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The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have
observable effects on the formation of large-scale structures. We analyze the evolution of density
perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried
out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS)
theory. In contrast to the noncausal Eckart theory, we obtain a third-order evolution equation for the density
contrast that depends on three free parameters. For certain parameter values, the density contrast and
growth factor in IS mimic their behavior in ΛCDM when z ≥ 1. Interestingly, and contrary to intuition,
certain sets of parameters lead to an increase of the clustering.
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I. INTRODUCTION

The ΛCDM model is the simplest and most coherent
description of the background evolution of the observed
Universe, from the cosmic microwave background (CMB)
epoch to the present phase of accelerated expansion. While
this framework is supported by many cosmological obser-
vations—such as the CMB anisotropies and supernovae Ia
data, amongst others [1,2]—several inconsistencies remain
between the ΛCDM dynamics of structure formation and
observations, such as the “missing satellite problem” where
N-body simulations predict too many satellite galaxies as
compared to those observed around the Milky Way [3], or
the “core-cusp problem” where the same simulations
produce halo density profiles that are more cuspy than
those measured in the center of dwarf galaxies [4]. Both
issues imply that pressureless or cold dark matter (CDM)
produces an excess of structure and clustering compared to
what we observe.
Several solutions within the CDM framework have been

considered, such as the inclusion of baryonic feedback,
which is a possible way of solving both issues [5,6]. Many
alternatives to simple CDM have also been put forward,
ranging from warm dark matter to more radical modifica-
tions of the theory of gravitation [7–9]. One possibility is
the modification of the properties of the fluids or fields
[10,11]. A minimal extension would entail the relaxation of
the hypothesis of exact equilibrium in the description of the
CDM fluid: this would amount to the inclusion of dis-
sipative effects in the cosmic fluid and, as a consequence, a

deviation from its pressureless character specified by the
equation of state parameter w ¼ 0. The main consequence
is a suppression of small-scale structures as compared to the
pure CDM scenario. In addition, bulk viscosity has another
important feature for cosmology: it can generate an
accelerated expansion era without invoking dark energy.1

The inclusion of viscosity in the cosmic fluid and its
effect on the growth of large-scale structures has been
considered by many authors. In Ref. [11] it was shown that,
when describing the entire dark sector by a single viscous
fluid, the dynamic of perturbations is poorly reconciled
with observations; in Ref. [12] it was shown that the
Newtonian description of viscous matter clustering is
unreliable and that at least a neo-Newtonian treatment is
necessary. However, most of the works regarding viscous
cold dark matter make use of Eckart theory [13], which is a
noncausal approach to dissipative phenomena. Therefore,
relaxation to equilibrium is considered as instantaneous,
leading to an infinite propagation speed of the density
perturbations in the fluid. In this paper, we extend a
previous analysis by including a nonvanishing relaxation
time, τ, in the transport equation for bulk viscosity
following the framework introduced by Israel and
Stewart (IS) [14]. An analysis of the gravitational potential
in a cosmological context taking into account causal
dissipative processes has already been presented in
Ref. [15], where it was shown that the truncated version
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1However, one has to keep in mind that the assumptions
underlying the description of cosmic viscous fluids could break
down during inflation, as the latter represents a strongly out-of-
equilibrium scenario where the hydrodynamic framework could
be unreliable.
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of IS is favored over both Eckart and the full IS. However,
they adopted an ansatz for the functional form of the
viscous pressure, while in the present analysis we imple-
ment the full transport equations in order to determine the
evolution of the viscous pressure and its perturbation.
The paper is structured as follows. In Sec. II we develop

the theoretical framework, describe the background
dynamical equations, and derive the evolution equation
of density perturbations for viscous CDM in the IS
framework. In Sec. III we perform a qualitative analysis
of the evolution equation focusing on the time scale τ
introduced by IS theory. In Sec. IV we present numerical
solutions of the evolution equation and comment on their
properties. We give our concluding remarks in Sec. V.
Unless otherwise specified we use units in which c ¼ 1.

