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The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in
the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz
for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first
derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear
gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which
contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor
employed often in full general relativity. We elucidate the relation of the four-parametric system to the
expression proposed recently by Butcher et al. “on physical grounds” in harmonic gauge, and we show that
the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive
gravity we show how one can arrive at the expression which coincides with the “generalized linear
symmetric Landau-Lifshitz” tensor. However, there exists another uniquely given simpler symmetric tensor
which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-
momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the
Belinfante procedure which involves the second derivatives of the field variables, this expression contains
only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both
yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the
role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor
manipulation software CADABRA is briefly described. It is very effective in obtaining various results which
would otherwise require lengthy calculations.
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I. INTRODUCTION

In relativistic field theories the most frequently used
method of constructing conserved quantities is based on
Noether’s theorems. If one starts from the Lorentz invariant
Lagrangian, one can employ its symmetries and form (in
general asymmetric) a canonical energy-momentum tensor
which can be symmetrized by adding the divergence
of a superpotential. Alternatively, one may rewrite the
Lagrangian in a manifestly covariant manner and obtain, by
inducing the variation of the metric by infinitesimal
coordinate transformations, the symmetric tensor directly.
Although the quantities so derived are well established

and physically sound, there may exist other second-rank
tensors which may be useful just because they are con-
served as a consequence of the field equations. For
example, they may turn out to control the time evolution
of the Cauchy data more efficiently than “conventional”
expressions (e.g. the fourth-rank Bel-Robinson tensor is
used in the proofs of the global nonlinear stability of

Minkowski space). In addition, physical theories exist, for
which the field equations are not derivable from a varia-
tional principle; this is the case with, for example, the
“already unified theory” of gravity and electromagnetism
by Rainich [1].
In the following, we consider, within linearized

Einstein’s theory and massive gravity, various second-rank
tensors involving fields and their first derivatives conserved
as the consequence of the field equations involving their
second derivatives. Although we fully acknowledge the
significance of the expressions derived from the variational
principle as mentioned above, we take the liberty to call
sometimes such conserved second-rank tensors “energy-
momentum tensors” or “complexes” being influenced,
among others, by language used frequently in general
relativity.
The technique we use to construct expressions conserved

modulo field equations goes back to the work of Fock. At
the 1962Warsaw conference on general relativity [2] and in
the second (revised) edition of his influential monograph,
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Fock [3] summarized his work on the uniqueness of the
energy-momentum tensors of the electromagnetic field, of
incoherent matter, and of a perfect fluid in which a
Lagrangian formalism is not used. The uniqueness was
proven assuming the energy-momentum tensor is a
symmetric tensor of the second order, formed with the
field variables, and conserved as a consequence of field
equations.
Inspired by Fock’s work, one of us generalized this

method to the wave fields described by the equations of the
second order—neutral scalar meson field, vector (Proca)
field, linearized gravitational field, and the gravitational
field in full nonlinear Einstein’s theory [4,5]. As one
proceeds to more complicated theories, some simplifying
assumptions about the structure of the expressions for the
energy-momentum are made. In the case of linearized
Einstein’s equations when the metric tensor, in a suitable
coordinate system, can be written in the form gik ¼
ηik þ hik, jhikj ≪ 1, the basic assumption is that the
energy-momentum tensor Tik depends on 20 independent
quantities quadratic in hik;l; however, the symmetry of Tik
was not assumed. Also, no specific gauge was chosen. It
turned out that the resulting expression conserved modulo
linearized Einstein’s equations forms a four-parameter
system. Among these, there is the linearized Einstein’s
complex; it is nonsymmetric and can be derived from a
Lagrangian. However, there exists also a unique symmetric
tensor which does not follow from a variational principle.
We show that it is the linearized Landau-Lifshitz pseudo-
tensor frequently used in full general relativity and in
approximation methods going beyond the linear theory
(cf. e.g. [6–8]).
Recently, Butcher et al. [9–11] from the Cambridge

Kavli Institute for Cosmology published a series of papers
on “localized energetics of linear gravity.” By examining
the transfer of energy and momentum between local matter
and the gravitational field within the linearized theory, they
constructed a symmetric energy-momentum tensor of
linearized gravity which exhibits plausible physical
properties and is quadratic in the first derivatives hik;l;
however, the whole framework leads to the use of the
harmonic gauge [9]. Later the same authors extended their
work to the study of the localized angular momentum of
linearized gravity [10]. They also constructed a Fierz-Pauli
Lagrangian for a massless spin-2 field and made it
covariant by introducing the nonholonomic basis (tetrad)
and connection which in general led to nonflat backgrounds
with torsion, corresponding to the Einstein-Cartan-Kibble-
Sciama theory treating the translational and rotational
symmetries separately. By varying with respect to the
tetrads and connections they obtained the expressions
[11] which in the harmonic gauge reduce to the results
found in [9,10]. In this sense the expressions follow as
Noether currents associated with the symmetries under
translations and rotations.

The main motivations for the present paper have been to
find (i) relations between our past work [4,5] to the Landau-
Lifshitz complex employed with an increasing frequency in
the literature (cf. e.g. the recent monograph [8]), (ii) to give
relations to new developments due to the Cambridge group
[9,11], and (iii) to generalize our method of studying the
uniqueness of energy-momentum tensors to the case of
massive gravity. The massive gravity has been studied with
an “oscillatory interest” for the past 70 years. It became
popular again recently when it was proven that the non-
linear theory of massive gravity is ghost free [12,13]; see
also the reviews [14,15]. Here, we shall consider just the
case of the linear Fierz-Pauli theory; it represents the weak
field limit of generic theories. As far as we are aware, no
study of the uniqueness of the energy-momentum tensor in
massive gravity was done so far. Last but not least, we wish
to demonstrate how long and tedious calculations which
were necessary to get results in [4,5], and, also, how other
procedures like finding appropriate superpotentials can, at
present, be performed very effectively by the usage of
symbolic tensor manipulation software CADABRA.
The article is organized as follows. In the following

Sec. II we describe a general procedure of finding energy-
momentum tensors conserved as a consequence of a system
of equations of motion given by a system of partial
differential equations containing linearly second derivatives
of the second-rank tensor hik.
The important step in simplifying computations is to

consider, in Sec. III, Lorentz covariant expressions; this
does not mean any loss of generality. We construct a
general second-rank tensor quadratic in hik;l; it involves 20
free constant parameters. We discuss the conservation of
the tensor as a consequence of the field equations of various
types. It is here where the use of the CADABRA software is
indicated. More details are relegated to the Appendix.
In Sec. IV, the method is generalized to the equations of

motion containing nonderivative terms hik which is the case
of the Fierz-Pauli theory of massive gravity.
It is well known that there may exist parts of energy-

momentum tensors which do not contribute to the total
quantities for insular systems with fields decaying suffi-
ciently rapidly at infinity. These “generalized” divergences
called superpotentials can be investigated again by the
modification of the method presented in the previous
sections. In Sec. V a general expression with 13 arbitrary
parameters is constructed and the form of the master
equation for the superpotential is given. It combines the
condition that the divergence of the superpotential must
yield the energy-momentum tensor as a consequence of the
field equations.
Sections VI and VII contain the results. Conserved

