null cone, and set  <- U 0≔ { } to be its
‘inside’. Analogously we define ÍN 8 by Î º º =N z z x U: 08 1 0≔ { } and set

Î >+D z z: 08 1≔ { } and Î <-D z z: 08 1≔ { }. Then the first standard unit vector
Îe1 8 is a normal to N pointing from -D to +D and hence = =+ -F F Un n

˙ .
Now consider a geodesic g = U V X T M, , : 0,i( ) [ ) of corollary 3.2 which starts at

a point  g = Î +0( ) ‘outside’ the null cone, i.e., with = >U U0 00( ) and that meets the
impulse located at the null cone =U 0{ } (for the first time) at a parameter value ti. With these
assumptions, we clearly have t <U 0˙ ( ) for all t t< i near enough to ti, and so by the C1-
property of the geodesics tU 0i˙ ( ) . We now distinguish two cases:

(1) γmeets  transversally, i.e. t <U 0i˙ ( ) , and
(2) γ meets  tangentially, i.e. t =U 0i˙ ( ) .

In the first case, clearly lemma 3.4 applies to guarantee that γ continues uniquely to
negative values of U (i.e., to the ‘inside’ of the null cone -). Also, this case is ‘time
symmetric’, that is if a geodesic starts with negative U-values (i.e., ‘inside’ the cone, that is in
-) and hits  transversally then it continues uniquely to positive values of U, (i.e., to the
‘outside’ +).

At this point we make the following essential observation: for geodesics γ in the sense of
theorem 3.1 in general C0,1-spacetimes the scalar product of their tangent g gg ,( ˙ ˙ ) and hence
their causal character is not necessarily preserved: indeed, the usual argument fails since ġ
only needs to obey an inclusion relation (at almost all points) rather than g =g 0˙˙ .
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Returning to our case and to a geodesic γ of corollary 3.2 starting in + we clearly have
that g t g t g g=g g c, 0 , 0( ˙ ( ) ˙ ( )) ( ˙ ( ) ˙ ( )) ≕ as long as γ stays in+, i.e., for t t< i, since there
it satisfies the smooth geodesic equation. Moreover, by the C1-property we have that also
g t g t =g c,i i( ˙ ( ) ˙ ( )) . However, unless we know that γ only hits  in isolated points we

cannot infer that g g =g c,( ˙ ˙ ) globally, since, in principle, γ could stay for some time within
the wave surface  and there its derivative again would only satisfy the inclusion relation
(almost everywhere). We will, however, prove in the course of our discussion that this does
not happen and that all geodesics γ starting in+ (respectively in-) and hitting  only do
so in isolated points and hence the scalar product of their tangent as well as their causal
character is globally preserved.

In fact, we have already (almost) established this for case (1), i.e., for all geodesics γ

hitting  transversally either from the ‘outside’ or from the ‘inside’. By the above, all such γ

uniquely continue immediately to the ‘inside’ (respectively to the ‘outside’) and hence
g gg ,( ˙ ˙ ) is preserved. This completely settles the case for all causal (i.e., timelike or null)

geodesics of case (1) since they cannot hit the null cone  twice. All such γ are globally
unique solutions of the respective initial value problem and moreover they meet  at the
single instant ti of (parameter) time which finally implies that g gg ,( ˙ ˙ ) is globally preserved.

We are left with γ of case (1) starting out spacelike in + and hitting  . Again γ enters
the interior - immediately with unchanged g gg ,( ˙ ˙ ), hence stays spacelike and will even-
tually hit  again. By an argument given below it actually again hits transversally. Then by
our above discussion of the ‘time symmetric’ case, γ again crosses  uniquely and proceeds
in a spacelike manner back to the ‘outside’. So such γ again are globally unique solutions of
the respective initial value problem meeting  at two isolated instants of (parameter) time
and finally g gg ,( ˙ ˙ ) is globally preserved. This now completely settles case (1).

Turning to case (2), we first note that the scalar product of the geodesic tangent upon
hitting the impulse satisfies

g g = - + +t t
t t

=
=

g U V U X Y, 2 , 51V

p
2 2

i

i

2

2( )(˙ ˙ )∣ ˙ ( ˙ ˙ ) ( ˙ ˙ ) ( )

which in case (2) (that is, γ hits  tangentially) further simplifies to

g g = +t t
t t

=
=

g X Y, 0, 52V

p
2 2

i
i

2

2( ˙ ˙ )∣ ( ˙ ˙ ) ( )

since in this case t =U 0i˙ ( ) . By the above discussion this is impossible for all geodesics γ
that started out timelike in + (respectively -). Hence for such γ we find ourselves
exclusively in case (1) which we have already settled: hence we are done with all timelike
geodesics.

