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The astrophysical relevance of chaos for a test particle with spin moving in Schwarzschild spacetime was
the objective of C. Verhaaren and E. W. Hirschmann in [Phys. Rev. D 81, 124034 (2010)]. Even if the
results of the study might appear to be qualitatively in agreement with similar works, the study presented in
their work suffers both from theoretical and technical issues. These issues are discussed in this comment.
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I. ISSUE OF SCALING

The Mathisson-Papapetrou (MP) equations [1,2]
describe the motion of an extended body in the pole-dipole
approximation on a curved spacetime. In the MP descrip-
tion, the body has some internal degrees of freedom, which
are constrained to fix its centroid, i.e., the wordline along
which the body moves. This constraint is imposed when a
spin supplementary condition (SSC) is chosen. In Ref. [3],
the Tulczyjew (T) SSC has been chosen [4]. This makes
Ref. [3] comparable with previous similar works since
T SSC has been used in Ref. [5] (Schwarzschild back-
ground as in Ref. [3]) and in Refs. [6–8] (Kerr background).
When studying the MP equations with T SSC, one

chooses the mass of the test particle to be described by the
contraction of the four-momentum, i.e., PaPa ¼ −M2,
since this mass is a conserved quantity for T SSC (see, e.g.,
Ref. [9]). In Ref. [3], the mass is chosen with respect to the
four-velocity, i.e., PaVa ¼ −μ, which is not a conserved
quantity for T SSC (see, e.g., [9]). This choice brings along
some complications when the spin is scaled with respect to
μm as stated to be done in Ref. [3], where m is the mass of
the central black hole (the notation of Ref. [3] is adopted
throughout the comment). For example, the measure of the
spin is a constant of motion for T SSC (see, e.g., Ref. [9]),
but when one normalizes the spin with something that
varies, the constancy of the spin ceases to be the case.
In order to understand these complications, let us discuss

the scaling issue in more detail. The MP equations can be
written in scale free units if the spin is scaled with respect to
mM, i.e.,

DPμ=M
dτ=m

¼ −
1

2
ðRμ

νκλm2ÞVν Sκλ

mM
;

DSμν=ðmMÞ
dτ=m

¼ ðPμVν − VμPνÞ=M; ð1Þ

where each quantity has been written with respect to its
scale factor (see, e.g., Ref. [7]). It is easy to see that the
scale factors cancel out. Now, if we follow the scalings
suggested in Ref. [3], then

DPμ=M
dτ=m

¼ −
1

2
ðRμ

νκλm2ÞVν S
κλ

mμ
;

DSμν=ðmμÞ
dτ=m

¼ ðPμVν − VμPνÞ=M; ð2Þ

and we get

DPμ

dτ
¼ −

M
2μ

Rμ
νκλVνSκλ;

DSμν

dτ
¼ μ

M
ðPμVν − VμPνÞ; ð3Þ

where the scales do not vanish.
One could argue that the scales would vanish if the

momentum Pa was scaled with respect to μ and not with
respect to M. This is true, but in Ref. [3], it is said that
PaPa ¼ −1, which suggests either that the momentum
in Ref. [3] is scaled with respect to M or that
PaPa ¼ −M2=μ2 ¼ −1. The latter cannot be the case
since during the evolution μ varies, while M is a constant,
and in general μ ≠ M for T SSC (see, e.g., Ref. [9]). The
rescaling of the momentum with respect to M is reflected
on Eqs. (10), (13), and (14) in Ref. [3]. What is missing
from Eqs. (13) and (14) is the rescaling of the spin four-
vector Sa. Sa is the vector counterpart of Sab; see, e.g.,
Eq. (10) in Ref. [3]. Equations (13) and (14) hold for the
mM rescaling of the spin (e.g., the usual rescaling for
T SSC used in Refs. [5,6]). But if the mμ rescaling of the
spin was used in Ref. [3], as stated in Sec. II of Ref. [3],
then the corresponding Eqs. (13) and (14) in Ref. [3] should
include the ratios μ=M as shown in the corresponding
Eqs. (3) shown above. Thus, the rescaling implied by
Eqs. (13) and (14) in Ref. [3] is inconsistent with the mμ
rescaling of the spin stated in Ref. [3].*gglukes@gmail.com
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This inconsistency is reflected also on Eqs. (15)–(17) of
Ref. [3]. Furthermore, in Eq. (15) of Ref. [3], the first term
Pa in the numerator should not share the denominator with
the second term. Namely, Eq. (15) should read

Vμ ¼ μ

M2

�
Pμ −

�R�νρκλSρPκSλ
M2 þ �R�αβγδSαPβSγPδ

�
: ð4Þ

But this is probably just a typo. The main issue here is that
the stated rescaling is in contradiction with the formulas
presented.
Note also that if μ was considered constant, we

would not be able to normalize the four-velocity so that
VaVa ¼ −1 in order to evolve the MP equations with
T SSC. The variability of μ is what allows the four-velocity
normalization (see, e.g., Ref. [9]).
Concluding on the spin scaling issue, if the mμ scaling

was used, then the equations of motion used in Ref. [3] are
wrong, and there is no point of further discussion. However,
if the μ=M scaling was used in Ref. [3], then the statements
about the rescaling in Sec. II of Ref. [3] are wrong, and the
equations of motion are correct. Assuming the latter,
Ref. [3] is a reexamination of Ref. [5] for a larger parameter
domain, and it is meaningful to discuss the chaos detection
issue in the next section.