quantities in linearized gravity are discussed in Sec. VI.
First, a unique albeit nonsymmetric expression (and cor-
responding superpotential) without using equations of
motion is presented in Sec. VI A. It appears in a number
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of subsequent expressions. Next, the linearized vacuum
Einstein’s equations are employed in Sec. VI B to obtain a
four-parametric family of energy-momentum tensors quad-
ratic in hik;l. The condition of symmetry leads to the unique
(up to a multiplicative constant) result which is just the
linearized Landau-Lifshitz pseudotensor. We give also “the
metric energy-momentum tensor” (so automatically sym-
metric) which follows from the variational principle and is
covariantly conserved at any background. However, it
contains the second derivatives hik;lm. In this first part of
Sec. VI we proceed and find quantities conserved in a
completely general gauge.
Within the linearized gravity we also investigate the role

of the harmonic gauge condition and generalized gauge
condition since we wish to analyze the uniqueness of the
energy-momentum tensor presented in [9]. Taking into
account the harmonic gauge condition ab initio, our
procedure gives the five-parameter family of, generally
nonsymmetric, conserved quantities. The condition of
symmetry leaves us with a three-parameter expression
which contains the resulting tensor given in [9] as a special
case. However, starting from the unique symmetric energy-
momentum tensor obtained without any gauge condition
and applying then the harmonic gauge condition a poste-
riori, we do not arrive at the result in [9]. In the most recent
work [11], the authors rederive their symmetric tensor from
a variational principle without a using special gauge
condition—they apply the harmonic gauge condition a pos-
teriori. The “initial” tensor obtained in [11] is nonsym-
metric; it follows as a special case from our four-parameter
family of energy-momentum tensors.
In [9] the authors start with a generalized gauge con-

dition, hab;b ¼ χh;a, where h ¼ ηikhik ¼ hii, and the har-
monic gauge condition is found to be a consequence of
their physical arguments leading to χ ¼ 1

2
. Using our

procedure we also construct conserved expressions for
arbitrary values of χ. The case χ ¼ 1 leads to the four-
parameter family and χ ≠ 1 produces the five-parameter
family. The requirement that the resulting energy-
momentum tensor is conserved independently of χ leads
to a unique nonsymmetric expression.
Energy-momentum tensors for massive gravity stem-

ming from the equations following from the Fierz-Pauli
action are constructed in Sec. VII. Starting first with the
Klein-Gordon equation of the form □hik −m2hik ¼ 0 in
Sec. VII A, we obtain a five-parameter family of conserved
expressions. If we add additional equations of the Fierz-
Pauli gravity, hab;b ¼ 0, h ¼ 0, the system of conserved
energy-momentum tensors reduces to the three-parameter
family, and the condition of symmetry yields a two-
parameter family. However, we can arrive at a unique
expression in the following way. Rather than from the
Klein-Gordon equation for massive field hik, we start from
the field equation as it follows directly from the Fierz-Pauli
action. The resulting tensors are nonsymmetric and form a

two-parameter system. Nevertheless, after inserting con-
ditions hab;b ¼ 0, h ¼ 0, and imposing the symmetry of the
energy-momentum tensor we arrive at the unique expres-
sion. It is different from the generalization of the linearized
Landau-Lifshitz tensor to the case of massive gravity but it
yields the same total quantities since both expressions differ
by the divergence of a superpotential. It also differs by the
divergence of a superpotential from the canonical energy-
momentum tensor derived from the variational principle
based on the Fierz-Pauli action.

II. THE METHOD OF FINDING A GENERAL
CONSERVED ENERGY-MOMENTUM COMPLEX

We wish to construct a conserved energy-momentum
complex1 Tij for the linearized gravity which depends
quadratically on the first derivatives of the metric. So we
assume its form to be

Tij ¼ tijabcrsthab;chrs;t; ð1Þ

with tijabcrst being constant coefficients symmetric in ða; bÞ
and ðr; sÞ and invariant with respect to the interchange of
the triples ða; b; cÞ and ðr; s; tÞ. In vacuum it has to satisfy
the conservation law

Tij
;j ¼ 0 ð2Þ

as a consequence of the equations of motion assumed, just
here, to be in the form

PA ¼ pAmnophmn;op ¼ 0; ð3Þ

A is an arbitrary multi-index; p’s are constant coefficients.
Using Lagrange multipliers λiA these requirements can be
written as the following master equation

Tij
;j ¼ λiAP

A ð4Þ

which is assumed to be satisfied for arbitrary independent
field variables; hence the divergence of the energy-
momentum tensor is formed from a linear combination
of the field equations. Lagrange multipliers λiAðxÞ are in
general functions of spacetime coordinates. Since Tij

;j ¼
2tijabcrsthab;chrs;tj, the Lagrange multipliers in this case
need to have the form

λiA ¼ Liabc
A hab;c; ð5Þ

1In full general relativity one cannot form a true energy-
momentum tensor—various nontensorial objects suggested are
called “complexes” or “pseudotensors” [6,7]. In their linearized
versions, however, they transform as tensors under Lorentz
transformations though they are not invariant under the gauge
transformation xi → xi

0 ¼ xi þ ξi.
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where L’s are constant coefficients. Writing master
equation (4) in terms of coefficients t… and L…

A we have

ð2tipabcmno − Liabc
A pAmnopÞhab;chmn;op ¼ 0: ð6Þ

The last equation has to be satisfied for all hab and their
derivatives. Taking into account the obvious symmetries we
arrive at the condition

tipðabÞcðmnÞo þ tioðabÞcðmnÞp − LiðabÞc
A pAðmnÞðopÞ ¼ 0: ð7Þ

Here () denotes symmetrization, ½ � used below—
antisymmetrization, both with 1

2
included. The final step

in this general method consists of eliminating Lagrange
multipliers Liabc

A employing known coefficients pAmnop and
so find the constants tijabcrst.

III. LORENTZ COVARIANT THEORIES

Assuming that field equations and the corresponding
energy-momentum tensor are Lorentz covariant the pro-
cedure described above considerably simplifies. Raising
and lowering indices will be performed by the Minkowski
metric ηab. Now we just need to find all different con-
tractions of the term hab;chrs;t to produce a tensor of rank
two. The most general form of a Lorentz covariant energy-
momentum tensor quadratic in the first derivatives of the
metric then turns out to contain 20 parameters a1;…; a20. It
reads as follows:

Tik¼a1hik;ahab;bþa2hik;ah;aþa3hia;ahkb;bþa4hia;bhka;b

þa5hia;bhkb;aþa6hia;khab;bþa7hka;ihab;b

þa8hia;kh;aþa9hka;ih;aþa10hia;ah;kþa11hka;ah;i

þa12hia;bhab;kþa13hka;bhab;iþa14h;ih;kþa15hab;ihab;k

þa16ηikh;bhbc;cþa17ηikhab;ahbc;cþa18ηikh;bh;b

þa19ηikhab;chab;cþa20ηikhab;chbc;a: ð8Þ

In order to simplify the notation of some expressions in
the following we shall denote a term appearing at a
particular coefficient aα by Aαik (α ¼ 1;…; 20). The
energy-momentum tensor and its divergence can thus be
written as

Tik ¼
X20
α¼1

aαAαik; Tik;
k ¼

X20
α¼1

aαAα ik
;k: ð9Þ

Let us now consider various types of equations of
motion, in a “tensorial form,” depending on the number
of their free indices, Pab ¼ 0 (e.g., the case of the linearized
Einstein equations), Pa ¼ 0 (e.g., the equations character-
izing gauge conditions or field equations in the case of
massive gravity), and P ¼ 0 (the case of massive gravity).