II. THEORETICAL SETUP

A. Background dynamics

Since we are interested in the growth of structures on
subhorizon scales, we use the Newtonian theory of gravity
as our starting model. This is a reliable approximation to
general relativity when describing nonrelativistic matter on
scales well within the Hubble radius, e.g., at galaxy cluster
or filament scales. The evolution and propagation of
nonrelativistic matter in Newtonian cosmology is described
by the following system:

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ð1Þ

ρ

� ∂
∂tþ u ·∇

�
u ¼ −∇p −∇Π − ρ∇Φ; ð2Þ

∇2Φ ¼ 4πGρ; ð3Þ

where ρ is the mass density, u is the fluid velocity, Φ is the
gravitational potential, and the partial derivative is takenwith
respect to the cosmic time. The total fluid pressure has been
separated into equilibrium (p) and dissipative (Π) contribu-
tions. The bulk viscous pressure Π satisfies a transport
equation given by the IS causal theory of dissipation:

τ _Πþ Π ¼ −ζ∇ · u −
ϵ

2
Πτ

�
∇ · uþ _τ

τ
−
_ζ

ζ
−

_T
T

�
: ð4Þ

Hereafter the overdot represents the time derivative in
comoving coordinates, which in the Newtonian approxima-
tion is just the convective derivative, D

Dt ¼ ∂
∂t þ u · ∇. The

full IS theory is obtained when the bookkeeping parameter
ϵ ¼ 1, while a truncated version (TIS) is given by ϵ ¼ 0. The
noncausal Eckart theory is recovered when the characteristic
relaxation time τ → 0. T is the fluid temperature.
The quantity ζ is the coefficient of bulk viscosity, which

is taken to be of the form

ζ ¼ ζ0

�
ρ

ρ0

�
s
; ð5Þ

where s is a constant and the energy density (ρc2 ≡ ρ)
evaluated at the present time (a0 ¼ 1) is denoted by ρ0. The
present value of the bulk viscosity is ζ0. If one considers a
cosmological scenario with a single barotropic fluid com-
ponent having a linear equation of state p ¼ wρ, the
inclusion of bulk viscosity leads to a total effective pressure
peff ¼ wρþ Π. In the Eckart theory this is equivalent to
considering a fluid with a nonlinear equation of state
peff ¼ wρ − wbρ

sþ1=2, where wb ≥ 0. Such a straightfor-
ward interpretation is not applicable in the presence of
additional cosmological fluids and it does not hold for the
extension to the IS framework. Indeed, in the latter case the
relation between Π and the energy density is not algebraic
anymore but is mediated by the evolution equation (4).
The relaxation time τ is defined in terms of the sound

speed of bulk viscous perturbations [16] via

c2b ¼
ζ

ðρþ pÞτ : ð6Þ

If the matter component obeys the linear equation of state
p ¼ wρ then the relaxation time becomes

τ ¼ ζ0ρ
s−1

ð1þ wÞc2bρs0
: ð7Þ

The dissipative sound speed contributes together with the
adiabatic sound speed c2s to form the total sound speed
v2 ¼ c2b þ c2s . For dust c2s ¼ 0, and therefore causality
requires cb to be less than the speed of light c.
Moreover, a finite degree of clustering requires c2b ≪ c2

because relativistic particles cannot form structures.
Bounds on the value of the adiabatic speed of sound for
perfect fluids have been inferred from galaxy cluster mass
profiles in Ref. [17] and from the observed rotation curves
of spiral galaxies in Ref. [18]. In the absence of analogous
observational constraints on dissipative effects, we consider
those results as bounds on the total sound speed v and
hence on the dissipative part cb. We will thus employ the
most conservative constraint c2b < 10−8c2.
Finally, assuming a linear equation of state for the fluid

component, the integrability condition of the Gibbs relation
leads to

T ¼ T0 ρ
w

1þw: ð8Þ
Hence, once the equation of state of the viscous fluid is
specified, the free parameters in IS theory are c2b, s, and ζ0.
It will be convenient to express the latter in the dimension-
less combination

