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We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a spinning
particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the
pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-
supplementary-condition. The fluxes are computed, for the first time, by solving the 2þ 1 Teukolsky
equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by M the
black hole mass and by μ the particle mass, we cover dimensionless background spins a=M ¼ ð0;�0.9Þ
and dimensionless particle spins −0.9 ≤ S=μ2 ≤ þ0.9. Our results span orbits of Boyer-Lindquist
coordinate radii 4 ≤ r=M ≤ 30; notably, we investigate the strong-field regime, in some cases even
beyond the last-stable-orbit. We compare our numerical results for the gravitational wave fluxes with the
2.5th order accurate post-Newtonian (PN) prediction obtained analytically by Tanaka et al. [Phys. Rev. D
54, 3762 (1996)]: we find an unambiguous trend of the PN-prediction toward the numerical results when r
is large. At r=M ¼ 30 the fractional agreement between the full numerical flux, approximated as the sum
over the modes m ¼ 1, 2, 3, and the PN prediction is ≲0.5% in all cases tested. This is close to our
fractional numerical accuracy (∼0.2%). For smaller radii, the agreement between the 2.5PN prediction and
the numerical result progressively deteriorates, as expected. Our numerical data will be essential to develop
suitably resummed expressions of PN-analytical fluxes in order to improve their accuracy in the strong-
field regime.

DOI: 10.1103/PhysRevD.93.044015

I. INTRODUCTION

The black hole (BH) binary problem is one of the most
interesting topics of numerical relativity due to its relevance
for gravitational wave (GW) detection and its enormous
numerical challenges. In the test-particle limit we assume
that one of the two companions has such a small mass
μ ≪ M, whereM is the mass of the big companion, that the
system can be modeled as a fixed BH background plus a
perturbation. Thus, linearized equations like the Regge-
Wheeler-Zerilli (RWZ) equations [1,2] and the Teukolsky
equation (TE) [3,4] can be used. The particle limit is
relevant in its own right as the extreme-mass-ratio (EMR)
corner of parameter space [5,6], but even more important
because, (i) the underlying physics are the same at any
mass-ratio, which allows us to connect the particle results
to comparable mass ratios; in some cases qualitatively [7],
in other cases even quantitatively [8], (ii) semianalytical
models like the effective-one-body (EOB) model rely on
EMR information, see, e.g., [9], (iii) the physical origin of
experimental observations can be disentangled with more
intuition; e.g., a clean definition of the trajectory or the
couplings of orbital and spin angular momenta is possible,
and (iv) the computational costs are negligible in contrast to

full-fledged numerical relativity (NR) simulations like, e.g.,
[10]. Hence, it is highly desirable to have tools like a
“point-particle laboratory”; in particular, one that allows us
to study the effects of spin-spin-couplings and spin-orbit
couplings on the gravitational waveforms.
The treatment of point particles with spin has a long

history in relativity [11–13]. A major step was Mathisson’s
model of a “gravitational skeleton” [14] (see also [15,16]),
in which the energy momentum tensor of a spinning body is
expanded into its multipolar moments. Assuming that the
body be sufficiently small, one can neglect higher multipole
moments; e.g., restricting to the mass (monopole) and
linear spin effects (dipole) one obtains the well-known
“pole-dipole” approximation. Within this framework and
using the conservation equation ∇μTμν ¼ 0, Papapetrou
derived his famous equations of motion (EoM) for a
spinning particle [17,18]. The nowadays standard form
of these equations was obtained in a series of subsequent
works by Tulczyjew [15], Dixon [19–22] and Wald [23],
and it is written in terms of the world line variables
fvμ; pμ; Sμνg, i.e. the tangent vector, the linear four
momentum and the spin tensor respectively. In this form
the equations are often referred to as the “Mathisson-
Papapetrou-Dixon” equations (MPEQs), emphasizing the
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important early contribution of Mathisson [14] and the later
reformulations of Dixon. As discussed already by
Papapetrou, the EoM contain three degrees of freedom
that have to be fixed in order to close the system of ordinary
differential equations. This freedom can be interpreted as
the arbitrariness in the choice of the reference point inside
the spinning body that shall be tracked by the EoM. The
reference point is not unique because any spinning body
has a lower bound for its size: R≳ S=μ, where R is its
radius, S its spin magnitude and μ its mass [24]. Thus, the
MPEQs have to be understood as describing a small but not
pointlike body [23], and, in principle, one could choose any
point inside the body as the reference point that follows the
EoM. A unique choice in classical mechanics would be the
center of mass, which, however, in GR is observer
dependent [25] (see [16] for a nice visualization). It is
conventional to use the center of mass with respect to which
the “spin” of the body is defined as the reference point
tracked by the world line XμðλÞ, with λ the proper time.
Thus, a condition that fixes the spin also fixes the reference
point traced by XμðλÞ, and the freedom in the EoM can be
removed by imposing a spin-supplementary condition
(SSC). Several such SSCs have been proposed in the
literature [15,18,19,26–29], usually by demanding the
reference-point to coincide with the center-of-mass as
perceived by some preferred timelike observer and, con-
sequently, with the spin to be orthogonal to this observer’s
direction of motion.
Over the years the dynamics of a pole-dipole particle was

studied in great detail within the Mathisson-Papapetrou
framework and under the influence of different SSCs, see,
e.g., [29–33] for an overview. Note, that technically the
“gravitational skeleton” can be used to derive EoM at any
multipolar order and especially second (quadrupole)
moments modeled as quadratic in spin effects have already
been included in many recent works, see, e.g., [16,22,34–
39]. On the contrary, the literature on GWs emitted by
spinning particles that move in BH spacetimes is rather
sparse; probably, due to the fact that the interest in the topic
is mostly theoretical. Estimates on the honest effect of the
spin of the particle predict at best secular relevance in
intermediate-mass-ratios [30,40]. Therefore, it does not
come as a surprise that all studies mentioned below went
beyond the range of astrophysically realistic values for the
spins (see Ch. II, Sec. 3B in [32]). This is motivated by the
hope that high spin values can nonetheless provide very
valuable theoretical information.
Almost 20 years ago Mino et al. [41] performed first

numerical studies of the GW emission from a spinning
particle on radial plunges along the rotation axis of a Kerr
BH by solving the TE in the frequency domain, more
precisely within the Sasaki-Nakamura formalism [42]. The
work of Mino et al. [41] was complemented by radial
plunges in the equatorial plane, as considered by Saijo et al.
in [43]. Recently, Han [44] computed numerically energy

fluxes of a spinning particle in circular, equatorial orbit
about a rotating Kerr BH, both to infinity and down the
horizon, using the same approach in the frequency-domain.
In a somewhat different approach, using metric perturba-
tions and linearizing the Einstein equations, Tominaga et al.
[45,46] investigated GWs from a spinning particle moving
in the spherically symmetric background created by a
neutron star. In 2015, Burko and Khanna [47] studied
the effect of the particle spin on the waveforms produced
along circular motion around a Schwarzschild BH and
found that it can be as important as conservative self-force
effects. All the studies mentioned so far, restricted the spin
of the central BH, here denoted ~S1, and the spin of the small

body, ~S2, to be (anti-)parallel—and we will do so, as well.
On the analytical side, post-Newtonian (PN) calculations
for spinning binaries of comparable masses were performed
in [48–50] and in several works since, see [16] for an
overview. In the point particle limit, Tanaka et al. [51]
computed energy fluxes to infinity at 2.5PN by solving the
Sasaki-Nakamura equations. Their results, Eqs. (5.17) and
Eqs. (5.19) in [51], comprise the next-to-leading-order
(NLO) in the spin-orbit interaction and the leading-order
(LO) in the spin-square interaction and will serve as the
target solutions for our study. Recently, new analytical
expressions for the fluxes became available at higher PN
accuracy (in both the spin-orbit and the spin-spin inter-
action), remarkably in the comparable-mass case: spin-
orbit contributions to the flux were obtained at next-to-
next-to-leading order in Ref. [52,53], see also [54,55],
while spin-square terms were given at NLO in Ref. [56],
notably also with the addition of the 4PN tail contribu-
tion [57].
For simplicity, here we choose to not include the test-

particle limit of the analytical expression of Refs. [53,56],
i.e. we only rely on the 2.5PN accurate original expression
of Tanaka et al. [51]. The higher-order PN terms will be
included, in a suitably factorized and resummed form [58],
in a follow-up work that aims at assessing in detail the
accuracy of the analytical expressions in the strong-field
regime.
In this work we will solve the MPEQs with the

Tulczyjew-SSC (see below) for circular equatorial orbits,
using a variational Gauss-Runge-Kutta integration
scheme as presented in [59]. The obtained dynamics
will be fed to a time-domain Teukolsky solver, which
was successfully used in the computation of tail decay
rates [60] and GWs from EOB-radiation-reaction-driven
particle inspirals [61,62]. The obtained GWs are used to
compute energy fluxes to infinity. We compare our
numerical data against the 2.5PN result of Tanaka et al.
[51]. We will prove that our data approach toward the
PN-prediction as r → ∞ until the differences reach the
level of our numerical uncertainty estimate, which thus
mutually confirms both our numerical implementation
and the analytical PN calculation of Tanaka et al. (also
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the test-particle limit of the comparable-mass PN calcu-
lation of [52,54,55,57]). Moreover, we will set up a
database with numerical values for the infinity fluxes,
which will serve as an orientation for future studies and,
in particular, allow us to assess the success of manip-
ulations in the analytical formulas. Note that in the
nonspinning case the PN-results have been successfully
processed in [63–65] with resummation techniques in
order to extend the range of accuracy toward the strong-
field regime.
The paper is organized as follows. In Sec. II we will

shortly describe the MPEQs and the procedure of finding
circular orbits. In Sec. III we review the TE and our
approach to solving it numerically in the time-domain. In
addition, we present our strategy of computing the TE
source term with spin and the implementation in the Teukode.
Notably, our code is, to the best of our knowledge, the first
one to solve the TE in the time-domain with a source term
for a spinning particle. In Sec. IV a discussion of our
numerical results for the total energy fluxes of a spinning
particle is given, with respect to the analytical 2.5PN
prediction. Finally, in Appendix A we complement the
consistency checks of our numerics with (i) an analysis of
the multipolarly decomposed fluxes, (ii) repeating the
comparison for the total flux with respect to a different
PN variable than that used in the main body, and (iii) a
comparison against the numerical results of [44]. In
Appendix B we collect our results in tables, as a reference
for future studies.
We use geometric units, c ¼ G ¼ 1, and the Riemann

tensor defined as Rα
βγδ¼Γα

γλΓλ
δβ−∂δΓα

γβ−Γα
δλΓλ

γβþ∂γΓα
δβ,

where the Christoffel symbols Γ are computed from the
metric with signature ð−;þ;þ;þÞ. We often employ
reduced variables as denoted with a hat; e.g., r̂ ¼ r=M

and â ¼ a=M ¼ �j~S1j=M2, where ~S1 is the angular
momentum, M the mass of the central BH and the þð−Þ
is chosen when ~S1 is aligned (antialigned) with the strictly
positive orbital angular momentum. The spin of the particle
is expressed here, as well as in most of the literature on this
subject, with the dimensionless quantity σ ¼ S=ðμMÞ ¼
�j~S2j=ðμMÞ, where ~S2 is the spin angular momentum of
the particle and μ its conserved mass. If we think of the
particle as a model of a BH, its maximal spin angular
momentum would be S ¼ �μ2 (see [32] for a discussion on
maximal spins of stellar objects), which means σ would be
restricted to −ν ≤ σ ≤ ν, with ν≡ μ=M, that is −1 ≤
σ=ν ≤ 1 (see also [66] for a related discussion). In practice,
we use M ¼ μ ¼ 1 in our numerics, avoiding the incon-
venient appearance of factors ν and restricting our spin
parameter to σ ∈ ½−1; 1�. This setting is somewhat counter-
intuitive to the condition μ ≪ M, which we assume in
doing perturbation theory, but since μ andM are just scales
in the used equations we are free to use the most convenient
values numerically.