To deal with case (2) we thus only need to consider geodesics that start out either null or
spacelike in + and we will distinguish two subcases:

(2a) g ti˙ ( ) is null,
(2b) g ti˙ ( ) is spacelike.

In case (2a), g ti˙ ( ) is actually proportional to the null generator ¶V of  and if we were in
a smooth spacetime we could conclude immediately by uniqueness that γ could not have
started in + in the first place. In our situation we have to be more careful and argue as
follows: The geodesic γ for t t< i lies in + hence satisfies the smooth geodesic equation
and consequently, by the C1-property, g t g t g t g t= =g g0 , ,i i( ˙ ( ) ˙ ( )) ( ˙ ( ) ˙ ( )) for all t t< i.
So γ is a null geodesic also for t t< i, that is in +, and hence also a (smooth) null geodesic
in the background spacetime, which by assumption hits  tangentially. By the continuity of
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its tangent, it also hits  tangentially in the background spacetime, which is clearly not
possible. So such a γ does not exist, and similarly in the ‘time symmetric’ case there does not
exist any null geodesic γ starting in the ‘inside’ - of the null cone and hitting  tan-
gentially at t t= i with g ti( ) being a null vector.

This argument also proves the fact that if a geodesic g = U V X, , i( ) in the sense of
corollary 3.2 at some parameter value t0 satisfies t =U 00( ) and g t0˙ ( ) is proportional to the
generator ¶V of  , then γ lies entirely in  . Then it even follows that γ is one of the null
generators: its velocity being tangent to  is either null and in ¶span V( ) or spacelike. The
latter possibility is ruled out since it would cause γ to leave  and consequently the V-
equation (40) reduces to =V̈ 0.

Thus also the solutions of the geodesic equation with data g Î0( ) and g 0˙ ( ) null are
unique. Moreover the argument to be laid out in the following paragraph also establishes this
fact for spacelike g 0˙ ( ). Observe that it is the geometry that leads to this conclusion, which
seems rather unexpected just from looking at the equations which in this case are merely
differential inclusions.

Finally, we are left with discussing case (2b), where we know already that γ started out in
+ as a spacelike geodesic. Using the conditions t t= =U U0i i( ) ˙ ( ) the geodesic
equation (39) implies

t = + >
t t=

U X Y¨ 0, 53i
V

p
2 2

i
2( ) ( ˙ ˙ ) ( )

where positivity follows from condition (2b) inserted into (52) and keeping in mind that we
have >V 0 anyway. Hence U has a strict local minimum at ti, and consequently γ which
started in + with positive values of U returns to positive U-values, hence touches  just at
the single instant ti and continues uniquely into + as a spacelike geodesic. In particular, it
stays outside the null cone and actually is a geodesics of the background outside the impulse,
hence smooth. To end this discussion, observe that here no ‘time symmetric’ case exists, since
a geodesic starting with negative U-values, i.e., in- cannot attain t =U 0i( ) and at the same
time have a minimum at ti. Hence this excludes the existence of geodesics spacelike in the
‘inside’ and hitting  tangentially, a fact which we have already used above.

Summing up, we have proved that all geodesics of corollary 3.2 are unique solutions of
the respective initial value problem. Moreover we have gained complete information on their
behaviour when meeting the impulse:

Theorem 3.5 (Uniqueness). For the entire class of expanding impulsive gravitational
waves on any background of constant curvature described by the continuous form of the
metric (9) with smooth H we have: given any point  and any direction Îv T M there exists
a unique C1-solution γ in the sense of Filippov to the geodesic equations with this initial data.
Moreover, if such a geodesic meets the impulsive wave located at  = =U 0{ } at all, it is
either one of its null generators or it hits it in isolated points.

Consequently we globally have:

Corollary 3.6 (Preservation of causal character). The geodesics g of theorem 3.5 satisfy

g g =g , constant, 54( ˙ ˙ ) ( )
and, in particular, the causal character of g can be defined globally.
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Another conclusion to be drawn from the above discussion and theorem 3.5 concerns the
actual behaviour of the geodesics starting off the wave impulse and hitting it:

Corollary 3.7 (Crossing the expanding impulse). The geodesics of theorem 3.5 that start
off the wave surface  = =U 0{ } and hit it at all, do so in isolated points either

(a) transversally and pass from the ‘outside’ + to the ‘inside’ -, or vice versa, or
(b) tangentially, in which case they are spacelike and come from the ‘outside’+ and revert

to the ‘outside’ + again.

Remark 3.8 (Uniqueness for non-smooth H). If the function H has singularities then, given
arbitrary initial data, the geodesic equation possesses locally defined unique C1-solutions in
any region where H is sufficiently smooth.