~ζ ¼ 24πG
H0

ζ0: ð9Þ
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B. Perturbed equations

We now derive the general evolution equation for
viscous CDM perturbations. First of all, the energy density
of the fluid can be split into a background ρ and a first-
order perturbation δρ. In the following we will focus
on the evolution of the density contrast δ≡ δρ=ρ.
Perturbing and linearizing Eqs. (1)–(3) yields the following
system:

_δþ 1

a
∇ · v ¼ 0; ð10Þ

_v þHv ¼ −
1

aρ
∇ðδpÞ − 1

aρ
∇ðδΠÞ − 1

a
∇ðδΦÞ; ð11Þ

∇2ðδΦÞ ¼ 4πGa2ρδ: ð12Þ

Combining these equations and using a linear equation of
state, we can write down the general result, valid for any
pressure source,

δ̈þ 2H _δ − 4πGρδ ¼ −
w
a2

k2δ −
1

a2ρ
k2δΠ: ð13Þ

In this last expression we have already performed the
substitution ∇ → ik, which is the result of a spatial Fourier
transform of the perturbations. The bulk viscosity and the
relaxation time can be expanded to first order in δ as

ζ þ δζ ≃ ζ þ sζδ; ð14Þ
τ þ δτ≃ τ þ ðs − 1Þτδ: ð15Þ

These expressions are the basis of the derivation of the
general evolution equation for the density perturbations as a
function of the scale factor, viz.,

Hτa3δ000 þ f½3ðϵ − qÞ þ 1�Hτ þ 1ga2δ00 þ
��

ð3ϵð2 − qÞ þ j − 3q − 4Þ − 4πGρ
H2

þ ϵ
k2Π

a2H2ρ

�
Hτ þ ð2 − qÞ þ k2ζ

a2Hρ

�
aδ0

þ
��

4πGρ
H2

ð4 − 3ϵÞ
�
Hτ þ k2

a2H2ρ
ððs − 1ÞΠ − 3HζÞ − 4πGρ

H2

�
δ ¼ 0; ð16Þ

where the prime denotes derivatives with respect to the
scale factor. We would like to stress that in the limit τ → 0
(or equivalently c2b → ∞), Eq. (16) correctly reduces to
Eckart’s form [12]. The nonviscous ΛCDM case is then
recovered for ζ0 → 0. The derivation of Eq. (16) is detailed
in the Appendix.
The deceleration (q ¼ −äa _a−2) and jerk (j ¼ −a⃛a2 _a−3)

parameters can be written in terms of a, H, and its
derivatives:

q ¼ −1 − a
H0

H
; ð17Þ

j ¼ −1þ a2
H02

H2
þ a

�
4
H0

H
þ a

H00

H

�
: ð18Þ

For pressureless dust, the background energy density is
ρ ¼ ρ0a−3. Defining the fractional energy density at the
present time Ω0 ¼ 8πG

3
ρ0H−2

0 , the background energy
density can be rewritten as

ρðaÞ ¼ 3H2
0Ω0

8πG
a−3: ð19Þ

In general, the functional dependence of H on the scale
factor depends on the species present in the background.
For baryonic and dark matter, radiation, and a cosmological
constant, the Friedmann equation gives

H2ðaÞ ¼ H2
0½ðΩ0 þ Ωb0Þa−3 þΩr0a−4 þ ΩΛ�; ð20Þ

where Ωb0 and Ωr0 are the fractional densities of baryons
and radiation, respectively, evaluated at the present
time, while ΩΛ is the cosmological constant contribution.
The parameters that are given by observations are
fH0;Ω0;Ωb0;ΩΛg. For the purpose of our analysis we
will disregard the baryonic sector, since its contribution is
negligible compared to the dark matter one.
Finally, the background function Π in Eq. (16) is