II. DYNAMICS OF A POLE-DIPOLE PARTICLE

In this section we briefly recall the EoM for a pole-dipole
particle and explain our choice for the SSC. More details on
the used numerical integration scheme can be found in [59],
where one of us compared the dynamics of the MPEQs
with the EoM of the Hamiltonian for a spinning particle
[67]. In addition, we will outline the procedure for finding
initial data that leads to circular equatorial orbits (CEOs),
including unstable ones. We mention that, equivalently, the
dynamics for a pole-dipole particle under the TUL-SSC
which moves on a circular orbit in the equatorial plane with
(anti)aligned spin can be computed analytically following
the Appendix of [51].

A. Equations of motion and the
spin-supplementary condition

The MPEQs have been the object of many studies, see,
e.g., [30] for a review and [68–70] for recent works. In the
nowadays standard form they read

vα∇αpμ ¼ − 1

2
Rμ

νρσvνSρσ

vα∇αSμν ¼ pμvν − pνvμ; ð1Þ

where vμ ¼ dXμ=dλ is the tangent vector to the world line
XμðλÞ, with λ the proper time, of a yet unspecified reference
point inside the spinning body and pμ its total linear four-
momentum. The spin tensor Sμν is defined in some analogy
to classical spin angular momentum via spatial integrals
over the stress-energy tensor Tμν on a given hypersurface
and with respect to the chosen reference point [29,32]. The
more intuitive picture of spin as a three-dimensional vector
can be partially retrieved after the reference point is fixed
through a SSC (see below). Independently from the SSC,
any background symmetry implies a constant of motion
with respect to evolution upon the MPEQs. Namely, for a
Killing vector ξμ the quantity

C ¼ ξμpμ − 1

2
ξμ;νSμν ð2Þ

remains conserved upon evolution.
As mentioned earlier, the system of Eqs. (1) contains

three degrees of freedom associated with the arbitrariness
of the tracked reference point and thus with the notion of
spin. This arbitrariness has to be removed before one can
use Eqs. (1) to find dynamics of a pole-dipole particle.
Here, we choose to close the system with the “Tulczyjew-
SSC” [15] (TUL-SSC)

Sμνpμ ¼ 0; ð3Þ

which is known to feature conservation of the dynamical
rest mass μ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−pμpμ

p
and of the spin magnitude
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S2 ¼ 1

2
SμνSμν: ð4Þ

Note that all previous numerical studies on the topic of
energy fluxes from spinning particles made the same choice
[41,43,44,51]. For the TUL-SSC a spin four-vector is
defined as

Sμ ¼ − 1

2
ϵμνρσuνSρσ; ð5Þ

where uν ≔ pν=μ is the specific four momentum, ϵμνρσ ¼ffiffiffiffiffiffi−gp
~ϵμνρσ is the Levi-Civita tensor with the Levi-Civita

symbol ~ϵ0123 ¼ 1 and g is the determinant of the back-
ground metric tensor. Equation (5) can be rearranged to get

Sρσ ¼ −ϵρσγδSγuδ: ð6Þ

Substituting Eq. (6) into the definition of the spin-magni-
tude, Eq. (4), we get that the spin magnitude can be written
in terms of the four-vector

S2 ¼ SμSμ: ð7Þ

The TUL-SSC by construction implies the orthogonality of
the spin-vector and the linear momentum four-vector,
Sμpμ ¼ 0, and it has been shown that Sμvμ ¼ 0 holds as
well, see, e.g., [68].
In general, the imposition of a SSC closes the system of

evolution equations for the world line variables
fvμ; pμ; Sμνg. For the TUL-SSC one can deduce an explicit
relation vμðuμ; SμνÞ; namely,

vμ ¼ m
μ

�
uμ þ 2SμνRνρκλuρSκλ

4μ2 þ RαβγδSαβSγδ

�
; ð8Þ

where m ¼ −pμvμ is the rest mass with respect to vμ,
which for the TUL-SSC is only conserved up to linear order
in S. In practice, the value of m is set such that the tangent
to the world line satisfies the condition vμvμ ¼ −1.
Interestingly, relation (8) does not, in general, obey
vμ∥uμ but rather vμ ¼ uμ þOðS2Þ, i.e. the specific linear
momentum and the tangent vector differ by a quadratic-in-
spin term. We mention that the relevant literature
[41,43,44,51] that we use for comparisons also uses the
TUL-SSC.
Here, it is useful to comment on the implications of the

quadratic-in-spin term introduced to the system by virtue of
the TUL-SSC. The region of interest in this paper is the
weak-field, where Rαβγδ ≈ 0 so that the spin-square term in
Eq. (8) is suppressed and our dynamics remain basically
linear-in-spin (which directly reflects in the obtained GW
fluxes). Instead, in the strong-field and at large spin values
σ ∼Oð1Þ the OðS2Þ-terms have a relevant influence on the
dynamics [71]. Let us briefly discuss what this entails for

the significance of our study in the strong-field; especially,
with respect to the question of how reliable our results
might be for more realistic bodies with a small but
nonvanishing quadrupolar moment. The very first
assumption of the pole-dipole model is that the energy-
momentum tensor of the body that we aim to model is
assumed to exhibit only zeroth and first moments when
subjected to a multipolar expansion. When this assumption
is strictly satisfied, the maintenance of the OðS2Þ-terms
introduced by the TUL-SSC is fully compatible with the
pole-dipole approximation. On the contrary, if one was to
stretch the limits of the model beyond a rigorous descrip-
tion, by considering a realistic body for which the
assumption of vanishing higher multipole moments is
violated to a small extent, the pole-dipole approach
becomes ab initio an approximation which neglects quad-
ratic-in-spin terms (because in realistic bodies the spin
induces a quadrupole moment which is described as a spin-
square term [16,72,73]). Thus, for such bodies the pole-
dipole dynamics can only give a qualitative description of
the leading-order in S behavior. To at least consistently
investigate this leading-order in S influence on the motion,
one would have to neglect quadratic-in-spin terms all over,
also in Eq. (8). In the future, we plan on doing so by
repeating our analysis with the MPEQs linearized in the
spin in order to have dynamics which are fully consistent
for realistic bodies also in the strong-field (though restricted
to linear order in the spin).
In summary, we have decided to solve the full quadratic-

in-spin relation, Eq. (8). Thus, our dynamics is rigorous,
also in the strong-field, as long as the considered body can
in fact be described only by its monopole and dipole.
Instead, bodies with a small but nonvanishing quadrupole
moment are only in the weak-field consistently described
by our dynamics—and only at leading order in S; in the
strong-field, the sustained OðS2Þ-term in the dynamics is
inconsistent for such realistic bodies. Astrophysically
relevant objects like BHs in a binary are in general not
consistently described by our dynamics at small orbital
distances because we neglect the expected nonvanishing
quadrupolar moments that are induced by the spin and by
tidal deformations, see, e.g., [74]. Before applying our
results to modeling fluxes from realistic bodies in the
strong-field, one would thus need to repeat our analysis
with consistent, linear-in-spin dynamics to estimate the
influence of the OðS2Þ-term. Fortunately, for σ ≪ 1 the
discussion is anyway redundant because in that case one
can at any rate neglect all quadratic-in-spin terms; in
particular, as already argued by Tulczyjew [15,19], one
would then linearize Eq. (8), which is frequently seen in
analytical approaches like [66,75].

B. The Kerr spacetime background

The Kerr spacetime in Boyer-Lindquist (BL) coordinates
ðt; r; θ;ϕÞ reads

ENNO HARMS et al. PHYSICAL REVIEW D 93, 044015 (2016)

044015-4



ds2 ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2

þ grrdr2 þ gθθdθ2; ð9Þ

where

gtt ¼ −1þ 2Mr
Σ

;

gtϕ ¼ −
2aMrsin2θ

Σ
;

gϕϕ ¼ Λsin2θ
Σ

;

grr ¼
Σ
Δ
;

gθθ ¼ Σ; ð10Þ
and

Σ ¼ r2 þ a2 cos2 θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2;

Λ ¼ ϖ4 − a2Δ sin2 θ: ð11Þ
For a stationary and axisymmetric background like the

Kerr one, we have two Killing vector fields, ξμðtÞ ¼ δμt and
ξμðϕÞ ¼ δμϕ respectively. The first Killing vector provides the

conserved energy

E ¼ −pt þ
1

2
gtμ;νSμν; ð12Þ

while the latter provides the conserved component along
the symmetry axis z of the total angular momentum,

Jz ¼ pϕ − 1

2
gϕμ;νSμν: ð13Þ

C. Circular equatorial orbits

The procedure to find circular equatorial orbits (CEO)
for a spinning particle on the Kerr spacetime background
follows the guidelines given in [68]. Namely, it is assumed
that the only nonzero component of the spin vector (5) is
the polar one, i.e.,

Sμ ¼ Sθδμθ; ð14Þ
This assumption together with the orthogonality conditions
Sμpμ ¼ 0, Savμ ¼ 0 leads to

pθ ¼ vθ ¼ 0: ð15Þ

Since vθ ¼ 0, we can choose to stay on the equatorial
plane, i.e., θ ¼ π=2. The condition (14) on the equatorial

plane means that the spin of the particle is parallel to the
spin of the central black hole. For aS > 0 the spins of
the binary are aligned while for aS < 0 the spins are
antialigned.
From Eqs. (7) and (14) we get Sθ ¼ − ffiffiffiffiffiffi

gθθ
p

S. The only
nonzero components of the spin tensor computed from
Eq. (6) are

Str ¼ −Suϕ
ffiffiffiffiffiffiffiffiffiffiffi
− gθθ

g

r
¼ −Srt;

Stϕ ¼ Sur

ffiffiffiffiffiffiffiffiffiffiffi
− gθθ

g

r
¼ −Sϕt;