In the first case we assume that Pab ¼ Pba contain
linearly hmn;op. Regarding our ansatz for energy-
momentum tensor (8) the right-hand side of the master
equation (4) acquires the form λrsqabi hrs;qPab. After taking
into account the Lorentz covariance and considering all
relevant symmetries we find, explicitly, the resulting
contribution to the master equation:

X6
β¼1

λβLβi ¼ λ1h;aPia þ λ2hab;bPia þ λ3hib;bPa
a

þ λ4h;iPa
a þ λ5hia;bPab þ λ6hab;iPab; ð10Þ

here λβ are scalar Lagrange multipliers and Lαi denote
corresponding terms.
Analogously, we proceed in the case of the field equation

with the vectorial form Pa ¼ 0. For our purposes we
consider the field equations linear in hab;c. Therefore,
in the master equation there will appear the term
μmnopa
i hmn;opPa with the explicit form

X6
β¼1

μβUβi ¼ μ1h;bbPi þ μ2hab;abPi þ μ3hia;abPb

þ μ4hia;bbPa þ μ5h;ibPb þ μ6hab;iaPb; ð11Þ

where μβ are scalar Lagrange multipliers and the individual
terms are labeled as Uαi.
Finally, consider the equation P ¼ 0. Our linearity

condition and the general form of the energy-momentum
tensor restrict the possible choice just to P ¼ haa;bb.
Nevertheless, in the master equation there will arise the
term κqrsi hrs;qP leading to two covariant terms called Kαi,
with Lagrange multipliers κα:

X2
β¼1

κβKβi ¼ κ1hia;aPþ κ2h;iP: ð12Þ

Summarizing the previous considerations, we find the
master equation in the following general form

X20
α¼1

aαAα ik
;k ¼

X6
β¼1

λβLβi þ
X6
β¼1

μβUβi þ
X2
β¼1

κβKβi: ð13Þ

As a result we obtain equations for unknowns aα, λβ, μβ,
and κβ which have to hold for arbitrary field variables hij.
We rewrite them in the form of general equation (6), though
Lorentz covariance substantially reduces the number of
terms. As a consequence of the linear independence of the
terms hab;chmn;op, we can extract linear equations for
variables aα, λβ, μβ, and κβ. This extraction can be assisted
by the use of the CADABRA software. We illustrate its use in
our context in the Appendix.
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IV. THE CASE OF MASSIVE GRAVITY

Above, we considered the equations of motion contain-
ing linearly hab;c or hmn;op. We now generalize the
procedure to allow field hab itself to be present linearly
in equations of motion as, for example, in the Klein-
Gordon-type equation hab;cc −m2hab ¼ 0, or in the
Fierz-Pauli equation hab;cc − hac;bc − hbc;ac þ � � � −
m2ðhab − ηabhÞ ¼ 0 which we shall consider in detail in
Sec. VII.
In this more general case we assume the energy-

momentum tensor to contain not only quadratic terms in
the first derivatives of the metric but also the terms of the
form habhcd appropriately contracted to give a tensor of
rank two.2 There are just four terms of this type

X4
β¼1

cβCβik ¼ c1hikhþ c2hiahak þ c3ηikh2

þ c4ηikhabhab; ð14Þ

where Cβik denote terms explicitly seen on the right-hand
side.3 Therefore, the general form of the energy-momentum
tensor we consider, in the case of massive gravity, for
example, will read as follows:

Tik ¼
X20
α¼1

aαAαik þ
X4
β¼1

cβCβik: ð15Þ

Considering next the equation of motion we have
now to modify relation (3) into Pab ¼ pab

mnophmn;opþ
qabmnhmn ¼ 0. The character of equations of motion
assumed and our ansatz for the energy-momentum tensor
imply that the Lagrange multipliers are linear in the first
derivatives of hab, λiab ¼ λirstab hrs;t.
In the case of the vector-type field equations, Pa ¼ 0, we

now get an additional contribution to the master equation,
νmna
i hmnPa, which leads to two covariant terms labeled by
Vα, with Lagrange multipliers να:

X2
β¼1

νβVβ ¼ ν1haaPi þ ν2hiaPa: ð16Þ

For the scalar-type field equation, P ¼ 0, a new term
P ¼ haa can arise. It will appear in Sec. VII A.

V. SUPERPOTENTIALS

It is of interest to know whether some part of an energy-
momentum tensor can be derived from a so-called super-
potential. Under suitable boundary conditions this part does
not contribute to total quantities. We now describe the
general method of constructing superpotentials, later we
use it in specific cases. The energy-momentum tensor Tik is
generated by the superpotential Uikl ¼ Ui½kl� if the follow-
ing master equation holds

Uikl;
l ¼ Tik þ λik

APA; ð17Þ

i.e. the divergence of a superpotential gives the given
energy-momentum tensor and a linear combination of field
equations PA ¼ 0 with multipliers λikA. The antisymmetry
in indices ðk; lÞ then implies the conservation law
Tik

;k ¼ Ui½kl�;ðklÞ ¼ 0. The terms habhcd present in the case
of massive gravity cannot be produced by a divergence;
hence we will restrict our attention to tensors Tik quadratic
in the first derivatives of the metric, hab;chde;f—these can
be produced by the divergence of terms of the form
habhcd;e.
The requirement of the Lorentz covariance, the anti-

symmetry, and the structure of superpotential Uikl ∝
habhcd;e lead to a general expression with 13 parameters
as follows:

Uikl ¼
X13
α¼1

uαUαikl ¼ u1hi½khl�a;a þ u2hi½kh;l�

þ u3hiaha½k;l� þ u4ha½khl�i;a þ u5hai;½khl�a

þ u6ha½khal�;i þ u7hhi½k;l� þ u8ηi½khl�ahab;b
þ u9ηi½khl�ah;a þ u10ηi½khhl�a;a þ u11ηi½khabhl�a;b

þ u12ηi½khh;l� þ u13habhab;½kηl�i: ð18Þ

Considering the equations of motion with two indices, Pab,
which contain linearly the second derivatives of field
variables hab, the Lagrange multipliers λik

ab will be
proportional to hab. The resulting Lorentz covariant expres-
sion for λikabPab is

λik
abPab ¼ λ1hikPþ λ2hiaPk

a þ λ3hkaPi
a

þ λ4hPik þ λ5ηikhPa
a: ð19Þ

In practice we are solving just the equations involving
the second derivatives hab;cd, i.e.

ðUikl
;lÞ2nd derivatives ¼ λik

abPab: ð20Þ

This restricts the coefficients uα in the general expression
(18). The resulting superpotential-generated tensors Tik are
then easily computed as Tik ¼ Uikl

;l.

2Notice that the terms of the form habhcd;e will not yield a
tensor of rank two.

3We did not consider these Cβ terms in the previous section
since they would vanish anyway, because the equations of motion
involve only the second derivatives and whatever choice of
multipliers λ���A will not produce the terms habhcd;e occurring in
Tik
;k .
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VI. CONSERVED QUANTITIES IN THE
LINEARIZED GRAVITY

In the first part of this section we find the second-rank
tensors constructed from the quadratic expressions in hik;l
and conserved as a consequence of the linearized Einstein
equations without choosing any particular gauge. In the
second part (Secs. VI B 3, VI B 4) we first impose the
harmonic and generalized harmonic gauges and look for
the expressions conserved under these conditions. In this
way we find, among others, under which conditions we
arrive at the results obtained by Butcher et al. [9,11].
It is well known that, in contrast to the linearized

curvature tensor, quantities involving the first derivatives
hik;l are gauge dependent. At the end of Sec. VI we note
that in the high-frequency case, after suitable averaging
introduced by Isaacson [16,17], the expressions become
gauge invariant and can be calculated for all choices
of gauge.