Finally, we see that all the necessary facts have been established to state our main
achievements on the geodesics in all expanding impulsive gravitational waves propagating in
constant curvature backgrounds with any cosmological constant Λ:

(1) The ‘C1-matching procedure’ is a mathematically valid method to explicitly describe the
form of the geodesics that cross the wave impulse (i.e., those of corollary 3.7(a)).

(2) We have found geodesics that just touch the impulse, i.e., those of corollary 3.7(b),
which are not not covered by the ‘C1-matching8’ and which are actually geodesics of the
background spacetime outside the impulse and, in particular, smooth.

Remark 3.9 (Completeness). Note that the geodesic completeness depends crucially on the
topology ‘outside’ the impulse (assuming, as usual, that the ‘inside’ is a part of the
background spacetime without topological defects like cosmic strings). Therefore, no general
statements can be made about the completeness of the geodesics given by theorem 3.5.
However, since we proved that geodesics that hit the impulse either cross it to- or return to
+, the impulsive wave surface is no obstruction to locally continue the geodesics. Thus the
only obstructions can come from global topological effects.

4. Explicit C1-matching of geodesics crossing the impulse

To complete our investigation, in this final section we summarise the main results on the
refraction of geodesics by expanding impulses, as derived previously in [15, 16], that have
now been rigorously justified by the results of section 3.

The idea of such a ‘C1-matching procedure’ is based on the fact that the geodesics
crossing the impulsive wave surface  are uniquely defined C1-curves in the continuous
coordinates (9) hence their positions and velocities at the instant of interaction are the same on
both sides of  .

To directly observe the influence of such an expanding impulse, it is beneficial to employ
relations (2) and (5), and to transform the explicit components of the interaction position and
velocity (denoted by the subscript i) of the global C1-geodesics from the continuous

8 Indeed, if one applies the matching to such geodesics it becomes trivial in the sense that one has to apply the same
transformation (5) twice (instead of (5) in the outside and (2) in the inside, see section 4). Hence the constants from
both sides agree, which is of course in perfect agreement with the fact that these geodesics are just (smooth)
geodesics of the background outside the impulse: They do not ‘feel’ the impulse at all.
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system(9) into the coordinate system(1), naturally associated with the background spaces of
constant curvature. We do so separately in the regions outside the impulse ( >U 0, the
superscript +) using (5), and inside of it ( <U 0, the superscript −) using (2). By combining
these expressions we explicitly relate the parameters of a geodesic approaching the impulse
from the region >U 0 to the unique one describing its continuation in the region <U 0. For
the relation between the positions we thus get

    h h= ¢ = ¢ = ¢- + - + - +h
Z

h
h h

Z

h
, , , 55i

i
i i i i

i
i

2

2
∣ ∣ ∣ ∣

∣ ∣
∣ ∣ ∣ ∣ ( )

while the relation between the velocities is
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and  =c c¯ ,  =c c¯ . In accordance with corollary 3.6 the velocities preserve the

normalisation, namely    h h h h- = -- - - - + + + +
i i i i i i i i˙ ¯̇ ˙ ˙ ˙ ¯̇ ˙ ˙ .

All the coefficients are just constants which are obtained by evaluating the specific
function h Z( ) and its derivatives at =Z Zi using h= + +h Zi i i( ) , see (10). Interestingly,
these refraction formulas do not depend on the curvature parameter ò. Naturally, in the trivial
case =h Z Z( ) , i.e., =H 0, they reduce to the identity, which is consistent with the fact that
there is no refraction effect in the absence of an impulse.

5. Conclusion

By employing the continuous form of the metric and the Filippov solution concept, we
rigorously proved existence and global uniqueness of C1-geodesics crossing expanding
impulsive gravitational waves which propagate in spaces of constant curvature, that is
Minkowski, deSitter and anti-deSitter universes. Thereby we have studied the interaction of
free test particles with such impulsive waves and we have mathematically justified the ‘C1-

Class. Quantum Grav. 33 (2016) 195010 J Podolský et al

20



matching procedure’ previously used in the literature to derive the explicit form of these
geodesics.

This work can be understood as a first step in the long-term project of understanding the
suspected equivalence between the distributional form (20) or (23) of the expanding wave
metric and its continuous form (9). To this end we need to understand the behaviour of the
geodesics in a very precise manner, since they give the key to the ‘discontinuous coordinate
transformation’ relating the various forms of the metric, see [7] for the pp-wave case. Such
discontinuous transformations will be subject to further investigations, in order to obtain a
mathematical sound way of describing this equivalence (probably using a nonlinear theory of
generalised functions).

Another interesting issue would be to study the specific causality properties of these
physically relevant Lorentzian manifolds of low regularity to complement the theoretical
investigations of [2, 5].
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