Srϕ ¼ −Sut
ffiffiffiffiffiffiffiffiffiffiffi
− gθθ

g

r
¼ −Sϕr: ð16Þ

We can express pt and pϕ as functions of the energy
E and of the z-component of the total angular
momentum, Jz, by using Eqs. (12) and (13), and,
since the system is constrained to the equatorial plane,
we get

pt ¼
−E − MS

μr3 ðaE − JzÞ
1 − MS2

μ2r3
;

pϕ ¼
Jz − aMS

μr3 ½ð−1þ r3

a2MÞaEþ Jz�
1 − MS2

μ2r3
; ð17Þ

cf. Eqs. (40) and (41) in [68] [our definitions of E and
Jz, Eqs. (12) and (13), differ from those of [68],
Eqs. (37) and (38), by a minus sign]. Rewriting the
above expressions in dimensionless quantities, we have

ut ¼
−Ê − σ

r̂3 ðâ Ê−ĴzÞ
1 − σ2

r̂3
;

uϕ ¼ M
Ĵz − âσ

r̂3 ½ð−1þ r̂3

â2Þâ ÊþĴz�
1 − σ2

r̂3
; ð18Þ

where Ĵz ≔ Jz=ðμMÞ, and Ê ≔ E=μ.
From Eq. (8) and Eq. (18) we can get the radial velocity

as a function of the dimensionless quantities as well, i.e.,

dr̂

dλ̂
¼ ðσ2 − r̂3Þ ffiffiffiffiffiffiffiffi

Veff
p

r̂
ffiffiffiffi
Q

p ; ð19Þ

where λ̂ ¼ λ=M,

Q ¼ r̂12 − 4r̂9σ2 − 6r̂7σ2ðĴz − Êðâþ σÞÞ2
þ 6r̂6σ4 − 3r̂4σ4ðĴz − Êðâþ σÞÞ2 − 4r̂3σ6 þ σ8;

and the effective potential
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Veff ¼ ðÊ2 − 1Þr̂8 þ 2r̂7 þ r̂6½â2ðÊ2 − 1Þ − ðÊσ − ĴzÞ2� þ 2r̂5½â Êðâ Êþ3Êσ − 2ĴzÞ þ ðÊσ − ĴzÞ2 þ σðσ − ÊĴzÞ�
− 4r̂4σ2 þ 2âσr̂3½ðâ2 þ âσÞÊ2 − ÊĴzðσ þ 2âÞ þ âσ þ Ĵ2z � þ r̂2σ2½ðâ Ê−ĴzÞ2 − σ2� þ 2r̂σ4 − â2σ4: ð20Þ

The turning points of the radial motion, defined by
Veff ¼ 0, provide the first condition to obtain CEOs. The
second condition is to demand that there is no radial
acceleration. Altogether,

Veff ¼ 0;
dVeff

dr̂
¼ 0; ð21Þ

have to be fulfilled for a CEO. By solving the system of
Eqs. (21) for a given radial distance r̂ and spin σ we get the
energy Ê, and the component of the total angular momen-

tum Ĵz. If
d2Veff
dr̂2 < 0, the CEO is stable along the radial

direction while, if d2Veff
dr̂2 > 0, the CEO is unstable. In the

latter case, we have to impose in the code that the radial and
the polar velocity are zero during the whole evolution of the
system, otherwise small numerical instabilities will drive
the numerical trajectory off the CEO. For all values of the
(background and particle) spins considered in this work, we
computed the radius of the last stable orbit (LSO) by
demanding d2

dr̂2 Veff ¼ 0 in addition to Eqs. (21) (see e.g.
[68,76] for the same calculation). The corresponding

numbers are listed in Table I, together with the respective
orbital frequency of the particle as computed from Eq. (22).

D. Orbital configurations

We consider orbits with Boyer-Lindquist radii r̂ ¼ f5; 6;
7; 8; 10; 12; 15; 20g. For some configurations, further data
points at r̂ ¼ 4 and r̂ ¼ 30 are computed. Comparing with
Table I, this means we are considering also unstable orbits
beyond the LSO. For each value of r̂we consider threevalues
of the background spin â ¼ f−0.9; 0;þ0.9g and ten values
of the particle spin σ ¼ f−0.9;−0.7;−0.5;−0.3;−0.1;þ
0.1;þ0.3;þ0.5;þ0.7;þ0.9g.
After obtaining the corresponding initial data following

Sec. II C, we numerically integrate the EoM, Eq. (1) and
Eq. (8). As an immediate check of our dynamics we
compare the obtained numerical frequency ΩNum ¼
vϕ=vt with the exact analytical expression, Eq. (12) in
[44], that generalizes the usual Kepler law from geodesic
motion to our EoM for a spinning particle (cf. also the
Appendix of [51], which gives a procedure to compute the
frequency as well). Within our notation, this (dimension-
less) orbital frequency reads

Ω̂≡MΩ ¼
âþ σð3

2
þ 3â2u2Þ þ 1

2
σ2âð3þ 4uÞu2 − u−3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3âσu2 þ 13

4
σ2u3 þ 3

2
âσ3u5 þ ð9

4
â2u7 − 2u6Þσ4

q
â2 − u−3 þ 3σðâ3u2 þ âÞ þ σ2½1þ â2ð2uþ 3Þu2� ; ð22Þ

where u≡ 1=r̂ ¼ M=r. We use here the minus sign in the
∓ case distinction in Eq. (12) of [77] because we define
−1 ≤ â ≤ 1 (thus a case distinction is not needed). In the
σ → 0 limit, this equation reduces to the usual Kepler
constraint for a nonspinning particle on Kerr background,
Ω̂ ¼ 1=ðâþ r̂3=2Þ. Also, when working at linear order in σ,
it coincides with the PN expression given by Tanaka et al.
[51], see Eq. (33) below.
The dimensionless orbital frequency Ω̂Num obtained from

direct numerical integration of the EoM, Eqs. (1) and (8), is
found to agreewith the analytical expression Eq. (22) within
a fractional difference of 10−4 or smaller. We take this as a
reliable cross check of the numerical implementation of the
dynamics. As a consequence, in the following we will just
use Eq. (22) abovewhenever showing results as a function of
the PN-ordering parameter x≡ Ω̂2=3.

III. TEUKOLSKY FORMALISM IN
THE TIME-DOMAIN

In this section we review our approach to solve the TE in
the time domain by means of the Teukode (see [60–62] for

TABLE I. Characterization of the last stable orbit (LSO) of a
spinning particle on circular equatorial orbits of a Kerr back-
ground under the MPEQs and the TUL-SSC, Eqs. (1) and (8).
The columns report, for each value of ðâ; σÞ considered, the
dimensionless radius of the LSO, r̂LSO, and the corresponding
dimensionless orbital frequency, Ω̂LSO, obtained from Eq. (22).

r̂LSO Ω̂LSO

â

σ −0.9 0.0 þ0.9 −0.9 0.0 þ0.9

þ0.9 6.606 4.083 1.663 5.572e-02 1.049e-01 3.123e-01
þ0.7 7.209 4.603 1.755 5.030e-02 9.178e-02 2.938e-01
þ0.5 7.710 5.063 1.873 4.649e-02 8.243e-02 2.748e-01
þ0.3 8.147 5.470 2.025 4.357e-02 7.553e-02 2.552e-01
þ0.1 8.536 5.833 2.216 4.126e-02 7.024e-02 2.350e-01
0.0 8.717 6.000 2.321 4.026e-02 6.804e-02 2.254e-01
−0.1 8.890 6.160 2.429 3.935e-02 6.606e-02 2.165e-01
−0.3 9.216 6.457 2.644 3.774e-02 6.267e-02 2.009e-01
−0.5 9.517 6.729 2.841 3.637e-02 5.988e-02 1.891e-01
−0.7 9.799 6.981 3.011 3.517e-02 5.751e-02 1.808e-01
−0.9 10.062 7.214 3.147 3.412e-02 5.551e-02 1.758e-01
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further details). We discuss a strategy of computing the
source term of the TE for a pole-dipole particle. We spare a
detailed repetition of the description of the Teukode, only
mentioning that it was validated for a nonspinning particle
by reproducing several previous results [78–85].

A. (2þ 1) approach and HH-coordinates

Our approach to solving the gravitational TE makes use
of hyperboloidal, horizon penetrating “HH-coordinates”
fτ; ρ; θ;φg, see [79,86–90] for general ideas and [61,91]
for explicit formulas. The HH-coordinates smoothly reach
future null infinity J þ (“scri”), at ρS, and penetrate the
horizon at ρþ, which makes them favorable for numerical
computations in two aspects: (i) the domain ½ρþ; ρS� is
causally closed with vanishing radial coordinate light
speeds at the boundaries (thus no numerical boundary
conditions have to be imposed), and (ii) ρþ and J þ con-
stitute the two most interesting points for GW-extraction.
Since these points are part of the computational domain, we
avoid the additional uncertainties of extrapolation proce-
dures. As pointed out in [60,61], the application of these
coordinates to the TE has to go hand in hand with a change
of the underlying tetrad for the resulting equation to be
regular at the horizon and at J þ. A rotation of the tetrad is
equivalent to a rescaling of the fieldΨ → ψ , see [61] for the
explicit rescaling implied by switching from the
Kinnersley-tetrad to the Campanelli-tetrad [92], which is
used here. The azimuthal coordinate φ is the one from the
ingoing-Kerr coordinate system and thus adopted to the
axisymmetry of the Kerr spacetime, i.e. ∂φ ¼ ∂ϕ, where ϕ
is the standard BL-coordinate. Consequently, a decompo-
sition into Fourier m-modes, ψ ¼ P

mψmeimφ, results in
components ψm of the full solution that decouple upon
evolution and can be treated separately. In practice,
rederiving the TE in the tetrad of [92] with components
specified in the HH-coordinate system and separating the
azimuthal dependence, we obtain a reformulated (2þ 1)-
TE of the form

Cττ∂ττψm þ Cτρ∂τρψm þ Cρρ∂ρρψm þ Cθθ∂θθψm

þCτ∂τψm þ Cθ∂θψm þ Cρ∂ρψm þ C0ψm ¼ Ss; ð23Þ

with coefficients Cðρ; θ;m; sÞ depending on the back-
ground coordinates, the spin weight s, and the azimuthal
mode-index m. Below, the index m in the complex variable
ψm will be suppressed for brevity.