II. POINCARÉ SECTION AND THE
LYAPUNOV NUMBER ISSUE

Poincaré sections are a useful tool to discern chaos from
order in a 2 degrees of freedom Hamiltonian system.
Regular orbits are represented by closed zero width smooth
curves, while chaotic orbits are represented by scattered
points covering a nonzero width space on the section. So,
the Poincaré sections shown in Figs. 1 and 2 of Ref. [3]
should indeed represent regular orbits.
However, the MP equations with T SSC have not been

yet been described by a canonical Hamiltonian formalism
(contrary to what is stated on page 3 in Ref. [3]), and the
spin increases the phase space dimensionality [10]. So, one
should be careful when interpreting 2D “Poincaré” sections
for a test particle with spin moving in a Schwarzschild
background. In the latter system, what one gets usually for
regular orbits on a 2D section are projections of tori of
which the dimensionality is higher than 3. These projec-
tions on a 2D section are represented by nonzero width
curves in the case of regular orbits, and there is no safe way
to discern chaos from order just from inspecting these
projections on 2D sections. On such 2D sections, one has to
detect a combination of nonlinear effects, like chains of
islands of stability embedded in chaos (see, e.g., Figs. 4, 8,
and 9 in Ref. [5]), in order to claim chaos detection. From
Figs. 3 and 4 of Ref. [3], one cannot tell whether the orbits
are regular or not, contrary to what is stated in Ref. [3] (see,
e.g., the caption of Fig. 4 in Ref. [3]). Actually, in Ref. [8],
there is a case (Fig. 3 in Ref. [8]) where an orbit looking

like those in Figs. 3 and 4 of Ref. [3] was characterized as
“chaotic mimic,” because when such a 2D section was
checked with other indicators of chaoticity, the other
indicators implied that the orbit was regular.
One such indicator of chaoticity is the characteristic

Lyapunov number λ. Lyapunov numbers were indeed
employed to cross-check the results of Figs. 3 and 4 in
Ref. [3]. However, defining the Lyapunov number for
curved spacetimes is not a straightforward task as discussed
in Sec. III of Ref. [3]. The main problem is how to define
the norm of the deviation vector ξ̄. Different norms ξ ¼ jξ̄j
result in different values for the Lyapunov number. In
Ref. [3], it is stated that for simplicity the Euclidean norm
was preferred as the norm of ξ in that work, but no further
information about the explicit form of the norm is provided.
Namely, there are the questions of how the Euclidean norm
was applied in the Schwarzschild coordinates of the orbit
and how the spin was incorporated in the Euclidean norm
of the deviation vector. Without the above explanations, the
results of this work are not reproducible and ambiguous.
A standard way to find whether an orbit is chaotic or not

by using Lyapunov numbers is the ln λ vs ln τ plot (see, e.g.,
Ref. [8]). For a regular orbit, the deviation vector grows
linearly, i.e., ξ ∝ τ, which means that λ ∝ ln τ

τ . On the
logarithmic plot, this implies that for a regular orbit
limτ→0 ln λ → −∞, i.e., λ → 0þ, with a slope equal to
−1. Note that the Lyapunov number is practically evaluated
for finite time, and during this even for regular orbits λ > 0.
If an orbit is evolved for time τ and τ is of the order of
magnitude of 1=λ, then we cannot tell whether this orbit is
chaotic or not. For a chaotic orbit, the deviation vector
grows exponentially ξ ∝ eλτ, which means that in the
logarithmic plot we get a constant value ln λ after the
Lyapunov time τλ ¼ λ−1 is reached. In order to be sure that
one gets a chaotic orbit, one has to evolve the orbit at least
for 2 orders of magnitude more after τλ is reached, so λ is
not any more comparable with 1=τ.
In Ref. [3], the above standard procedure is absent. The

procedure to find the Lyapunov number in Ref. [3] is based
on a phenomenological model (Eq. (28) in Ref. [3]) which
is irrelevant with the basic principles describing the
evolution of the deviation vector discussed in the above
paragraph. The example in Fig. 6 of Ref. [3] evolves an
orbit for τ ¼ 105 and predicts an orbit with a Lyapunov
number λ ≈ 3.78710−4. For τ ¼ 105, λ ∝ ln τ

τ ≈ 6.4710−4.
Namely, for the amount of time the orbit has been evolved
in Fig. 6, the Lyapunov number has a value that is
comparable with a value of λ corresponding to a regular
orbit. Thus, one cannot tell safely whether the orbit is
chaotic or not. In fact, there are many Lyapunov-like
chaotic indicators (see, e.g., Ref. [11] for a review), but
no indicator can safely reveal the chaotic nature of an orbit
at time scales comparable with the Lyapunov time. All the
indicators show the nature of the orbit, much after the
magnitude of the Lyapunov time has been reached.
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In order to investigate the dependence of the chaoticity of
the MP equations on the spin’s value in Ref. [3], the energy,
the angular momentum, the initial radius r of the orbit and
the orientation of the spin are kept constant, while the spin’s
value varies (Figs. 7–13 and 15 in Ref. [3]). This might
seem reasonable since the investigation depends only on
one varying parameter, but this approach is misleading. The
phase space of the system is mixed in the sense that chaotic
and regular orbits coexist in the phase space. When we
change a parameter of the system, the phase space changes,
and as a consequence, the position of the orbit we suppose
to follow changes as well. For example, if we start with an
initial setup at which the orbit we examine is chaotic, by

changing the spin parameter, the orbit with the otherwise
same setup will correspond to another trajectory, which
might be chaotic or not. Even if we assume that the method
of estimating the Lyapunov numbers followed in Ref. [3]
was correct, then what we see in Figs. 7–13 and 15 of
Ref. [3] is not correlated with the chaoticity of one single
orbit; i.e., it cannot provide qualitative information about
the development of the system.
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