A. Strongly conserved quantity

Let us first consider a possibility whether there exists a
combination of parameters ai for which the tensor (8) is
conserved identically, i.e., without using field equations. It
turns out that, indeed, such a tensor exists for the choice of
constants ai vanishing except for a7¼−a13¼−2a17¼2a20.
Denoting this one free parameter by αð¼ a7 ¼ …Þ, the
resulting strongly conserved quantity is uniquely given by

Tik ¼ α

�
hka;ihab;b − hka;bhab;i − 1

2
ηikhab;ahbc;c

þ 1

2
ηikhab;chbc;a

�
¼ αTðstrongÞ

ik ; ð21Þ

where, for future reference, we denoted the expression in
brackets as TðstrongÞ

ik .
This conserved tensor is generated by the superpotential

Uikl ¼ αðha½khal�;i þ ηi½khl�ahab;b − ηi½khabhl�a;bÞ: ð22Þ

B. Linearized vacuum Einstein’s equations

We now allow the divergence of the energy-momentum
tensor to be a general linear combination of the linearized
Einstein’s field equations: Tik

;k ¼ λirsRrs, where Rrs is the
linearized Ricci tensor. The resulting tensor depends on
four free parameters which we denote α1, α2, α3, α4. The
relation between the constant parameters ai from (8) and
parameters αi is α1 ¼ a9¼ a15¼−2a19, α2 ¼ a7 ¼ −2a17,
α3¼−a11¼ a14¼ a16, α4¼ a1¼−a3¼ a4¼ a10¼−a12,
a5 ¼ a6 ¼ 0, α1 − α3 ¼ −a8, 2α1 þ α2 ¼ −a13 ¼ 2a20,
1
2
α1 þ α3 ¼ −a16, α1 þ α3 − α4 ¼ a2. The final form of

a general tensor conserved as a consequence of vacuum
equations of linear gravity thus looks as follows:

Tik ¼ α1

�
hik;ah;a − hia;kh;a þ hka;ih;a − 2hka;bhab;i þ hab;ihab;k − 1

2
ηikh;bh;b − 1

2
ηikhab;chab;c þ ηikhab;chbc;a

�

þ α2T
ðstrongÞ
ik þ α3ðhik;ah;a − hia;kh;a − hka;ah;i þ h;ih;kþηikh;bhbc;c − ηikh;bh;bÞ

þ α4ðhik;ahab;b − hik;ah;a − hia;ahkb;bþhia;bhka;b þ hia;ah;k − hia;bhab;kÞ: ð23Þ

It involves a four-parameter freedom; one of the param-
eters can be fixed by the choice of units. A natural question
arises whether among these expressions there exist quan-
tities which are symmetric, Tik ¼ Tki; this condition
imposes some restrictions on coefficients αi. We obtain
a unique (up to a multiplicative constant α) symmetric
tensor writing α1 ¼ α, α2 ¼ 0, α3 ¼ −2α, α4 ¼ 2α.
Putting αi’s into (23) we arrive at the final expression in
the form

TðsymÞ
ik ¼α

�
2hik;ahab;b−3hik;ah;a−2hia;ahkb;bþ2hia;bhka;b

þ2haði;kÞh;aþ4h;ðihkÞa;a−4hab;ðihkÞa;b−2h;ih;k

þhab;ihab;k−2ηikh;bhbc;cþ
3

2
ηikh;bh;b

−1

2
ηikhab;chab;cþηikhab;chbc;a

�
: ð24Þ

The four-parameter family of conserved quantities in the
linearized theory was in fact obtained in [4] already without
using CADABRA; however individual terms given there
contain a number of misprints.4

Notice that we could also start out from the “complete”
linearized Einstein’s equations Grs ¼ 0, where Grs is the
Einstein tensor, and consider the master equation
Tik
;k ¼ λirsGrs. The result, as expected, will not change; it

only leads to regular linear transformations of Lagrange
multipliers because of the following identity

λirsGrs ¼ λ0icdRcd; λ0icd ¼ λirs
�
δcrδ

d
s −1

2
ηrsη

cd

�
: ð25Þ

4Denoting the parameters α
i
used in [4] by βi we obtain the

relationships between the parametrization used above and in [4]:
α1 ¼ 2β3, α2 ¼ −2β4, α3 ¼ β1, α4 ¼ −β2. The condition of
symmetry yields β1 ¼ 2β, β2 ¼ 2β, β3 ¼ − 1

2
β, β4 ¼ 0.
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If we look for superpotentials generating parts of the
conserved energy-momentum tensor in the linearized
gravity, we find that expressions multiplied by α2, α3,
and α4 can be expressed as a divergence of the following
expression:

Uikl ¼ α2ðha½khal�;i þ ηi½khl�ahab;b − ηi½khabhl�a;bÞ
þ 2α3ðhhi½k;l� þ ηi½khhl�a;a − ηi½khh;l�Þ
þ 2α4ðhi½khl�a;a − hi½kh;l� þ hiaha½k;l�Þ: ð26Þ

Therefore, the general energy-momentum tensor (23) can
be written in the form

Tik ¼ α1

�
hik;ah;a − hia;kh;a þ hka;ih;a − 2hka;bhab;i

þ hab;ihab;k − 1

2
ηikh;bh;b − 1

2
ηikhab;chab;c

þ ηikhab;chbc;a
�
þ Uikl

;l; ð27Þ

where Uikl is given by (26), whereas the symmetric tensor
(24) can be written as

TðsymÞ
ik ¼ α

�
hik;ah;a − hia;kh;a þ hka;ih;a − 2hka;bhab;i

þ hab;ihab;k − 1

2
ηikh;bh;b − 1

2
ηikhab;chab;c

þ ηikhab;chbc;a þ 4ðhhi½k;l� þ ηi½khhl�a;a − ηi½khh;l�

− hi½khl�a;a þ hi½kh;l� − hiaha½k;l�Þ;l
�
; ð28Þ

in which the terms in the round brackets form a
superpotential.

1. Energy-momentum tensor obtained
by variational principle

It is worth to mention the result indicated in the text of a
lecture in [5]. We start from the covariant Lagrangian
density for the tensor field hab representing linear pertur-
bations of the vacuum background spacetime metric gab. It
has the form

ð−gÞ−1
2L ¼ 1

2
hab;chab;c − 1

2
h;ah;a þ h;ahab;b

− hab;chbc;a; ð29Þ

where covariant derivatives are done with respect to the
background metric gab. The metric energy-momentum
tensor following from the variational principle reads

Tik ¼
2ffiffiffiffiffiffi−gp δL

δgik
¼ gik

�
1

2
hab;chab;c − 1

2
h;ah;a − hab;chbc;a

− h;abhab
�
− hab;ihab;k þ h;ih;k − 2h;ðihkÞa;a

þ 4hab;ðihkÞa;b − 2hia;bhka;b − 2hia;bhkb;a

þ 2hik;ahab;b þ hik;ah;a þ 2h;aðihakÞ − 4haðihkÞb;ab

þ 2hik;abhab þ hikh;aa: ð30Þ

The resulting energy-momentum tensor contains the sec-
ond derivatives of field hab and, even with flat background,
cannot thus be obtained by our procedure. However, it is
worthwhile to notice that it is covariantly conserved in a
general background spacetime.