B. The source term

The TE, Eq. (23), contains the source term Ss, which
encodes the specific form of the matter perturbation that
shall be treated. For the gravitational cases the source terms
are given by

S−2 ¼ 8πΣðr − ia cos θÞ4T4; ð24Þ

Sþ2 ¼ 8πΣT0: ð25Þ
The tetrad scalars T4, T0 are built from the stress-energy
tensor of the perturbation Tμν and from the legs lμ, nμ, mμ

of the tetrad, which was used for the derivation of Eq. (23).
Schematically, T4, and similarly T0, is computed as

T4 ¼ D1ðTμνnμnνÞ þD2ðTμνmμmνÞ þD3ðTμνnμmνÞ;
ð26Þ

where the Di are certain sums of all kinds of 1st and 2nd
coordinate-derivative operators and of nonderivative alge-
braic factors (see [4] for details).
To be consistent with our dynamics, the model for the

stress-energy tensor of a spinning particle must be
Mathisson’s “gravitational skeleton” in the pole-dipole
approximation

ffiffiffiffiffiffi−gp
Tμν ¼

Z
dλftμνðλÞδ4ðxμ − XμðλÞÞ

−∇α½tμναðλÞδ4ðxμ − XμðλÞÞ�g; ð27Þ
where xμ ¼ fτ; xig are some coordinates (in our case the
HH-coordinates), λ is the proper time, XμðλÞ is the world
line of the reference point inside the modeled body, tμν ¼
vðμpνÞ is the monopole moment and tμνα ¼ SαðμvνÞ is the
dipole moment. Transforming the integral via dλ →
dX0=ð ddλX0ðλÞÞ and exploiting the defining properties of
a δ-distribution, we obtain the ready-to-use expression
(cf. Eqs. (2.14) and (2.16) of [66])

Tμνðτ; xiÞ ¼ 1ffiffiffiffiffiffi−gp
�
vðμpνÞ

vt
δ3 − ∇α

�
SαðμvνÞ

vt
δ3
��

; ð28Þ

where δ3 abbreviates δ3ðxi − XiðτÞÞ. In Eq. (28) the
dynamical quantities, which are obtained from solving
the MPEQs, are depending on the background-coordinate-
time, i.e. XiðτÞ, vμðτÞ, pμðτÞ, SμνðτÞ, but not on the spatial
coordinates. The factor

ffiffiffiffiffiffi−gp
and the Christoffel symbols,

which enter through the covariant derivative in Eq. (27), are
functions of the background and not coordinate time-
dependent, at least in time-symmetry adapted coordinates
like the HH- or the BL-coordinates. Since the TE source
term is computed through Eq. (26) from all kinds of
ðτ; ρ; θ;φÞ-derivatives of Tμν, a consistent handling of
these dependencies is important.
Unfortunately, the explained “choices” for the depend-

encies are not unique. The appearance of δ-distributions
without any integrals in Eq. (28) creates room for ambi-
guity. If Eq. (28) was under an integral

R
dxið…Þ, there

would be no doubt that we were free to interchange
field and source points, xi ↔ XiðτÞ, by virtue of the δ-
distributions. But the integral is missing so that we have to
consider the δ-distributions as usual functions that only
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approximate the distributions in some limit. Therefore, we
decide to avoid, (i) interchanging of xi and Xi at will, and
(ii) shifting derivatives that hit the δ-function to the
remaining integrand by virtue of

R
dxfðxÞ∂xδðx − yÞ ¼

− R
dxδðx − yÞ∂xfðxÞ. While these choices are certainly

the most reasonable in our opinion, one could still argue
that the δ-functions act as if there was an integral. In
particular, we mention that Ref. [66] explicitly uses the
Christoffel symbols at XiðtÞ (working with BL-time t), thus
making them t-dependent instead of xi-dependent. In
principle, this leads to slight differences compared to our
choice when evaluating the TE-source term. However, a
good approximation of the δ-distribution means that
δðxiÞ ≠ 0 only if xi ≈ XiðtÞ, which, after all, means the
whole discussion becomes irrelevant at high enough
resolutions, at least with respect to the numerical outcome.
Let us proceed by discussing briefly the actual imple-

mentation of the source term. Since the different derivative
terms in Eq. (26) turn out to be of large algebraic
complexity, it is advisable to wrap single smaller parts
into auxiliary quantities. For instance, one starts by
separating the part that in the case of Sμν ¼ 0 reduces to
the nonspinning particle energy-momentum tensor multi-
plied by

ffiffiffiffiffiffi−gp
, ~Tμν

NS ¼ vðμpνÞδ3=vt, from the explicitly Sμν-
dependent part ~Tμν

SP, which reads

ffiffiffiffiffiffi−gp
Tμν ¼ ~Tμν

NS þ ~Tμν
SP: ð29Þ

Note though that the rewriting ~Tμν
NS ¼ μvμvνδ3=vt, which

we used in [61], does not hold anymore because we have
pμ ≠ μvμ if Sμν ≠ 0. We further separate the explicitly spin-
dependent part into pieces, according to

~Tμν
SP ¼ Qμν

A þQμν
B þQμν

C þQμν
D ;

Qμν
A ≔ ∂τðS0ðμVνÞδ3Þ;

Qμν
B ≔ SiðμVνÞ∂iδ

3;

Qμν
C ≔ SρμVσΓν

ρσδ
3;

Qμν
D ≔ SρνVσΓμ

ρσδ3; ð30Þ
where we have introduced the coordinate velocities Vμ ¼
vμ=vτ and exploited the antisymmetry ofSμν. In the code, the
derivatives of ~Tμν

SP are then computed as sums of derivatives
of the Qμν

X . Notably, Qμν
A and Qμν

B already contain ∂δ-terms,
which means that we will end up with a source term that
includes third derivatives of the δ-functions, i.e. ∂∂∂δ-terms.
It remains to compute derivatives of the tetrad legs and,
finally, to shuffle all the pieces together.
At last, we emphasize that in the Teukode the whole

computation outlined above is performed in the HH-
coordinate system. This is not necessarily to be expected
since T0 and T4 are tetrad scalars and thus coordinate
invariants, but it turns out that the δ-function treatment is
simplified if the source is treated within the same

coordinates as the rest of the equation, see Sec. III. 2 in
[61]. This means, after solving the MPEQs in Boyer-
Lindquist coordinates, we have to transform
fXμ; vμ; pμ; Sμνg before feeding them to the code.

C. Numerical approximation of δ-functions

The performance of different numerical approximations
of a δ-distribution, and of its derivatives in r and θ, was
discussed already in [61]. However, when the particle is
spinning the presence of third derivatives of δ-functions in
the source term obliges us to reconsider what is the best
option. Inspecting the recent literature, one finds that a δ-
like source can be implemented essentially in two ways:
(i) a few-point (discrete) approximation, developed in
[83,93,94], and (ii) a simpler, analytical approximation
by a (narrow) Gaussian function. Within our numerical
infrastructure, the two representations for the δ-function
were extensively compared in [61]. It was found that the
few-point representation is superior to the extended repre-
sentation for CEOs. In that case we were able to reproduce
the values for energy fluxes emitted by a nonspinning
particle as computed by S. Hughes by means of an
improved version of the frequency-domain code used in
[83,84,95] (see Appendix A of [96]) within 0.01% at a
resolution of Nρ × Nθ ¼ 2400 × 200 points. In general,
however, for noncircular motion the Gaussian approxima-
tion of the δ-function turned out to be the better option as it
caused less numerical noise in the simulation.
In the present study of CEOs we use the narrow-

Gaussian model because, (i) it will be our standard choice
when deviating from circular motion in the future, and
(ii) the prescriptions for building a few-point representation
of third derivatives of a delta-function have not been
derived in [83] (though following the same ideas they
can be in principle). This approximation implies a slight
loss of accuracy compared to our results for a nonspinning
particle [61]. The fractional accuracy we obtain is about
0.2% in the dominant m ¼ 2 mode (see below), which is
sufficient to prove the consistency between the PN and the
numerical fluxes at large orbital radii.

IV. RESULTS: COMPARING NUMERICAL
AND POST-NEWTONIAN FLUXES FOR

CIRCULAR ORBITS

In this section we present our new numerical computa-
tion of the GWenergy fluxes emitted by a spinning particle
on a CEO about a Kerr black hole. We discuss the total flux
to infinity [97], which is approximated here as the sum over
the three dominant m ¼ 1, 2, 3 multipoles, with all
corresponding l-contributions included, and compare it
with the 2.5PN prediction. We see that the result of the
numerical computation and the analytical PN prediction are
consistent (up to the 0.2% level) for large orbital radii, i.e.
when x≡ Ω̂2=3 → 0. A detailed multipolar analysis is
presented in Appendix A.
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We mention the possibly obvious fact that our results
hold analogously for angular momentum fluxes. For
circular orbits the energy fluxes and the angular momentum
fluxes are trivially connected via dJ

dt ¼ m
ω
dE
dt , (see Eq. (4.13)

in [98]). Here, the orbital frequency of the particle, Ω,
determines the waveform’s frequency ω ¼ mΩ.

A. Numerical fluxes and their accuracy

In this section we will give an estimate of the accuracy of
our energy flux computations on the basis of nonspinning
particle experiments, which can be quantitatively compared
with existing literature results. More precisely, we compute
the fluxes of a nonspinning particle on a CEO, with the same
numerical setup that will be used for a spinning particle, i.e.
using the Gaussian approximation of the δ, and then we
compare with the extremely accurate target solution com-
puted by S. Hughes in the frequency domain [83,84,95,96].
In [61], we have performed the same comparison and

found a ∼0.01% agreement at resolutions Nρ × Nθ ¼
2400 × 200. However, this remarkable accuracy relies on
the usage of the few-point delta-approximation of [83]. The
Gaussian δ-approximation, which we use here, is expected
to entail a loss of accuracy. To compensate the loss of
accuracy, we increase the resolution in this study to Nρ ×
Nθ ¼ 4800 × 400 points. As shown below, this is enough
to reach satisfactory accuracy for r̂ ≤ 20. When studying
orbits at r̂ ¼ 30, the accuracy drops due to the loss of
resolution near the compactification boundary in the hyper-
boloidal coordinate system. Therefore, at r̂ ¼ 30 we
employ extraordinary resolutions ofNρ×Nθ ¼ 6000×500.
Before going into detail on the accuracy, we discuss how

the energy fluxes can be computed from our master variable
ψ . At future null infinity, ρ ¼ ρS, our master variable
satisfies ψðτ; ρS; θ;φÞ ¼ rΨ4ðτ; θ;φÞ. Therefore, we can
compute the multipolar energy fluxes to infinity directly
from ψ , which for the multipolar decomposition reads

Flm ¼ 2

16π
jr _hlmj2 ¼

2

4πω2
jψlmj2; ð31Þ

where r _h ¼ 2
R
ψdt0. The multipolar energy flux Flm is

here defined to include both the þm and −m contributions,
which implies the factor 2 in Eq. (31), cf. Eq. (2) of [63].
Note that the lm-subscript refers to a multipolar decom-
position that can be done either with respect to the spin-
weighted spherical harmonics Yslm or the spin-weighted
spheroidal harmonics Sslm, see Appendix A 1 for a short
description of these functions. Notably, the reference data
for σ ¼ 0.0 includes the multipolar fluxes with respect to
both the Y2lm and the S−2lm bases.
Let us proceedby comparingour numerical results and the

target solution of Hughes for σ ¼ 0.0. As a general bench-
mark, we find an agreement of ∼0.2% in the full l-summed
flux of a m ¼ 2 simulation for all tested background spins
â ∈ f0;�0.9g, and at all radii, r̂ ¼ ð4; 5; 6; 7; 8; 10;