determined by numerically solving Eq. (4) with the
boundary condition that the bulk viscous pressure satisfies
Eckart’s relation at some initial time ai, i.e., ΠðaiÞ ¼
−3HðaiÞζðaiÞ.
Before presenting the results of our analysis, we would

like to stress that the setup employed here—expressed by
Eq. (16) coupled with the background quantities Π and H
given by Eq. (4) and Eq. (20), respectively—relies on a
framework in which Newtonian perturbations evolve in a
relativistic background. Such a choice is motivated by the
range of scales we are interested in, i.e., subhorizon scales
in a linear regime, where the Newtonian and relativistic
treatments rapidly converge. We also stress the fact that the
inclusion of relativistic species at background level [as it is
done in Eq. (20)] does not affect the validity of the
Newtonian approximation at the perturbative level, as long
as the conditions for the latter are met.

III. QUALITATIVE ANALYSIS

In this section we develop qualitative arguments describ-
ing the impact of free parameters on the evolution of the
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density contrast given by Eq. (16). There are three
characteristic time scales appearing in the problem:
(i) the expansion time te ∼H−1, (ii) the collapse time
tc ¼ ð4πGρÞ−1=2, and (iii) the relaxation time
τ ¼ ðζ0ρs−1Þ=ðc2bρs0Þ. As we consider only the matter-
dominated phase of expansion, te ¼ 2=ð3HÞ. Making
use of the Friedmann equation, it is clear that any ratio
between te and tc is constant and only ratios involving τ
change over time. In Eq. (16) the relaxation time appears
exclusively in ratios with the form

Hτ ¼ 2

3

τ

te
: ð21Þ

We will thus consider τ=te as a measure of the deviation
between IS and Eckart. In the limit τ=te → 0 the two
theories coincide, while if τ=te ≳ 1 the terms involving the
relaxation time are, in general, not negligible and the
two theories differ. Remembering that in the matter era
we have ρ ¼ ρ0a−3, we express the condition for negligible
departure from Eckart as

τ

te
≪ 1 ⇒

ζ0
c2b

ffiffiffiffiffiffiffiffiffi
8πG
3ρ0

s
a3ð12−sÞ ≪ 1: ð22Þ

It is immediately apparent that this condition depends on
the ratio of the two parameters ζ0 and c2b. However, once
the values of such time-independent parameters are fixed,
there is a more crucial dependence on s in the exponent of
the scale factor. In particular, the choice of the exponent—
irrespective of the other parameters—affects the deviation
between Eckart and IS in the following way:

(i) If s < 1=2, then the condition τ=te ≪ 1 always
holds for a ≪ 1: IS and Eckart coincide at early
times and the deviations can show up only at
later times.

(ii) If s > 1=2, then the opposite condition τ=te ≫ 1
holds at early times, meaning that a significant
deviation between IS and Eckart already appears
for a ≪ 1.

FIG. 1. Evolution of the density contrast for s ¼ 0 varying c2b in TIS (left panels) and IS (right panels), for k ¼ 0.01h Mpc−1 (top
panels) and k ¼ 100h Mpc−1 (bottom panels).

ACQUAVIVA, JOHN, and PÉNIN PHYSICAL REVIEW D 94, 043517 (2016)

043517-4



In both cases the degree of the deviation is governed by the

specific value of the amplitude ζ0
c2b

ffiffiffiffiffiffi
8πG
3ρ0

q
. It is worth stressing

that the importance of the value s ¼ 1=2 has been exten-
sively reported in previous studies regarding the back-
ground evolution of cosmological models: in Refs. [19,20],
for example, it was shown that an accelerated expansion of
the scale factor can be obtained at late (early) times if s <
1=2 (s > 1=2). The present analysis shows that s ¼ 1=2
also has a role at the perturbative level and represents a
dividing value between early- and late-time features of the
density contrast growth. In the next section we present
numerical results that clearly illustrate this feature.