2. Linearized Landau-Lifshitz pseudotensor

Consider the Landau-Lifshitz energy-momentum pseu-
dotensor in the full general relativity (see e.g. [6–8])

16πð−gÞtab ¼ ĝab;cĝcd;d − ĝac;cĝbd;d þ
1

2
gabgcdĝce;fĝfd;e

− gcdĝce;fðgafĝbd;e þ gbfĝad;eÞ

þ gcdgefĝac;eĝbd;f þ
1

8
ð2gacgbd − gabgcdÞ

· ð2gefgmn − gfmgenÞĝen;cĝfm;d; ð31Þ

where gab is a spacetime metric and ĝab denotes
ffiffiffiffiffiffi−gp

gab;
g ¼ detðgabÞ. If we now use the linearization ansatz gab ¼
ηab þ hab, gab ¼ ηab − hab, where hab ¼ ηacηbdhcd, we
find that ĝab;c ¼ 1

2
ηabh;c − hab;c þOðh2Þ. Writing out

the terms up to the second order in Landau-Lifshitz
pseudotensor (31), which is tedious but straightforward,
we get the symmetric energy-momentum tensor (24).

3. Harmonic gauge condition

We now wish to analyze the uniqueness of the energy-
momentum tensor suggested recently in [9]. Since there the
assumption of the linearized harmonic gauge condition

hab;b ¼ 1

2
h;a ð32Þ

plays a fundamental role, we have to generalize the
previous procedure to include this possibility. A similar
condition will become the field equation in the case of
massive gravity considered in Sec. VII.
We could just add the gauge condition and its derivatives

multiplied by another set of Lagrange multipliers.
However, with this simple gauge condition our procedure
is equivalent to the following. First, regarding the gauge
condition (32), we replace all terms hab;b appearing in
general expression (8) by 1

2
h;a. Then, we observe that

some terms in (8) will become equal: 2A1 ¼ A2,
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4A3 ¼ 2A10 ¼ 2A11 ¼ A14, 2A6 ¼ A8, 2A7 ¼ A9,
2A16 ¼ 4A17 ¼ A18. As a consequence of these relations
some terms in (8) become redundant which we take into
account by putting a1 ¼ a3 ¼ a6 ¼ a7 ¼ a10 ¼ a11 ¼
a16 ¼ a17 ¼ 0. Analogously, we have to consider the
derivatives of the gauge condition (32) and thus replace
the terms of type hab;bc by 1

2
h;ac.

Employing the linearized harmonic gauge in the field
equations implies a Ricci tensor equal to Rab ¼ − 1

2
hab;cc,

Ricci scalar R ¼ − 1
2
h;cc, and Einstein tensor 2Gab ¼

−hab;cc þ 1
2
ηabh;cc. Using CADABRA and some simple

rearrangements we arrive at a five-parameter tensor with
coefficients given by α1 ¼ a2, α2 ¼ a4 ¼ −a12,
α3 ¼ a9 ¼ − 1

2
a13 ¼ a20, α4 ¼ a14, α5 ¼ a15 ¼ −2a19,

a8 ¼ −α1 − 1
2
α2, a18 ¼ − 1

4
ðα1 þ α3 þ 2α4Þ. Explicitly,

Tik ¼ α1

�
hik;ah;a − hia;kh;a − 1

4
ηikh;bh;b

�

þ α2

�
hia;bhka;b − hia;bhab;k − 1

2
hia;kh;a

�

þ α3ðhka;ih;a − 2hka;bhab;i þ ηikhab;chbc;a

− 1

4
ηikh;bh;bÞ þ α4

�
h;ih;k − 1

2
ηikh;bh;b

�

þ α5

�
hab;ihab;k − 1

2
ηikhab;chab;c

�
: ð33Þ

Therefore, the energy-momentum tensors for the linear-
ized gravity with the harmonic gauge condition chosen
ab initio form a five-parameter system— hence, with one
additional free parameter as compared with the case not
involving any gauge condition. The above expression is in
general nonsymmetric. By putting − 1

2
α2 − α1 ¼ α3,−α2 ¼ −2α3, we arrive at the symmetric expressions which

form a three-parameter system. Introducing new constant
parameters by α ¼ 1

2
α1 ¼ − 1

2
α2 ¼ −α3, β ¼ α4, γ ¼ α5,

we get the symmetric tensor in the form

Tik ¼ α

�
2hik;ah;a − hia;kh;a − hka;ih;a − 1

4
ηikh;bh;b

− 2hia;bhka;b þ 2hia;bhab;k þ 2hka;bhab;i

− ηikhab;chbc;a
�
þ β

�
h;ih;k − 1

2
ηikh;bh;b

�

þ γ

�
hab;ihab;k − 1

2
ηikhab;chab;c

�
: ð34Þ

The tensor suggested in [9] follows after choosing α ¼ 0,
β ¼ − 1

8
, γ ¼ 1

4
. Hence, our procedure based just on the

linear gravity and harmonic gauge shows how the energy-
momentum tensor introduced by Butcher et al. [9,11] is
contained in a larger (three-parameter) family of conserved

symmetric tensors. Accepting the physical arguments
presented in [9,11], we arrive at the unique expression.
However, our procedure shows that the energy-momen-

tum tensor introduced in [9] based just on the linearized
gravity and harmonic gauge is not unique.
It is worth to emphasize that starting from the unique

symmetric energy-momentum tensor (24) derived without
any gauge conditionwe do not arrive at the tensor proposed
in [9] if we apply the harmonic gauge condition in the
expression (24) a posteriori. In their most recent work,
Butcher et al. [8] rederive their symmetric expression

8Tik ¼ −h;ih;k þ 2hab;ihab;k þ
1

2
ηikh;bh;b

− ηikhab;chab;c ð35Þ

found in the harmonic gauge from a variational formulation
not involving a special gauge condition. They arrive at the
result [see (13a) in [11]]

4Tik ¼ − 2hka;ihab;b þ hka;ih;a þ hka;ah;i − h;ih;k

þ hab;ihab;k − ηikh;bhbc;c þ ηikhab;ahbc;c

þ 1

2
ηikh;bh;b − 1

2
ηikhab;chab;c; ð36Þ

which under the harmonic gauge condition turns into their
original result (35). Notice that (36) is not symmetric. It is
contained in our general form (23): we obtain (36) by
putting −2α1 ¼ α2 ¼ 2α3 ¼ − 1

2
and α4 ¼ 0 in (23).

A general superpotential for linearized gravity in the
harmonic gauge reads as follows:

Uikl ¼ α1

�
ha½khal�;i þ

1

2
ηi½khl�ah;a − ηi½khabhl�a;b

�

þ 2α2

�
hhi½k;l� − 1

2
ηi½khh;l�

�

þ 2α3

�
− 1

2
hi½kh;l� þ hiaha½k;l�

�
: ð37Þ

Hence, it can be obtained directly from (26) by imposing
the harmonic gauge condition.

4. Generalized gauge condition

The authors of [9] consider also the generalized gauge
condition of the form hab;b ¼ χh;a, where χ is a constant
parameter, which may be called a generalized (or para-
metrized) harmonic condition. We wish to apply our
method also in this more general case. The resulting
Ricci and Einstein tensors now read 2Rbc¼ð2χ−1Þ∂bch−∂a

ahbc and 2Gbc¼ð2χ−1Þ∂bch−∂a
ahbc−ηbcðχ−1Þ

∂a
ah. We follow the same procedure as in Sec. VI B 3.