12; 15; 20; 30Þ. We find approximately the same accuracy
in the dominantmultipolar fluxes. For example, at r̂ ¼ 20 for
â ¼ �0.9 themultipolar 22-flux, eitherwith respect toY−222
or to S−222, exhibits again a ∼0.2% agreement with the
reference solution. For the subdominant modes the accuracy
decreases slightly because they aremuch smaller in absolute
magnitude; e.g., for both the Y−232-flux and the S−232-flux
we find a ∼0.5% agreement in the r̂ ¼ 20, â ¼ �0.9 test
cases. In conclusion, the estimated ≲0.2–0.5%-level of
accuracy for σ ¼ 0.0 is surely enough to prove consistency
with the corresponding PN expressions, though nonzero
values of the spin, σ ≠ 0, are expected to slightly increase the
amount of noise in our simulations. To get an immediate
impression of the accuracy of ourmultipolar fluxes, we have
added the nonspinning σ ¼ 0.0 results of [84] to our plots of
the multipolar fluxes over σ, Fig. 2. The σ ¼ 0.0 data points
are highlighted by short horizontal gray lines, which should
be cut by the smooth connection of our σ ≠ 0 data points.
It is now necessary to point out a further practical detail

regarding our flux computations. The two relations in
Eq. (31), i.e. the computation in terms of _h and in terms
of ψ respectively, are analytically equivalent, but in practice
we find a crucial numerical difference at large radii. At small
radii, we find that both computations are numerically
indifferent, as expected. For example, for â ¼ −0.9 at r̂ ¼
5 we find an agreement between both computations of
∼0.00001%, independently from the considered value of
σ. At larger radii the agreement between the two ways to
compute the fluxes gets progressivelyworse; for example, at
r̂ ¼ 20 it amounts to∼0.01%,which is still equivalent for our
purpose from a practical point of view. But, at r̂ ¼ 30 it can
make a significant difference whether the fluxes are com-
puted from ψ directly or from _h after integration. For
example, doing a test at r̂ ¼ 30 with â ¼ 0.9 and σ ¼ 0.0,
the computation using _hworks reliably—we find a deviation
in the fullm ¼ 2 flux (including alll contributions) from the
target solution of only ∼0.1%. On the contrary, the compu-
tation of fluxes directly from ψ is more biased by numerical
noise—we find, e.g., for the flux in theY21-mode a deviation
of∼1.8% from the target. For σ ≠ 0 the level of noise can be
even worse so that we cannot in all cases extract an
unambiguous energy flux directly from ψ .
The better accuracy in case of using _h for the flux

computation originates from the cumulative integration: it
acts like a filter for the numerical noise, which is present in
all our simulations since we do not employ any numerical
dissipation. At small radii, r̂ ≤ 20 the absolute values of our
fields are so large that the noise is at a negligible level. At
large radii, r̂ > 20, however, the amplitude of the fields
becomes so small that the numerical noise can spoil the
accuracy of our computations. In summary, we are able to
extract energy fluxes at large radii, r̂ > 20, in a robust way
when using a numerical integration of ψ to obtain _h.
Unfortunately, in the data sets that we had compiled for this
study these integrations were only performed for the
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Y−2lm-fluxes, whereas the S−2lm-fluxes were computed
using ψ directly and are thus only stated up to r̂ ¼ 20. In
the future, another possibility is to use numerical dissipa-
tion, which is implemented though not used for this study
because our initial tests at small radii did not suggest that it
might be needed.
Finally, as another interesting side remark, we mention

that the fluxes in the (2,2),(2,1),(3,3)-modes are practically
equal when doing the multipolar decomposition either with
respect to Y−2lm or to S−2lm. For example, for â ¼ �0.9 at
r̂ ¼ 20 the Y−222-flux and the S−222-flux differ by only
∼0.01%. Similarly, at this configuration the Y−221-flux and
the S−221-flux, and the Y−233-flux and the S−233, differ by
∼0.02%. This agreement is sustained, to large extent, even
at strong-field radii, where the frequencies—and thus the
differences between the Y-functions and the S-functions—
are larger. For example, at r̂ ¼ 5 the Y−222-flux and the
S−222 flux differ by ∼0.2% for â ¼ þ0.9, and by ∼0.5% for
â ¼ −0.9. In summary, for these modes any discussion
held in terms of a S−2lm-decomposition holds to large
extent as well for a Y−2lm-decomposition. On the contrary,
the fluxes in the (3,2)-mode are drastically different in the
two basis-systems. For example, at r̂ ¼ 20 for σ ¼ 0.0 and
â ¼ 0.9 we find deviations of ∼60% (!).

B. Analytics: Post-Newtonian energy fluxes

Tanaka et al. [51] computed, long ago, in post-
Newtonian theory, the GW energy fluxes emitted by a
spinning particle on a CEO about a Kerr black hole. Their
results hold at 2.5PN-order, and are linear in the particle
spin, i.e. including only leading-order (LO) spin contribu-
tions. The respective formulas are expressed using the
dimensionless spin magnitude (called ŝ in [51]). The main
result of [51] is the total energy flux to infinity, which reads,
in terms of u≡M=r, where r is the BL-coordinate radius,

F ¼ 32

5
ν2u5

�
1 − 1247

336
uþ

�
4π − 73

12
â − 25

4
σ

�
u3=2

þ
�
− 44711

9072
þ 33

16
â2 þ 71

8
âσ

�
u2

þ
�
− 8191

672
π þ 3749

336
âþ 2403

112
σ

�
u5=2

�
; ð32Þ

where ν≡ μ=M is the mass ratio. Note that in [51] the
notation v2 ¼ M=rwas used, which wewill not follow here

in view of the fact that M=r is not the orbital velocity
(except for â ¼ σ ¼ 0). To drive comparisons with numeri-
cal data, as well as with other PN results, one has to recast
the above expression into a formulation in terms of the
gauge-invariant standard PN-ordering parameter x≡ Ω̂2=3.
Note that, for nonzero values of ðâ; σÞ, one has x ≠ u, i.e
Ω̂ ≠ u3=2. To rewrite Eq. (32), first in terms of Ω̂ and
subsequently in terms of x, one can PN-expand the analytic
expression for the frequency, Eq. (22), which yields

Ω̂ ¼ u3=2
�
1 −

�
3

2
σ þ â

�
u3=2 þ 3

2
âσu2 þOðu3Þ

�
; ð33Þ

see Eq. (5.18) in [51]. We invert this equation, insert it into
Eq. (32), and, adopting the notation

Fðx; â; σÞ≡ FNðxÞF̂ðx; â; σÞ; ð34Þ

FNðxÞ≡ 32

5
ν2x5; ð35Þ

we obtain

F̂ðx; â; σÞ≡ 1 − 1247

336
xþ

�
4π − 11

4
â − 5

4
σ

�
x3=2

þ
�
− 44711

9072
þ 33

16
â2 þ 31

8
âσ

�
x2

þ
�
− 8191

672
π − 59

16
â − 13

16
σ

�
x5=2: ð36Þ

Note the minus sign in front of ð59=16Þâ, which corrects
the wrong plus sign in Eq. (5.19) of Tanaka et al. [51]. It is
also pleasing to note that Eq. (36) agrees, up to the expected
PN-order, with the respective PN-prediction for the com-
parable mass case, Eq. (4.9) of [57], when restricted to the
test-particle limit ν → 0.
For completeness, we also rewrite the multipolarly

decomposed fluxes, which were provided by Tanaka et al.
in terms of u, in terms of x. It is important tomention that the
multipolar decomposition is performed here with respect to
the spin-weighted spheroidal harmonics, Sslm. Each multi-
polar flux can be separated into its LO contribution and
higher-order corrections, FSlm ≡ FLO

lmF̂Slm . In this way we
obtain

F̂S22 ¼ 1 − 107

21
xþ

�
4π − 8

3
â − 4

3
σ

�
x3=2 þ

�
4784

1323
þ 2â2 þ 4âσ

�
x2 þ

�
− 428

21
π þ 52

27
âþ 208

63
σ

�
x5=2; ð37Þ

F̂S21 ¼ 1þ 3ðσ − âÞx1=2 þ
�
− 17

14
þ 9

4
â2 − 9

2
âσ

�
xþ

�
2π þ 215

252
â − 367

28
σ

�
x3=2; ð38Þ

F̂S33 ¼ 1 − 8xþ ð6π − 3σ − 4âÞx3=2; ð39Þ
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F̂S32 ¼ 1þ
�
4σ − 8

3
â

�
x1=2; ð40Þ

F̂S31 ¼ 1 − 16

3
xþ

�
2π þ 5σ − 100

9
â
�
x3=2: ð41Þ

In the main body of this paper we focus on the total flux,
but in Appendix A also these formulas are compared (and
found to be consistent) with the corresponding numerical
results.

C. Comparing numerical and PN total GW fluxes

Now, we compare and contrast the outcome of our
numerical computation of the full energy flux with the
2.5PN information, as given by Eq. (36). This comparison
is only meaningful in a finite region of parameter space
because our numerical results are inaccurate for too large
radii (r > 30M) while the PN prediction is not expected to
be reasonable for too small radii (say, rather arbitrarily,
r≲ 15M). At any rate, we have to settle with observing the
expected trend when traversing the region of common
validity r ∈ ½15M; 30M� but are not able to cross-check
numerics with analytics at an arbitrary accuracy in the
region r → ∞.
The main result of our study is the unambiguous

trend of the total energy flux, approximated as the sum
over the m ¼ 1, 2, 3 contributions in our numerical data,
against the 2.5PN prediction Eq. (35), as highlighted in
Fig. 1. To our knowledge, it is the first time that this
comparison is done. Figure 1 shows the numerical
fluxes together with the 2.5PN predictions for several
values of â and σ. The σ ¼ 0 data (blue, circles) in
Fig. 1 are not produced with our code, but were
computed by S. Hughes at extreme accuracy in the
frequency domain and were kindly made available to us
for completing the comparison here. To be consistent
with our σ ≠ 0 data, we compute the σ ¼ 0.0 total flux
by summing over multipoles m ¼ 1, 2, 3 and l ¼ 1; ::8.
Note that we make the choice to stay consistently at
2.5PN though higher-order information up to 22PN for
Schwarzschild [99] and 20PN for Kerr [100] are
available in the literature for a nonspinning particle.
Inspecting Fig. 1, one can draw several conclusions

from our numerical computations. First, if σ < 0, the
GW flux is increased with respect to the σ ¼ 0 case,
while, if σ > 0, it is decreased. This holds independently
of the background spin â, i.e. for all three panels of
Fig. 1. Second, one sees that the prediction of the
approximate PN series is qualitatively consistent with
the numerical data because there is a clear trend of
numerics (solid lines) toward analytics (dashed lines) as
x → 0; one sees that the disagreement between PN and
numerical data progressively decreases as x becomes
smaller. In particular, the spin-dependence is captured
correctly in the numerics, i.e. though evidently all the