IV. RESULTS

In this section, we solve Eq. (16) numerically. We set
initial conditions at the time of decoupling (z ∼ 1100),
when matter starts dominating the total energy density
while radiation becomes negligible. We use CAMB to
compute the linear power spectrum of matter [21] with

Planck cosmological parameters [1] to compute the initial
conditions. As we focus mostly on the matter-dominated
epoch, we neglect the contribution of baryons.
First, we investigate the effect of c2b on the evolution of

the density contrast. In Fig. 1 we plot δðaÞ for constant bulk
viscosity (s ¼ 0) at two different scales, k ¼ 0.01h Mpc−1

and k ¼ 100h Mpc−1 (galaxy scale), for a fixed value of ~ζ
and three values of c2b. The values of the parameters chosen
show a significant deviation both from Eckart’s curve and
from the standard ΛCDM result. It is worth stressing that
deviations that occur near and beyond δ≃ 1 are not
reliable, because that represents the threshold of the linear
regime of perturbations. Nonetheless, one can appreciate
the qualitative difference between TIS and IS: while the
former leads to a further suppression with respect to
Eckart’s result, the latter enhances the density contrast at
late times.
The second case we consider still belongs to the class

with s < 1=2 but with a negative value. Figure 2 shows the
evolution of the density contrast for s ¼ −1=2: as regards

FIG. 2. Evolution of the density contrast for s ¼ −1=2 varying c2b in TIS (left panels) and IS (right panels), for k ¼ 0.01h Mpc−1 (top
panels) and k ¼ 100h Mpc−1 (bottom panels).
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FIG. 3. Evolution of the density contrast for s ¼ 3=2 varying c2b in TIS (left panels) and IS (right panels), for k ¼ 0.01h Mpc−1 (top
panels) and k ¼ 100h Mpc−1 (bottom panels).

FIG. 4. Evolution of the density contrast for s ¼ 0 (left panel) and s ¼ 3=2 (right panel) varying ~ζ in TIS.
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the overall behavior, this scenario shares similarities with
s ¼ 0 in that both exhibit deviations only at late times.
Unlike the previous case, this scenario presents a stronger
scale dependence: at small k both TIS and IS induce an

enhancement of the density contrast with respect to Eckart,
whereas at large k only IS does.
As described in Sec. III we expect different features in

the perturbative evolution when the exponent of bulk

FIG. 5. Growth factor as a function of redshift at k ¼ 0.01h Mpc−1, for s ¼ 0 (top panels), s ¼ 3=2 (middle panels), and s ¼ −1=2
(bottom panels) in TIS (left panels) and IS (right panels).
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viscosity s > 1=2. This is evident when comparing the
previous examples with Fig. 3, which is for s ¼ 3=2. For
the latter, all deviations from ΛCDM show up at earlier
times: the Eckart approach leads to an overall enhancement
of perturbations with respect to ΛCDM, and both TIS and
IS further strengthen this increase. This is an example of
how the deviation from ΛCDM already present in Eckart is
even more pronounced in both TIS and IS at fixed ~ζ.
Finally, in Fig. 4 we check that in the limit ~ζ → 0 the
ΛCDM scenario is recovered. This is indeed the case,
regardless of the scale or the values of c2b and s. This is a
general expected result that holds for Eckart as well as for
TIS and IS.
The density contrast can hardly be measured in

observations, but its derivative—the growth factor
f ¼ d log δ=d log a—can be obtained in galaxy surveys.
In the radial direction, the motion of galaxies depends on
the expansion as well as on their peculiar velocities which
arise from the density field of the matter in which they are
embedded. Therefore, the peculiar velocity field of galaxies
up is related to the density contrast through the continuity

equation _δ ¼ −∇ · up. It can be expressed in terms of the
scale factor and the Hubble parameter,

∇ · up ¼ −Hfδ: ð23Þ

For the ΛCDMmodel fðaÞ ¼ ΩmðaÞγ with γ ¼ 0.545. Any
significant departure from this value of γ would indicate a
deviation from ΛCDM and it is being actively searched for
[22,23]. Measuring any deviation is one of the main aims of
future experiments and galaxy surveys, such as the ESA
mission Euclid and the Square Kilometer Array, amongst
others.
We compare the modifications of the growth factor for