Recalling the consequences of the gauge condition
applied analogously as before, we find that a1, a3, a6, a7,
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a10, a11, a16, and a17 vanish. Next, we multiply the field
equations by Lagrange multipliers, write down the master
equation, and employ CADABRA. Observing the results we
can easily eliminate a number ofLagrangemultipliers except
for λ4 [cf. (10)]. Also, we find very simple relations for the
following constants: a5 ¼ 0, a4 ¼ −a12, a13 ¼ −2a20,
a15 ¼ −2a19. The remaining parameters entering the prob-
lem have to satisfy four linear equations:

0 ¼ χa2 þ χa9 þ a14 þ 2a18 þ a8ð2χ − 1Þ;
0 ¼ a2 þ a8 þ a12ðχ − 1Þ;
0 ¼ a14 þ ðχ − 1Þ½−a8 þ 2λ4 þ 2a19 − χa12�;
0 ¼ a9 − 2χa20 − 2a19ð2χ − 1Þ: ð38Þ

Considering first χ ¼ 1, the solution is simple:
a9 ¼ 2ða19 þ a20Þ, a2 ¼ −a8, a14 ¼ 0, a9 ¼ −2a18.
Introducing now four parameters αi and using the system
(38), we find α1¼a8¼−a2, α2¼a12¼−a4, α3 ¼ a19 ¼− 1

2
a15, α4 ¼ a20 ¼ − 1

2
a13, a9 ¼ −2a18 ¼ 2α3 þ 2α4. The

conserved energy-momentum tensor acquires the following
form

Tik ¼ α1ð−hik;ah;aþhia;kh;aÞþα2ð−hia;bhka;bþhia;bhab;kÞ
þα3ð2hka;ih;a−2hab;ihab;k−ηikh;bh;bþηikhab;chab;cÞ
þα4ð2hka;ih;a−2hka;bhab;i−ηikh;bh;bþηikhab;chbc;aÞ:

ð39Þ

The requirement of symmetry leads to the conditions α1 ¼
2α3 þ 2α4 and α2 ¼ −2α4; i.e. it leaves us with a two-
parameter system.
For χ ≠ 1, the system of equations (38) has the following

solution

a9 ¼ 2ð2χ − 1Þa19 þ 2χa20; ð40Þ

a2 ¼ − a8 þ ð1 − χÞa12; ð41Þ

a14 ¼ð1 − χÞa8 þ χðχ − 1Þa12 − 2a18

− 2χð2χ − 1Þa19 − 2χ2a20: ð42Þ

Notice that the third equation in the system (38) can just be
used to express the multiplier λ4 and does not restrict the
form of the energy-momentum tensor. Let us now introduce
five parameters as follows: α1 ¼ a8, α2 ¼ a12 ¼ −a4,
α3¼a18, α4¼a19¼−1

2
a15, α5 ¼ a20 ¼ − 1

2
a13. Collecting

all the previous results for the coefficients ai [regarding
also Eqs. (40)–(42)] we find the following expression for
the energy-momentum tensor when a generalized harmonic
gauge condition is used:

Tik ¼ α1ð−hik;ah;a þ hia;kh;a þ ð1 − χÞh;ih;kÞ
þ α2ðð1 − χÞhik;ah;a − hia;bhka;b þ hia;bhab;k

þ χðχ − 1Þh;ih;kÞ þ α3ð−2h;ih;k þ ηikh;bh;bÞ
þ α4ð2ð2χ − 1Þhka;ih;a þ 2χð1 − 2χÞh;ih;k
− 2hab;ihab;k þ ηikhab;chab;cÞ þ α5ð2χhka;ih;a
− 2hka;bhab;i þ ηikhab;chbc;a−2χ2h;ih;kÞ: ð43Þ

The requirement of symmetry yields conditions α1 ¼
2ð2χ − 1Þα4 þ 2χα5 and α2 ¼ −2α5, so (43) becomes a
three-parameter system.
The resulting expression (43) is meaningful also for

χ → 1; however, we obtain the solution (39) for χ ¼ 1 after
choosing α4 ¼ −2α3. The three-parameter system of sym-
metric tensors for χ ≠ 1 then goes over to the two-
parameter system.
Imagine we demand the independence of the result (43)

on the parameter χ; i.e., we require the same conserved
tensor for any χ. There are three terms that are χ dependent:
h;ih;k, hik;ah;a, and hka;ih;a. Writing out explicitly the
corresponding part of the energy-momentum tensor we find

Tik ¼ ½ðα1 − 2α3Þ þ χð−α1 − α2 þ 2α4Þ
þ χ2ðα2 − 4α4 − 2α5Þ�h;ih;k
þ ½ðα2 − α1Þ þ χð−α2Þ�hik;ah;a
þ ½ð−2α4Þ þ χð4α4 þ 2α5Þ�hka;ih;a þ… ð44Þ

Therefore, the resulting energy-momentum tensor will
be independent of χ if the coefficients satisfy α2 ¼ 0,
α1 ¼ 2α4, α5 ¼ −2α4, forming thus a two-parameter sys-
tem. This tensor cannot be made symmetric. Finally, adding
the condition that the χ-independent tensor is conserved
also for χ ¼ 1, i.e. α4 ¼ −2α3, we obtain a unique non-
symmetric energy-momentum tensor in linearized gravity
with parametrized gauge condition hab;b ¼ χh;a which is
conserved for arbitrary χ. It reads

Tik ¼ α

�
−2hik;ah;a þ 2hia;kh;a − 2hka;ih;a

þ 3h;ih;k − 1

2
ηikh;bh;b − 2hab;ihab;k þ ηikhab;chab;c

þ 4hka;bhab;i − 2ηikhab;chbc;a
�
: ð45Þ

5. High-frequency waves

In the physically most important case of high-frequency
waves propagating in vacuum, the quantities quadratic in
hik;l become gauge invariant after being averaged suitably.
This result goes back to the seminal work by Isaacson
[16,17] which entered also classical textbooks; see [6,7],
for example. In general, the condition requires the
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characteristic wavelength to be short compared to the
background curvature of spacetime. This is easily satisfied
in the linear theory when the background is flat. The “Brill-
Hartle averaging” is the appropriate technique of construct-
ing the average of an oscillating tensor field in a general
background. (In flat backgrounds, one can just average over
one period of oscillation in time and one wavelength of
distance in spatial directions; see [18], p. 254.) Under
the change of gauge, x → x0 ¼ xþ ξ, the perturbation
h → h0 ¼ hþ ∂ξ, so
ð∂h0Þð∂h0Þ → ð∂hÞð∂hÞ þ ð∂hÞð∂2ξÞ þ ð∂2ξÞð∂2ξÞ; ð46Þ

but the last two terms are negligible after averaging.
Moreover, since the averaging makes divergences small,
we may convert various products of ð∂hÞð∂hÞ into other
terms. For example,

hka;bhbi;a ¼ −hka;bahbi þ ðhka;bhbiÞ;a; ð47Þ

so after averaging and choosing the gauge with hab;b ¼ 0
(see below) this term drops out. In addition, in the curved
backgrounds in the high-frequency approximation the
covariant derivatives commute (see [17], Sec. IV and the
Appendix there for the details).
Regarding these results, it is clear that after averaging,

we may omit the divergence of the superpotential in our
general energy-momentum tensor (27) in the linear gravity.
In addition, since the averaging makes the resulting
expressions gauge invariant we may choose a simple gauge.
Assuming that we are in a vacuum region we may choose
the Lorenz gauge in which hab;b ¼ 0 and haa ¼ 0 so that
the harmonic gauge condition (32) is automatically sat-
isfied. Then the terms involving h in (27) drop out, and
rewriting the fourth and last two terms in (27) in the way
indicated above and using the Lorenz gauge, we arrive at
the following simple expression:

hTiki ¼ const · hhab;ihab;ki; ð48Þ

where the brackets hi denote the averaging; the same
expression follows from the symmetric tensor (28). And it
is easy to see that the averaged energy-momentum tensor
introduced by Butcher et al. [9,11] leads to exactly the
same result. In fact, even in the case of a curved vacuum
spacetime the averaging of the “metric energy-momentum
tensor” (30) in the generalized Lorenz gauge hab;b ¼ 0,
haa ¼ 0 implies (48) with partial derivatives replaced by
covariant ones.