FIG. 1. Comparison of numerical (solid) and analytical PN
(dashed) total energy fluxes over x ¼ Ω̂2=3. We consider three
values of the background spin, â ¼ 0.0 (top panel), â ¼ −0.9
(middle panel), and â ¼ þ0.9 (bottom panel). For each value of
â, we plot the fluxes for a spinning particle with spins σ ¼ −0.9
(blue, circles), σ ¼ 0.0 (black, stars) with data computed by
Hughes [83,84,95,96], see text, and σ ¼ þ0.9 (red, triangles)
over x. The numerical fluxes are obtained summing up the modes
withm ¼ 1, 2, 3; the PN fluxes are given by Eq. (36), which sums
up only the modes considered in [51]. The green filled circles
mark the interpolated fluxes at the locations of the LSO,
cf. Table I. At low orbital frequencies Ω̂ → 0, or equivalently
x → 0 and r̂ → ∞, the numerics are consistent with the PN-
prediction, reaching in all cases a fractional difference ≤ 0.5% at
our outermost data point r̂ ¼ 30, see also Tables II–IV.
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normalized fluxes converge toward ∼1, and thus toward
one another, the offset between the σ ¼ 0.0 and the σ ≠
0 lines is consistent in the numerics and in the analytics,
as highlighted in the small insets in Fig. 1.
Quantitatively, the visual comparison is supported by
the data shown in Tables II–IV in Appendix B. For
example, focusing first on the â ¼ 0 case, one sees that
at r̂ ¼ 20, i.e. x ≈ 0.05, the relative deviations amount to
1% for σ ¼ −0.9 and to 0.7% for σ ¼ 0.9. At r̂ ¼ 30,
i.e. x ≈ 0.033, they have decreased to 0.23% for σ ¼
−0.9 and 0.14% for σ ¼ 0.9. This is almost reaching the
level of accuracy, ∼0.2% of our numerical results, as
estimated in Sec. IVA. A similar consistency is found
when â ≠ 0. For â ¼ −0.9, at r̂ ¼ 30 the agreement has
reached 0.33% for σ ¼ −0.9 and 0.25% for σ ¼ 0.9. For
â ¼ þ0.90, the fractional difference at r̂ ¼ 30 between
the numerical and the PN prediction is 0.16% for σ ¼
−0.9 and 0.08% for σ ¼ 0.9. These results mutually
confirm the 2.5PN predictions as well as our numerical
computations.
Finally, we mention that the consistency check for

x → 0 can be repeated in the same way for the
multipolar fluxes, Eqs. (37)–(41), instead of the total
flux. Without illustration, we have included the corre-
sponding data in Table II–IV. The trend is again
unambiguous, though a bit worse than in the total flux,
especially if ðl; mÞ ≠ ð2; 2Þ; likely, simply because the
subdominant modes themselves are, (i) at 2.5PN known
with too few terms after the LO-contribution; e.g., the
formula for the flux in the (3,2)-mode, Eq. (40), only
includes one term beyond LO, and (ii) smaller in
absolute value and, therefore, relatively more affected
by the numerical noise. For more details, see the
multipolar analysis of the fluxes with respect to the
spin σ at a fixed radius in Appendix A (notably,
discussed there in a one-to-one comparison with the
formulas given by [51], i.e. without the change of
variables u → x).

V. CONCLUSIONS

In this paper we have presented a new computation of
the gravitational wave fluxes emitted by a spinning
particle on circular equatorial orbits of a Kerr black
hole. This is done, for the first time, by solving the
Teukolsky equation in the time domain, using the Teukode

of [61,62], for a pole-dipole particle source term that is
built according to the Mathisson-Papapetrou-equations
under the Tulczyjew-spin-supplementary condition. We
investigated three values of the background spins, â ¼ 0
and â ¼ �0.9, and ten values of the particle spin
σ=ν ∈ �f0.1; 0.3; 0.5; 0.7; 0.9g. We stress that there is
no technical obstruction to obtain data at even higher
rates for the spins.
About 20 years ago Tanaka et al. [51] computed the

GW energy fluxes for the considered test-particle setup

at the 2.5PN order. Recently, Marsat et al. [57]
performed the respective comparable-mass PN calcula-
tion (see also [52,54,55]), which contains Tanaka et al.’s
result as a special case in the test-particle limit and
extends it by terms up to 4PN. While Tanaka et al.’s
results were thus analytically confirmed, a detailed
numerical check of their accuracy was missing. In this
work, for the first time, we proved the consistency
between numerical results and the post-Newtonian
calculations of the GW fluxes at 2.5PN. More precisely,
at our outermost data point, r̂ ¼ 30, we find a relative
disagreement between the total numerical flux, approxi-
mated as the sum over m ¼ 1, 2, 3 mode contributions,
and the 2.5PN result, Eq. (5.19) of [51], at the order of
≤ 0.5% for all considered values of â and σ. This
mutually confirms the numerically untested 2.5PN
prediction and our numerical computations. Moreover,
we mention that our results seem to disagree quantita-
tively with the corresponding numerical results of [44],
though we observe a certain qualitative consistency (see
Appendix A). We have presented our results in the form
of a central plot, Fig. 1, and supported the visual
impression quantitatively by data tables, Tables II–IV.
Notably, such database is missing from the literature and
will provide a valuable orientation for future studies in
the same direction. Additionally, the numerical data
presented here will serve as a test bed for developing
suitably resummed expressions for the PN fluxes—a
procedure which was successfully developed for a
nonspinning particle and which drastically improved
the regime of accuracy of straight PN expressions
toward the strong-field regime [63–65]. Thus, our
numerical results will have immediate impact in model-
ing analytically the radiation reaction force for a
spinning particle in quasicircular, adiabatic inspiral
motion about a rotating BH background, and, in turn,
to the effective-one-body model with generic spins.
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APPENDIX A: COMPLEMENTARY
DISCUSSIONS

In this Appendix we provide some complementary
information on the comparison of our numerical results
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with the 2.5PN predictions of [51]. First, we perform the
analysis multipole by multipole, discussing the cases
lm ¼ 22, 21, 33, 32. This comparison is conducted in a
slight alteration with respect to the main body of this
paper because here we remain with the variable u≡
M=r instead of switching to x≡ Ω̂2=3. Note that this
allows the check of the, so to say, raw result of the
computations performed in [51]; the switch u → x,
which we used in the main body, is necessary to argue
in terms of usual PN parameters, but it amounts to an
additional approximation by using the PN expansion of
the frequency, Eq. (33), which, in particular, is only
linear in the spin. In the second part, we will then repeat
the consistency check of the full energy flux in terms of
u, complementing the comparison shown in the main
body in terms of x.

1. Spin-weighted spheroidal harmonics

While the focus in the main body of the paper is on
the full flux, the data in Tables II–IV, and the discussion
in this appendix include also comparisons of the
separate multipolar contributions. Therefore, we empha-
size again that the results of Tanaka et al. [51] on
multipolar fluxes, as well as the rewriting of these
results in terms of other variables, Eqs (37)–(41), refer
to a decomposition with respect to the spin-weighted
spheroidal harmonics, Sslm.
Spin-weighted spheroidal harmonics arise in the

traditional separation of the original TE in the frequency
domain. The angular part of the resulting ordinary
differential equations, Eq. (2.7) in [98], describes an
eigenvalue problem for each relevant ω of the solution.
The eigenfunctions are what we call Sslm, with eigen-
value Eslm. For â ¼ 0 they reduce to the well-known
spin-weighted spherical harmonics (see, e.g., [101]). In
the case of circular equatorial orbits ω is fixed, and thus
there is a unique set of Sslm functions, which forms a
complete basis. The analytic formulas of Tanaka et al.
are given with respect to a decomposition in terms of
the Sslm-basis. Hence, to make comparisons of the
multipolar fluxes we also project our full solution onto
modes with respect to the Sslm-basis. The computation
of the Sslm is not trivial, but a nice procedure is given in
Appendix A of [84], which we adopted here
(cf. also [4,102]).

2. Multipolar analysis at fixed radius

Let us recall the 2.5PN results for the multipolar
fluxes, Eqs (5.16) of [51]. The stated quantities are the
normalized fluxes ηlm ¼ FSlm=ð32=5u5Þ for lm ¼
f22; 21; 33; 31; 32; 44; 42g, where FSlm is the multipolar
flux in the l�m-modes, with the definition of the FSlm
used above, see also Eq. (2) of [63]. It is important to
note that the normalization factor is, in general, not the

usual Newtonian flux, FN
22 ¼ ð32=5Þx5. Thus one has to

mind the different normalization with respect to that
used in the main body of this paper. Concretely, the
multipolar 2.5PN-formulas as given by [51] versus u
read,

η22ðâ; σ; uÞ ¼ 1 − 107

21
uþ

�
4π − 6â − 19

3
σ

�
u1.5

þ
�
4784

1323
þ 2â2 þ 9âσ

�
u2

þ
�
− 428

21
π þ 4216

189
âþ 2134

63
σ

�
u2.5;

ðA1Þ

η21ðâ; σ; uÞ ¼
1

36
uþ

�
− 1

12
âþ 1

12
σ

�
u1.5

þ
�
− 17

504
þ 1

16
â2 − 1

8
âσ

�
u2

þ
�
1

18
π − 793

9072
â − 535

1008
σ

�
u2.5; ðA2Þ

η33ðâ; σ; uÞ ¼
1215

896
u − 1215

112
u2

þ
�
3645

448
π − 1215

112
â − 10935

896
σ

�
u2.5;

ðA3Þ

η32ðâ; σ; uÞ ¼
5

63
u2 þ

�
− 40

189
âþ 20

63
σ

�
u2.5; ðA4Þ

η31ðâ; σ; uÞ ¼
1

8064
u − 1

1512
u2

þ
�

1

4032
π − 17

9072
â − 1

8064
σ

�
u2.5:

ðA5Þ

Unfortunately, the 31-mode is too weak to be measured
accurately in our numerics, especially for orbits in the
weak-field, which we rely on for the validation of our
data. Also, the 44 and 42 energy fluxes do not contain
spin-dependence at 2.5PN. Consequently, we restrict the
comparison below to the lm ¼ f22; 21; 33; 32g modes.
For our comparison we find it convenient to further
normalize each ηlm to the corresponding LO term. For
clarity, reading off the LO terms from Eqs (A1)–(A5)
and combining with FN