ΛCDM, Eckart, TIS, and IS in Fig. 5. For the cases s ¼ 0,
s ¼ −1=2, and s ¼ 3=2 we focus on the scale k ¼
0.01h Mpc−1 over the redshift range z ∈ ½0; 2� (which is
within reach of present and forthcoming galaxy surveys).
In the s ¼ 0 case, for both TIS and IS, the variation of c2b

leads to important modifications in the overall amplitude of
the growth factor and to a change of slope at z ≤ 1. In
addition, the amplitude increases as c2b decreases.
Interestingly, certain values of c2b lead to a growth factor
that mimics that of ΛCDM at z ≥ 0.5 both in the TIS and IS
cases. For s ¼ −1=2 the behavior is qualitatively similar:
the deviations are more prominent at small redshifts, while
at higher redshifts, if c2b is not too small, both TIS and IS are
compatible with the ΛCDM curve. The similarity with the
previous case stems from the fact that both are charac-
terized by s < 1=2. In the s ¼ 3=2 case, which belongs to
the s > 1=2 class, the situation is in fact quite different: the
modifications to the ΛCDM case are of only a few percent
for TIS, while they are even smaller in the IS case.
Moreover, these changes only appear at high redshift.

This is in line with the expectations produced by the
qualitative analysis of Sec. III.

V. CONCLUSION

We analyzed the effect of causal bulk viscosity on the
cosmological dynamics at the perturbative level. In par-
ticular, we considered CDM endowed with bulk viscous
pressure and governed by the Israel-Stewart theory of
dissipation. This introduces an additional time scale in
the dynamics in the form of a relaxation time τ that depends
on the dissipative sound speed c2b. We derived a third-order
evolution equation for the density contrast and analyzed its
features both analytically and numerically in several
scenarios. Qualitatively, the deviations from both ΛCDM
and the noncausal Eckart framework are governed by the
three free parameters determining the relaxation time: while
the ratio between ζ0 and c2b defines the magnitude of the
deviation, the value of the exponent s determines whether
these deviations occur at early or late times. In particular,
we found that s ¼ 1=2 is a critical value demarcating two
scenarios: if s < 1=2 the deviations show up only at late
times, whereas if s > 1=2 the IS model starts to diverge
from the others already at early times.
By considering the truncated version (ϵ ¼ 0) instead of

the full IS, one essentially eliminates a scale-dependent
term in the equations. This has an important influence on
the possibility of mimicking the ΛCDM behavior. In the
s < 1=2 cases, the full IS is favored in this regard, as it
tends to evolve in between Eckart and ΛCDM. In the same
cases, the growth factor—even though it can be subject to
drastic deviations with respect to ΛCDM—possesses
parameter ranges for which the deviations are small when
z ≥ 1. The case s > 1=2 instead presents a different
qualitative behavior: neither TIS nor IS are able to mimic
the density contrast of ΛCDM, but systematically over-
estimate it. However, the growth factor turns out to be more
stable for ΛCDM, with significant deviations appearing
only for z ≥ 1. Hence, allowing dark matter to have a bulk
viscosity with s < 1=2 in the context of IS could mitigate
the problem of the excess of clustering encountered within
the framework of ΛCDM. On the other hand, a choice of
s > 1=2 leads to a further increase of clustering and a
greater deviation from ΛCDM. In this respect, we note that
the enhancement of clustering due to viscosity is a some-
what unexpected result, since bulk viscous effects usually
lead to a suppression of the growth of perturbations. Such
behavior was already found in Ref. [12] for an exponent
s ¼ 1=2 in the Eckart framework, albeit in a non-
Newtonian setting. Given the results of our analysis, we
conjecture that such an inversion of this trend is due to the
first-derivative term in Eq. (16) and that it occurs for some
threshold value of the exponent s. However, an analysis of
the modes of Eq. (16) is expected to present a richer
structure than in the case of a simple forced/damped
oscillator, as encountered instead in Eckart’s framework.
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We plan to obtain more details about this point by
analyzing a generalized Jeans mechanism that takes into
account causal viscosity.
In conclusion, while in Eckart’s framework it is possible