VII. MASSIVE GRAVITY

Finally, we turn to the case of the massive gravity in a
vacuum. We start from the Fierz-Pauli action for the
massive gravity (a massive spin-2 particle—see, for exam-
ple, [14]) described by symmetric tensor hab:

SFP ¼
Z �

− 1

2
hab;chab;c þ hab;chbc;a − hab;ah;b

þ 1

2
h;ah;a − 1

2
m2ðhabhab − h2Þ

�
d4x: ð49Þ

The equations of motion following from this action have
the form

δS
δhab

¼ hab;cc − hac;bc − hbc;ac þ ηabhcd;cd þ h;ab

− ηabh;cc −m2ðhab − ηabhÞ ¼ 0: ð50Þ

The divergence of the last equation with respect to a free
index implies, for m ≠ 0, hab;b − h;a ¼ 0. Substituting
back into (50) and making contraction in free indices we
find that the trace h has to vanish, h ¼ 0. Equations (50) are
thus equivalent to the following set of equations:

hab;cc −m2hab ¼ 0; hab;b ¼ 0; h ¼ 0: ð51Þ

A. Klein-Gordon equation

Starting first just with the Klein-Gordon equation,

hab;cc −m2hab ¼ 0; ð52Þ

we obtain the following five-parameter result for conserved
tensors: a1 ¼ a3 ¼ a5 ¼ a9 ¼ a11 ¼ a16 ¼ 0, α1 ¼ a7 ¼
−a13 ¼ −2a17 ¼ 2a20, α2 ¼ 1

m2 c1 ¼ a2 ¼ −a8 ¼ −a10,
α3 ¼ 1

m2 c2 ¼ a4 ¼ −a6 ¼ −a12, α4¼ 1
m2c3¼−1

2
a14¼a18,

α5 ¼ 1
m2 c4 ¼ − 1

2
a15 ¼ a19, where the meaning of the

constants ci is explained in (14) and (15). The explicit
expression for the energy-momentum tensor looks as

follows (with TðstrongÞ
ik given by (21)):

Tik ¼ α1T
ðstrongÞ
ik þα2ðm2hikhþhik;ah;a−hia;kh;a−hia;ah;kÞ

þα3ðm2hiahkaþhia;bhka;b−hia;khab;b−hia;bhab;kÞ
þα4ðm2ηikh2−2h;ih;kþηikh;bh;bÞþα5ðm2ηikhabhab

−2hab;ihab;kþηikhab;chab;cÞ: ð53Þ

The five-parameter system (53) reduces just to a two-
parametric one with α1 ¼ α2 ¼ α3 ¼ 0 if we require the
energy-momentum tensor to be symmetric.
Applying the additional conditions h ¼ 0 and hab;a ¼ 0

on the resulting expression (53) we arrive at
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Tik ¼ α1

�
−hka;bhab;i þ 1

2
ηikhab;chbc;a

�

þ α3ðm2hiahka þ hia;bhka;b − hia;bhab;kÞ
þ α5ðm2ηikhabhab − 2hab;ihab;k þ ηikhab;chab;cÞ:

ð54Þ

The requirement of symmetry implies α3 ¼ α1, which leads
to the following expression

Tik ¼ α1ðm2hiahka þ hia;bhka;b − hia;bhab;k − hka;bhab;i

þ 1

2
ηikhab;chbc;aÞ þ α5ðm2ηikhabhab − 2hab;ihab;k

þ ηikhab;chab;cÞ: ð55Þ

By choosing α1 ¼ 1, α5 ¼ − 1
4
, we obtain the “generalized”

linearized Landau-Lifshitz pseudotensor:

TðLLÞ
ik ¼ 1

2
hab;ihab;k − 1

4
ηikhab;chab;c þ

1

2
ηikhab;chbc;a

þ hia;bhka;b − hia;bhab;k − hka;bhab;i

þm2

�
hiahka − 1

4
ηikhabhab

�
: ð56Þ

Putting m ¼ 0 we recover the symmetric energy-
momentum tensor of the Einstein linearized theory (24)
after we substitute therein the second and the third con-
dition in Eq. (51); i.e. we obtain the standard Landau-
Lifshitz pseudotensor (31) linearized and with these two
conditions taken into account.
Ifweuse the sameprocedure as inSecs.VI B 3andVI B 4,

i.e., we first apply the equations hab;b ¼ 0 and
h ¼ 0 in the general form of energy-momentum tensor
(14) and (15), only nonvanishing terms are then A4, A5,
A12, A13, A15, A19, A20, C2, and C4.

5 The resulting three-
parameter energy-momentum tensor is again (54).

B. A unique symmetric energy-momentum tensor
from the Fierz-Pauli equation

Finally, starting from the field equation (50) and general
form of energy-momentum tensor (14) and (15), we find
that the tensor is conserved modulo the Fierz-Pauli equa-
tion (50) provided that the following relations between the
corresponding nonvanishing coefficients are satisfied:
α1 ¼ a7 ¼ −2a17, α2 ¼ a9¼ a11¼−a14¼ a15¼−a16¼
2a18¼−2a19¼ 2

m2 c3¼− 2
m2c4, a13 ¼ −α1 − 2α2, a20 ¼

1
2
α1 þ α2. These relations lead to the following explicit

form of the energy-momentum tensor:

Tik ¼ α1T
ðstrongÞ
ik þ α2

�
hka;ih;a þ hka;ah;i − 2hka;bhab;i

− h;ih;k þ hab;ihab;k − ηikh;bhbc;c þ
1

2
ηikh;bh;b

− 1

2
ηikhab;chab;c þ ηikhab;chbc;a þ

1

2
m2ηikh2

− 1

2
m2ηikhabhab

�
: ð57Þ

Notice that this result, after putting m ¼ 0, coincides with
the part of the energy-momentum tensor for the linearized
gravity (23). However, to see it, we must, because of a
different parametrization, make the change α1 → α2,
α2 → α1, α3 → −α2, and α4 → 0 in (23); then (57) follows.
It is noteworthy to observe that the inclusion of massive
terms reduces the nonuniqueness of resulting conserved
tensors.
Curiously enough, the energy-momentum tensor con-

served as a consequence of the Fierz-Pauli equation in its
original form (50) cannot be made symmetric for any
choice of parameters α1, α2. However, applying differential
operations on the original Fierz-Pauli equation (which give
rise to the appearance of the third derivatives) we know that
Eqs. (51) are implied. Using the second and the third
equation of (51) the tensor (57) then turns into the
following expression