22, we obtain the following
expressions: η̂22¼η22¼F22=ð325 u5Þ, η̂21¼F21=ð8u6=45Þ,
η̂33 ¼ F33=ð243u6=28Þ, η̂32 ¼ F32=ð32u7=63Þ, which are
all of the form ∼1þOðuÞ.
In Fig. 2 we have collected at a glance our numerical

results for the multipolar fluxes η̂lm and contrasted them
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FIG. 2. Dependence of the LO-normalised multipolar fluxes, ηlm on the spin σ, comparing numerical results (solid) with 2.5PN
analytical predictions (dashed), at a weak-field orbit (left) and a strong-field orbit (right), for the three background spins â ¼ 0.0 (blue,
circles), â ¼ −0.9 (black, stars), and â ¼ þ0.9 (red, triangles). The panels show the multipolar energy fluxes in the S−222 (top), S−221
(top middle), S−233 (bottom middle) and S−233 (bottom) modes. The small horizontal lines on the σ ¼ 0.0 axis refer to the results for a
nonspinning particle from the frequency-domain data of Hughes [84]. Note, for clarity, that these plots show the η̂lm, as obtained from
Eqs. (A1)–(A5) by normalizing with the LO-Newtonian expressions in terms of u≡ 1=r (e.g., for lm ¼ 22 with 32=5u5), whereas the
values stated in Tables II–IV refer to the F̂Slm and are thus normalized to the LO-Newtonian expressions in terms of x≡ Ω̂2=3 (e.g., for
lm ¼ 22 with 32=5x5).
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with the 2.5PN predictions. To guide the reader through
the many panels, note first that the different modes
ðl; mÞ ∈ fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þg are arranged in
Fig. 2 from top to bottom, where for each mode we
have one weak-field (left panels) and one strong-field
(right panels) comparison of numericals fluxes with PN
predictions. For each comparison we consider the three
different background spins â ¼ −0.9 (black, stars), â ¼
0.0 (blue, circles), and â ¼ 0.9 (red, triangles). The σ
data points are computed at �f0.1; 0.3; 0.5; 0.7; 0.9g. To
illustrate the smooth connection of our data to the
correct σ ¼ 0.0 values, which are again made available
to us at highest accuracy by Hughes [83,84,95,96], we
draw short, gray, horizontal lines at the respective σ ¼ 0
values.
Let us discuss first the weak-field comparison illustrated

in the left column of panels. For all four modes, our
numerical fluxes (solid lines) are consistent with the
2.5PN predictions (dashed lines), i.e. with the LO-
normalized versions of Eqs. (A1)–(A5). Only in the
(3,2)-mode the spin-behavior is poorly captured by
the analytics, but note that in this case we show the
comparison at an orbital separation of r̂ ¼ 15. At r̂ ¼ 20
and for σ ¼ −0.9 the (3,2)-flux was too small in absolute
value to be measured reliably. But even at r̂ ¼ 20 we
would not expect a much better agreement because the
2.5PN formula for the (3,2)-mode reaches only one term
beyond the leading order. The comparisons between
numerics and PN predictions for strong-field orbits are
shown in the right column of panels. It is apparent from
the plot that there is a clear failure of the PN formulas in
the strong-field regime. Especially for â ¼ −0.9, in
which case the LSO is located at rLSO ≈ 6.6 for σ ¼
þ0.9 and rLSO ≈ 10.0 for σ ¼ −0.9 the numerical results
are completely off the prediction. For â ¼ 0.0 (blue
circles) at least the fluxes in the (2,1)-mode (top middle
panel) and in the (3,3)-mode (bottom middle panel) are
reasonable.
Another useful information that one reads off Fig. 2

regards the spin-dependence of the multipolar fluxes at
fixed radius. One finds that, for each value of â and for
each multipole, each data set in Fig. 2 can be accurately
fitted with a polynomial in σ. More precisely, for weak-
field orbits the σ-dependence is essentially linear. By
contrast, for strong-field orbits the polynomial can be of
higher order, at most third order. This is interpreted as a
direct reflection of the Tulczyjew-SSC, Eq. (8), and the
related σ-squared dependence of the dynamics, in con-
nection with the fact that the TE source term is linear in
the spin. The appearance of the Riemann-tensor in
connection with the Oðσ2Þ terms in Eq. (8) explains
the transition to completely linear spin dependence in the
weak-field.
As a final comment we mention that one cannot

directly contrast these plots with the numbers stated in

Tables II–IV because the latter refer to the PN-formulas
recast in terms of x. While it is possible to compute all
the relevant quantities, i.e. FSlm , F̂Slm , ηlm and η̂lm, from
one another in our numerical data the analytical pre-
dictions are not strictly equivalent because of the
approximation of Ω, see discussion in Sec. IV B.
Though the general trend is the same, the values of

FIG. 3. Comparison of numerical (solid) and analytical PN
(dashed) total energy fluxes over u≡M=r. Compare with Fig. 1
for further descriptions. In all three panels, i.e. for all considered
background spins â ¼ 0.0 (top panel), â ¼ −0.9 (middle panel),
and â ¼ þ0.9 (bottom panel), we observe an unambiguous trend
of our numerical data, approximated as the sum of m ¼ 1, 2, 3-
modes, towards the 2.5PN prediction of Tanaka et al. [51]
as u → 0.
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fractional differences shown in Tables II–IV are not fully
compatible with what one would obtain from the data
corresponding to Fig. 2.

3. Total flux with respect to u

For completeness, we repeat the consistency check for
the total energy flux as obtained from our numerical
results and the 2.5PN predictions in terms of u≡M=r.
This means we normalize our full flux here by 32=5u5

instead of using the conventional Newtonian flux
32=5x5. The relevant 2.5PN prediction of [51] is
Eq. (32) above.
Figure 3 compares the fluxes for the three back-

ground spins â ¼ 0.0 (top panel), â ¼ −0.9 (middle
panel), and â ¼ þ0.9 (bottom panel) and the three
values of the particle spin σ ¼ −0.9 (blue, circles), σ ¼
0.0 (black, stars), σ ¼ 0.9 (red, triangles). In all cases
there is a clear trend of the numerical results (solid
lines) toward the analytical predictions (dashed lines). In
fact, comparing with Fig. 1 the agreement seems to be
even more pronounced in this comparison over u. This
must be mainly attributed to the pure visual effect that
originates from the larger separation of the dashed lines
from one another in this representation. On the contrary
computing the fractional differences between our
numerics and the PN formula, Eq. (32), we find rather
larger than smaller differences compared to Tables II–
IV. For example, at â ¼ −0.9 and r̂ ¼ 20 we find
numerically for σ ¼ −0.9 that Fm≤3=ð325 u5Þ ¼ 1.089,
which is ∼3.5% off the PN prediction 1.0510, and
for σ ¼ þ0.9 we find Fm≤3=ð325 u5Þ ¼ 0.9193, which is
∼0.91% off the PN prediction 0.9109. Overall, this
complementary comparison of the total energy flux
confirms as well, visually even more pronouncedly, a
clear convergence of the numerical results toward the
PN predictions.

4. Cross-check against [Phys. Rev. D 82, 084013 (2010)]

Apart from the 2.5PN analytical prediction, we can
compare our numerical results for the flux in the
S−222-mode with the numerical results of [44], in
which the multipolar energy fluxes from a spinning
particle on a CEO are computed by solving the TE in
the frequency domain. In that study, the dynamics are
obtained within the same approximations that we use,
i.e. solving the MPEQs with the TUL-SSC. As
checked in Sec. II, our dynamics agree at least in
the orbital frequency with that of [44], which is a
convincing indication that we are, in fact, considering
the same physical system.
We can make a direct comparison for r̂ ¼ 10, â ¼ 0,

in which case the (not Newton-normalized) S−222-flux

we considered was shown versus the particle spin σ in
Fig. 4 of [44]. Our Fig. 4 draws a visual comparison
between the results as: (i) obtained by [44], repre-
sented as crosses joined by a dotted line, (ii) as
computed with our numerical code; (iii) as obtained
from the 2.5 PN approximate formula FS22=ν

2 ¼
32=5u5η̂22. Note that in [44] the m ¼ �2 contributions
were not summed together so that we need to compare
it with FS22=2. Moreover, the data for the crosses
joined by the dotted line was read off directly from
Fig. 4 in [44]. The errors made in extracting the points
from the plot are expected to be small in comparison
to the differences we discuss below. Our Fig. 4 shows
that the results of [44] (blue dotted, crosses) are in
quantitative disagreement with both the post-
Newtonian formula (black, dashed) and our numerical
computations (black solid, circles). The reasons for the
disagreement are unclear at the moment. Nevertheless,
we are convinced of the correctness of our implemen-
tation because of the consistency with the 2.5PN
expressions, which was not shown in [44].
Furthermore, note that the nonlinear shape of the blue
dotted line with crosses (the numerical results of [44])
resembles qualitatively what we find for the 22-mode
at smaller radii; e.g., see the top right panel of Fig. 2,
whose blue line shows our results for â ¼ 0.0 at r̂ ¼ 5
and is nonlinear in a similar way.

FIG. 4. Cross-check of the energy flux in the S−222- ¼ mode as
obtained in this study (black solid, circles) against the results of
[44] (blue dotted, crosses), at r̂ ¼ 10 and for â ¼ 0.0. The 2.5PN
prediction is included for completeness (black dashed). The data
marked by crosses were extracted visually by inspecting the top
right panel in Fig. 4 in [44]. Note that here we show the not
Newton-normalized fluxes. The data points of [44] disagree
qualitatively with both our numerical data and the 2.5PN accurate
analytical flux. Note that we have indications that the underlying
dynamics is the same in both cases. Both numerical solutions are
consistent with one another at σ ¼ 0.0 and also with the
frequency-domain data of [84], which is marked by the small
gray cross.
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APPENDIX B: DATA TABLES

TABLE II. Case â ¼ 0: fractional differences between numerical and PN energy fluxes 1 − FPN=FNum. From left to right, the columns
report: the dimensionless Boyer-Lindquist orbital radius r̂; the dimensionless orbital frequency Ω̂; the PN-parameter x ¼ Ω̂2=3; the,
Newton-normalized, total numerical flux F̂Num

ðm≤3Þ summed over m ¼ 1, 2, 3; the corresponding fractional difference with the 2.5 PN

result, Eq. (35) the l ¼ m ¼ 2 numerical contribution; F̂Num
22 ; the fractional difference with the corresponding PN result, Eq. (37); and

the analogous columns for l ¼ 2, m ¼ 1 and l ¼ m ¼ 3.