to approach the ΛCDM behavior only by letting ζ0 → 0
(vanishing viscosity), with IS it is possible to mimic the
standard cosmological model with a nonvanishing viscosity
by tuning the additional parameter c2b. At the same time,
causality (expressed by the very presence of such a
parameter) is a physically reasonable requirement for
dissipative processes. This means that the IS framework
introduces an additional physical degree of freedom to the
description, leading to the possibility of describing the
cosmic fluids in a less idealized way. However, we stress
that the present analysis relies on a Newtonian approxi-
mation. In order to fully explore the effect of causality
in viscous dynamics it is necessary to set up a fully
relativistic perturbative study, which will be part of future
investigations.
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APPENDIX DERIVATION OF THE
EVOLUTION EQUATION

To derive the evolution equation for density perturba-
tions, the last term in Eq. (13) has to be dynamically
determined by the perturbed IS equation. The latter is
obtained by perturbing Eq. (4) to first order and making use
of Eqs. (5), (7), and (8) in Eqs. (14) and (15):

τ _ðδΠÞ ¼ ρa2

k2

�
1þ 3

ϵ

2

�
2þ 3w
1þ w

�
Hτ

�
δ̈þ

�
ζ þ ϵ

2

�
2þ 3w
1þ w

�
Πτ þ ρa2

k2

�
1þ 3

ϵ

2

�
2þ 3w
1þ w

�
Hτ

��
_δ

þ
�
ðs − 1ÞΠ − 3Hζ −

ρa2

k2

�
1þ 3

ϵ

2

�
2þ 3w
1þ w

�
Hτ

��
4πGρ − w

k2

a2

��
δ: ðA1Þ

We then differentiate Eq. (13) with respect to time. In the resulting third-order equation there will be _ðδΠÞ and δΠ terms,
which can be expressed in terms of δ and its derivatives by means of Eq. (A1) and Eq. (13). As a result, by rearranging the
terms one obtains the following general equation for the evolution of density perturbations:

τ ⃛δþ
��

1þ 3ϵ

2

�
2þ 3w
1þ w

��
Hτ þ 1

�
δ̈þ

��
2 _H − 2H2 − 4πGρþ w

k2

a2
þ ϵ

�
2þ 3w
1þ w

��
3H2 þ k2Π

2a2ρ

��
τ þ 2H þ k2ζ

a2ρ

�
_δ

þ
��

16πGρ − 3w
k2

a2
−
3ϵ

2

�
2þ 3w
1þ w

��
4πGρ − w

k2

a2

��
Hτþ k2

a2ρ
ððs − 1ÞΠ − 3HζÞ − 4πGρþ w

k2

a2

�
δ ¼ 0: ðA2Þ

The contributions coming directly from the inclusion of causality in the description are the third derivative ⃛δ and the terms in
square brackets. For dust (w ¼ 0), Eq. (A2) reduces to

τ ⃛δþ f½1þ 3ϵ�Hτ þ 1gδ̈þ
��

2 _H − 2H2 − 4πGρþ 2ϵ

�
3H2 þ k2Π

2a2ρ

��
τ þ 2H þ k2ζ

a2ρ

�
_δ

þ
�
4πGρð4 − 3ϵÞHτ þ k2

a2ρ
ððs − 1ÞΠ − 3HζÞ − 4πGρ

�
δ ¼ 0: ðA3Þ

The final form Eq. (16) used in the present analysis can be obtained from Eq. (A3) by defining a new time derivative
δ0 ¼ dδ=da, such that _δ ¼ _aδ0. One can then easily check that the noncausal Eckart theory is recovered for τ → 0 (keeping
in mind that in this case Π ¼ −3Hζ). Nonviscous perturbations are recovered for ζ → 0.
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