~Tik ¼ α1

�
−hka;bhab;i þ 1

2
ηikhab;chbc;a

�

þ α2

�
−2hka;bhab;i þ hab;ihab;k − 1

2
ηikhab;chab;c

þ ηikhab;chbc;a − 1

2
m2ηikhabhab

�
: ð58Þ

This tensor can be made symmetric by the choice α ¼
α2 ¼ − 1

2
α1 obtaining thus a unique symmetric tensor for

linear massive gravity in the form

T̄ik ¼ α

�
hab;ihab;k − 1

2
ηikhab;chab;c − 1

2
m2ηikhabhab

�
:

ð59Þ

Observe that the resulting unique symmetric tensor does
not coincide with the linearized Landau-Lifshitz pseudo-
tensor generalized to massive gravity. It is simpler.
It is interesting to compare the expressions (57)–(59)

with the standard results following from the variational
principle and Noether’s theorem. With the Lagrangian
density L determined by the Fierz-Pauli action (49)
(with a multiplicative constant omitted), the canonical
energy-momentum tensor

5The terms vanishing due to the equations hab;b ¼ h ¼ 0 can
be added with any coefficient to the resulting tensor, but if the
above field equations are satisfied the energy-momentum tensor
does not, of course, change.
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Ti
kðcanÞ ¼ Lδik − ∂L

∂hab;k hab;i ð60Þ

turns out to be exactly the expression multiplied by α2 in
(57). Substituting then from the second and the third
equation of (51) as before, we get

TðcanÞ
ik ¼ hab;ihab;k − 2hab;ihka;b

þ ηik

�
− 1

2
hab;chab;c þ hab;chbc;a − 1

2
m2habhab

�
:

ð61Þ

Therefore, Eq. (58) can be written in the form

~Tik ¼ α1T
ðstrongÞ
ik þ α2T

ðcanÞ
ik : ð62Þ

Putting then α2 ¼ − 1
2
α1 we arrive at (59). Since the first,

strongly conserved part can be derived from the super-
potential (22), the total quantities can be evaluated by using
just TðcanÞ

ik . The same total quantities will, of course, result
also from the uniquely given symmetric tensor (59). The
“metric energy-momentum tensor” following from the
variational principle by the same procedure as the expres-
sion (30) was obtained, contains the second derivatives
∂2h. The Belinfante procedure of the symmetrization (i.e.
the metric energy-momentum tensor) in the case of higher
spin fields gives rise to new types of contributions to
energy-momentum tensors, in our case ∝ h∂2h, absent in
the lower spins. Our method of a systematic construction of
superpotentials enabled us to find such an expression which
makes the canonical tensor symmetric and the tensor
involves fields and their first derivatives only. The unique
expression (59) following from the Fierz-Pauli equation
(action) is thus to be preferred. Putting m ¼ 0 and α ¼ 1

4
in

(59), we arrive at the tensor (35) advocated in [9],
with h ¼ 0.
Finally, let us note that our simple symmetric tensor (59)

differs from the Landau-Lifshitz tensor (56) by the diver-
gence of a superpotential; hence, both expressions lead to
the same total (integrated) quantities provided that the field
falls off appropriately at infinity. Regarding the super-
potential (22)—which leads to the strongly conserved
tensor—and puting hab;b ¼ 0 and α ¼ −1, it reads

Uikl ¼ ηi½khabhl�a;b − ha½khal�;i: ð63Þ

Introduce then another superpotential

Ūikl ¼ 2hiaha½k;l�; ð64Þ

and use the first two field equations in (51) when evaluating
its divergence. As a result we find that

TðLLÞ
ik ¼ T̄ik þ ðUik

l þ Ūik
lÞ;l; ð65Þ

where TðLLÞ
ik is given by (56) and T̄ik by (59) with α ¼ 1

2
.
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APPENDIX: CADABRA

CADABRA is a computer algebra system designed for
solving the problems in field theory (see [19,20]). Here we
used its effectiveness in manipulating complicated tensor
expressions. In particular with CADABRA software it is easy
to obtain equations for multiplicative coefficients ai (and
ci; λi;…) at specific covariant terms. In our case this would
be a very tedious task because of the overwhelming number
of terms. In CADABRA each term has to be converted into its
“canonical” form.6 Grouping the terms and collecting their
coefficients generates a set of linear equations as coef-
ficients at each term have to vanish in order to satisfy the
master equation (13).
To illustrate our use of CADABRA we shall briefly

describe the code which leads to the resulting energy-
momentum tensor (23) of the linearized gravity. We first
define tensor indices, metric tensor gab ¼ ηab, field vari-
ables hab, and its dependence on the partial derivative:

fa;b;c;d;e;f;i;k;l#g∷Indices:
fa;b;c;d;e;f;i;k;lg∷Integerð1::NÞ:

g fabg∷Metric: g^fa bg∷InverseMetric:
g^fag fbg∷KroneckerDelta:
g faĝ fbg∷KroneckerDelta:

h fa bg∷Symmetric:
npartial fg∷PartialDerivative:
h fa bg∷DependsðnpartialÞ:

The next step is to insert the equation of motion Rbc ¼ 0
and corresponding Lagrange multipliers forming the right-
hand side of the master equation (13):

6The concrete appearance of every term depends on internal
working of CADABRA algorithms and the way of storing tensorial
structures.
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EQM ≔ npartial fbagfh f̂ag fcgg
þ npartial fcagfh f̂ag fbgg
− npartial fbcgfh faĝ fagg
− g f̂adgnpartial fadgfh fbcgg;

L ≔ ðnlambda 1g fiĝ fbg
npartial^fcgfh faĝ fagg þ � � � þ
nlambda 6npartial figfh f̂bcggÞ@ðEQMÞ;

The following set of CADABRA commands converts all
terms into the canonical form:

@distribute!ð%Þ∶ @eliminate metric!ð%Þ∶
@eliminate kr!ð%Þ∶ @prodsort!ð%Þ∶
@canonicalise!ð%Þ∶ @rename dummies!ð%Þ;

The last input is the general form of the energy-
momentum tensor:

EMT ≔ A f1gnpartial fagfh fikgg
npartial fbgfh f̂abgg þ � � � þ
þ A f20gg fikgnpartial fcgfh fabgg
npartial f̂agfh^fbcgg;

Now we need to calculate its divergence and convert it to
its canonical form to obtain the left-hand side of the master
equation:

divEMT ≔ npartial f̂kgf@ðEMTÞg∶

@distribute!!ð%Þ∶ @prodrule!ð%Þ∶
@unwrap!ð%Þ∶ @sumflatten!ð%Þ∶
@eliminate metric!ð%Þ∶ @eliminate kr!ð%Þ∶
@prodsort!ð%Þ∶ @canoncalise!ð%Þ∶
@rename dummies!ð%Þ;

Subtracting the computed terms and collecting the
coefficients in front of canonicalized terms leads to the
desired linear equations determining the coefficients and
thus the conserved tensor:

@ðdivEMTÞ −@ðLÞ∶

@distribute!ð%Þ∶
@factor in!ð%ÞfA f1g;…A f20g;

nlambda 1;…; nlambda 6g;

Finally, the CADABRA output looks explicitly as follows:

1 ≔ ðA1 þ A3 − λ2Þ∂ahab∂b
chic þ � � �

þ ðA15 þ λ6Þ∂ihab∂c
chab; ðA1Þ
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