â ¼ 0.00

r̂ σ MΩ x F̂m≤3 ΔF̂m≤3½%� F̂S22 ΔF̂S22½%� F̂S21 ΔF̂S21½%� F̂S33 ΔF̂S33½%�
4.00 −0.90 0.150524 0.282968 3.1651 99.49 2.2085 142.28 2.1513 9.75 2.4164 18.06

−0.50 0.138047 0.267107 2.4858 96.74 1.7912 138.97 2.2948 27.12 1.8241 8.32
0.00 0.125000 0.250000 1.8220 95.55 1.3624 135.08 2.2378 33.78 1.2637 7.32
0.50 0.114518 0.235821 1.3433 87.11 1.0396 131.00 2.0934 32.59 0.8677 26.81
0.90 0.107796 0.226500 1.0750 82.60 0.8516 127.49 2.0062 29.44 0.6524 42.38

5.00 −0.90 0.101836 0.218072 1.5795 67.31 1.2118 102.08 0.9497 38.51 1.2152 19.31
−0.50 0.095924 0.209549 1.4241 64.21 1.1119 96.38 1.2456 3.58 1.0572 20.66
0.00 0.089443 0.200000 1.2409 58.93 0.9885 89.46 1.5479 14.78 0.8771 23.82
0.50 0.083900 0.191650 1.0702 54.46 0.8683 82.53 1.7693 20.80 0.7157 28.88
0.90 0.080095 0.185810 0.9530 50.07 0.7831 77.04 1.9220 22.13 0.6088 32.55

6.00 −0.90 0.074985 0.177821 1.2515 43.27 1.0117 65.68 0.7009 42.85 0.9752 22.37
−0.50 0.071724 0.172628 1.1731 41.23 0.9590 62.03 0.9790 11.12 0.8854 21.81
0.00 0.068041 0.166667 1.0788 36.08 0.8927 57.41 1.3231 7.40 0.7814 21.48
0.50 0.064772 0.161284 0.9836 34.69 0.8231 52.45 1.6346 15.02 0.6815 22.30
0.90 0.062438 0.157386 0.9142 31.66 0.7710 48.46 1.8745 18.07 0.6112 22.59

7.00 −0.90 0.058275 0.150310 1.1203 28.62 0.9369 43.31 0.6051 36.22 0.8833 19.24
−0.50 0.056286 0.146871 1.0700 27.30 0.9016 41.05 0.8663 11.89 0.8211 18.19
0.00 0.053995 0.142857 1.0097 22.96 0.8577 38.14 1.2148 4.04 0.7488 16.85
0.50 0.051910 0.139156 0.9462 23.02 0.8097 34.78 1.5577 11.63 0.6765 16.39
0.90 0.050385 0.136416 0.8990 21.00 0.7733 32.07 1.8364 15.39 0.6244 15.70

8.00 −0.90 0.047019 0.130271 1.0534 19.64 0.9024 29.69 0.5603 28.04 0.8406 15.52
−0.50 0.045716 0.127854 1.0174 18.76 0.8760 28.23 0.8085 10.73 0.7932 14.41
0.00 0.044194 0.125000 0.9745 15.18 0.8438 26.38 1.1527 2.33 0.7382 12.84
0.50 0.042785 0.122329 0.9279 15.87 0.8076 24.04 1.5063 9.41 0.6816 12.05
0.90 0.041737 0.120322 0.8931 14.50 0.7801 22.18 1.8029 13.45 0.6403 11.11

10.00 −0.90 0.033041 0.102968 0.9909 10.17 0.8762 15.47 0.5266 15.06 0.8087 9.84
−0.50 0.032394 0.101619 0.9688 9.73 0.8591 14.79 0.7566 7.63 0.7769 8.93
0.00 0.031623 0.100000 0.9432 7.28 0.8389 13.99 1.0865 0.85 0.7405 7.51
0.50 0.030893 0.098456 0.9137 8.28 0.8149 12.72 1.4394 6.72 0.7009 6.77
0.90 0.030339 0.097275 0.8919 7.58 0.7970 11.77 1.7453 10.81 0.6720 5.92

12.00 −0.90 0.024867 0.085196 0.9648 5.79 0.8706 8.97 0.5210 7.12 0.8028 6.42
−0.50 0.024499 0.084354 0.9494 5.55 0.8582 8.60 0.7380 5.20 0.7791 5.72
0.00 0.024056 0.083333 0.9321 3.79 0.8440 8.24 1.0533 0.32 0.7524 4.56
0.50 0.023631 0.082349 0.9110 4.73 0.8263 7.45 1.3959 5.15 0.7220 4.04
0.90 0.023304 0.081587 0.8957 4.34 0.8133 6.90 1.6974 9.06 0.7000 3.37

15.00 −0.90 0.017624 0.067724 0.9492 2.81 0.8738 4.53 0.5290 0.91 0.8085 3.64
−0.50 0.017439 0.067248 0.9390 2.68 0.8651 4.36 0.7318 2.93 0.7917 3.18
0.00 0.017213 0.066667 0.9281 1.55 0.8559 4.29 1.0276 0.04 0.7733 2.31
0.50 0.016994 0.066100 0.9135 2.28 0.8432 3.79 1.3515 3.75 0.7507 2.04
0.90 0.016824 0.065658 0.9033 2.09 0.8342 3.52 1.6394 7.32 0.7347 1.59

20.00 −0.90 0.011352 0.050511 0.9433 1.00 0.8858 1.81 0.5537 3.00 0.8266 1.69
−0.50 0.011275 0.050282 0.9370 0.94 0.8802 1.74 0.7396 1.04 0.8156 1.43
0.00 0.011180 0.050000 0.9312 0.32 0.8750 1.83 1.0090 0.06 0.8042 0.81
0.50 0.011088 0.049723 0.9215 0.78 0.8663 1.52 1.3048 2.59 0.7884 0.79
0.90 0.011015 0.049504 0.9153 0.70 0.8606 1.41 1.5682 5.63 0.7777 0.54

30.00 −0.90 0.006136 0.033517 0.9485 0.23 0.9088 0.53 0.5989 3.84 0.8601 0.47
0.00 0.006086 0.033333 0.9420 0.14 0.9026 0.55 0.9972 0.06 0.8476 0.06
0.90 0.006036 0.033152 0.9341 0.14 0.8952 0.42 1.4652 3.22 0.8323 0.002
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TABLE III. Case â ¼ −0.9. Compare caption of Table II for general descriptions. Note the square brackets around all stated values
concerning the multipolar fluxes for σ ≠ 0 at r̂ ¼ 30. These values in brackets refer to multipolar fluxes with respect to the Y−2lm
decomposition, whereas the table otherwise states values with respect to the S−2lm basis. The reason is that at very large radii we did not
compute the S−2lm-fluxes accurately, as discussed in Sec. IVA. The comparison with the analytical formulas, which refer to the S−2lm
decomposition, is nonetheless valid because for the stated modes, at such low frequencies, we verified that S−2lm ≃ Y−2lm.

â ¼ −0.90
r̂ σ MΩ x F̂m≤3 ΔF̂m≤3½%� F̂S22 ΔF̂S22½%� F̂S21 ΔF̂S21½%� F̂S33 ΔF̂S33½%�
5.00 −0.90 0.117709 0.240182 6.4781 84.00 4.4357 94.93 13.2093 82.52 5.7381 64.47

−0.50 0.107980 0.226757 4.6611 80.14 3.3073 92.63 10.7512 76.25 3.9652 55.31
0.00 0.097273 0.211509 3.1231 70.36 2.3101 88.77 8.4271 65.51 2.5068 40.50
0.50 0.088022 0.197877 2.1067 65.70 1.6213 83.45 6.6711 50.56 1.5675 19.55
0.90 0.081574 0.188091 1.5575 57.43 1.2332 77.96 5.6404 35.65 1.0789 2.54

6.00 −0.90 0.083178 0.190548 2.5692 57.56 1.9524 69.67 4.7113 60.49 2.2341 29.84
−0.50 0.078170 0.182821 2.2155 54.79 1.7145 67.21 4.8787 54.96 1.8580 24.13
0.00 0.072480 0.173838 1.8252 45.13 1.4441 63.39 4.9193 46.51 1.4529 14.90
0.50 0.067380 0.165585 1.4840 44.41 1.1997 58.43 4.7967 35.89 1.1107 2.14
0.90 0.063698 0.159496 1.2557 38.76 1.0312 53.74 4.6663 26.39 0.8907 10.26

7.00 −0.90 0.063048 0.158409 1.7770 38.87 1.4272 48.27 3.0020 46.35 1.5407 14.43
−0.50 0.060132 0.153487 1.6183 37.11 1.3152 46.66 3.3610 41.14 1.3550 10.54
0.00 0.056753 0.147681 1.4326 28.96 1.1805 44.10 3.7271 34.52 1.1454 4.61
0.50 0.053653 0.142253 1.2543 30.30 1.0474 40.56 3.9731 26.93 0.9528 3.49
0.90 0.051364 0.138178 1.1260 26.61 0.9494 37.27 4.1277 20.72 0.8195 10.92

8.00 −0.90 0.050040 0.135792 1.4629 26.85 1.2185 33.83 2.3078 37.00 1.2643 7.29
−0.50 0.048194 0.132432 1.3683 25.72 1.1487 32.82 2.6880 31.89 1.1465 4.52
0.00 0.046025 0.128428 1.2557 19.06 1.0639 31.19 3.1322 26.58 1.0114 0.56
0.50 0.044003 0.124640 1.1424 21.22 0.9764 28.73 3.5031 21.06 0.8815 4.91
0.90 0.042488 0.121762 1.0584 18.76 0.9103 26.48 3.7752 16.95 0.7886 9.70

10.00 −0.90 0.034471 0.105918 1.2058 13.93 1.0499 17.92 1.7209 25.90 1.0416 2.12
−0.50 0.033596 0.104117 1.1578 13.41 1.0122 17.49 2.0786 20.85 0.9771 0.55
0.00 0.032549 0.101944 1.1008 8.92 0.9667 16.84 2.5386 17.14 0.9023 1.43
0.50 0.031554 0.099855 1.0401 11.26 0.9174 15.55 2.9757 14.06 0.8261 4.37
0.90 0.030794 0.098245 0.9943 10.08 0.8798 14.45 3.3271 12.33 0.7703 6.74

12.00 −0.90 0.025653 0.086981 1.1021 7.94 0.9850 10.43 1.4703 19.75 0.9567 0.78
−0.50 0.025171 0.085888 1.0719 7.67 0.9602 10.22 1.8006 14.82 0.9136 0.23
0.00 0.024589 0.084558 1.0364 4.50 0.9307 9.98 2.2403 11.97 0.8640 1.33
0.50 0.024028 0.083269 0.9969 6.52 0.8974 9.20 2.6788 10.17 0.8111 3.22
0.90 0.023595 0.082266 0.9673 5.88 0.8724 8.61 3.0449 9.67 0.7724 4.59

15.00 −0.90 0.018005 0.068697 1.0332 3.87 0.9458 5.26 1.2932 14.70 0.9066 0.37
−0.50 0.017771 0.068098 1.0148 3.75 0.9303 5.20 1.5866 9.80 0.8786 0.26
0.00 0.017484 0.067364 0.9939 1.72 0.9121 5.19 1.9920 7.72 0.8471 0.77
0.50 0.017205 0.066647 0.9691 3.22 0.8903 4.73 2.4058 6.81 0.8116 1.94
0.90 0.016988 0.066084 0.9509 2.92 0.8743 4.45 2.7625 7.24 0.7855 2.71

20.00 −0.90 0.011504 0.050961 0.9905 1.42 0.9277 2.12 1.1811 11.57 0.8892 0.85
−0.50 0.011410 0.050682 0.9802 1.37 0.9182 2.07 1.4296 6.55 0.8699 0.25
0.00 0.011294 0.050338 0.9694 0.27 0.9085 2.21 1.7768 4.40 0.8493 0.18
0.50 0.011180 0.049999 0.9545 1.18 0.8955 1.97 2.1721 5.20 0.8259 1.00
0.90 0.011090 0.049732 0.9444 1.07 0.8846 1.70 2.4992 6.13 0.8225 0.16

30.00 −0.90 0.006179 0.033672 0.9708 0.33 [0.9291] [0.59] [1.067] [5.92] [0.8900] [0.45]
0.00 0.006119 0.033456 0.9607 0.23 0.9196 0.66 1.5795 2.00 0.8710 0.15
0.90 0.006061 0.033243 0.9491 0.25 [0.9086] [0.55] [2.148] [2.80] [0.8500] [0.44]
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