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Although black holes are eminent manifestations of very strong gravity, the geometry of space-time
around and even inside them can be significantly affected by additional bodies present in their
surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-
times described by exact solutions of Einstein’s equations, considering astrophysically motivated
configurations (such as black holes surrounded by rings) as well as those of pure academic interest
(such as specifically “tuned” systems of multiple black holes). The geometry is represented by the simplest
invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with
special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are
analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near
the central singularities. Estimating that the black hole could be most strongly affected by the other black
hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and
compare the deformation caused by “the other” hole (and the electrostatic field) with that induced by
rotational dragging in the well-known Kerr and Kerr-Newman solutions.
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I. INTRODUCTION

“Although it appears that the most exciting future devel-
opment in black hole theorywill be concernedwith dynamic
aspects, there remains a great deal to be done in stationary
black hole theory, particularly in relation with non-vacuum
black holes.” Carter did not mention quantum aspects in his
1972 lecture [1], but otherwise the sentence remains valid.
However, dynamical black-hole processes do not give many
opportunities to exact analytical solution; they are rather
being tackled by numerical and approximationmethods, and
even in stationary but nonvacuum cases the compass of
detailed exact analytical treatment is restricted, namely to
axially symmetric (and ideally also static) configurations.
Black holes are the most conservative, today almost

routine, explanation of a whole bunch of high-energy
astrophysical phenomena. Yet even solitary holes remain
hard to imagine (though Chandrasekhar [2] considered them
the simplest objects in the Universe); in particular, if they are
spinning so fast as often supposed in galactic nuclei and in
somex-raybinaries, their horizon, taken as a two-dimensional
(2D) surface at any fixed Killing time, is partially a surface of
negative curvature. Moreover, the “observed” holes must be
strongly interactingwithmatter and electromagnetic fields. In
the astrophysical models the gravitational effect of these is
neglected, and thus space-time is assumed to have aKerr form
corresponding to an isolated rotating black hole. It is indeed
likely that the accreting material is too light to have any
significant effect on thegravitational potential, but itmaywell

contribute to higher derivatives of the field, the more so if it is
collapsed into a thin disk or even a ring (see e.g. [3] and
references therein). Hence, the space-time curvature around
and probably even inside the black hole might be modified
significantly by the ambient matter.
This conjecture has been confirmed by [4] on a

Schwarzschild black hole “subject to” higher gravitational
multipoles. (The authors also extended the results to a
charged black hole in [5].) In particular, it is known that the
central singularity of static black holes remains spatially
pointlike and that the structure of the whole space-time
remains similar, irrespective of the external influence [6],
but the paper [4] pointed out that the vicinity of the
singularity may still be deformed considerably. Actually,
it was shown there that the central region of strongest
curvature can be stretched in such an (anisotropic) way that
it may even reach above the horizon in certain (though
rather extreme) circumstances.
In the present work, we study the effect of the additional

source on the black-hole geometry by calculating and
plotting several invariants determined by the metric (the
lapse function and the azimuthal-circumference radius), by
its gradient (an analogue of the Newtonian gravitational
acceleration, known as the surface gravitywhen evaluated on
the horizon), andby theRiemann tensor (Kretschmann scalar
and similar quadratic scalar obtained from the Ricci tensor);
the quantities are reminded in Sec. II. We choose two static
and axially symmetric exact space-times, the Majumdar-
Papapetrou electrovacuum solutionwith just two black holes
(Sec. IV) and the vacuum solution given by “superposition”
of a Schwarzschild black hole surrounded by a concentric
Bach-Weyl thin ring [7]. These two situations seem to

*oldrich.semerak@mff.cuni.cz
†mbasovnik@gmail.com

PHYSICAL REVIEW D 94, 044006 (2016)

2470-0010=2016=94(4)=044006(18) 044006-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.1103/PhysRevD.94.044006


promise a noticeable influence on the black hole, since the
additional sources considered—another black hole in the
Majumdar-Papapetrou solution and thin (two-dimensional)
ring in the second case—generate very strong and inhomo-
geneous fields. In order to compare the distortion caused by
these external sourceswith the distortion induced by rotation,
we, however, first repeat some geometrical properties of the
Kerr(-Newman) black holes in Sec. III. Concluding remarks
are added in Sec. V.
We use geometrized units in which c ¼ 1, G ¼ 1, the

index-posed comma/semicolon indicates the partial/
covariant derivative, and the usual summation rule is
employed. The signature of the space-time metric gμν is
(−þþþ), the Riemann tensor is defined according to
Vν;κλ − Vν;λκ ¼ Rμ

νκλVμ, and the Ricci tensor is defined
by Rνλ ¼ Rκ

νκλ. The equations which are only valid on a

black-hole horizon are written with the index “H,” X¼H Y.
Let us note, finally, that the real astrophysical black holes

are also different from their Kerr ideals due to the whole
nonvacuum universe around, not only due to the nearby
accreting matter and fields, of course. We, however, do not
take the cosmological setting into account, and, in particu-
lar, we set the cosmological constant at zero.

II. SUMMARY ON SCALARS CONSIDERED

Every stationary, axially symmetric, and orthogonally
transitive space-time can be described by the metric

ds2 ¼ −N2dt2 þ gϕϕðdϕ − ωdtÞ2 þ g11ðdx1Þ2 þ g22ðdx2Þ2;

where the coordinates t and ϕ are adapted to space-time
symmetries (thus N, gϕϕ, ω and g11, g22 do not depend on
them); ημ ≡ ∂xμ=∂t and ξμ ≡ ∂xμ=∂ϕ are the time and
azimuthal Killing vector fields; the coordinates x1 and x2

cover the meridional planes, orthogonal to both Killing
directions (and existing, as integral surfaces, due to the
orthogonal transitivity); the lapse function N is determined
by N2 ≡ −gtt − gtϕω; and the function ω is given by
ω≡ −gtϕ=gϕϕ. The simplest invariants of the above metric,
the inner products of the Killing vectors

gμνημην ¼ gtt; gμνξμξν ¼ gϕϕ; gμνημξν ¼ gtϕ;

are usually being represented in terms of their more
intuitive combinations—the lapse N (dilation factor of
the zero-angular-momentum observer), the dragging poten-
tial ω (representing angular velocity of rotational frame
dragging), and the azimuthal-circumference radius ffiffiffiffiffiffiffigϕϕ

p .
In a static case, there is no dragging, ω ¼ 0, so N2 ¼ −gtt.
The most useful simple scalar given by a gradient of the

metric is

κ2 ≡ gμνN;μN;ν ¼ g11ðN;1Þ2 þ g22ðN;2Þ2: ð1Þ

κ is an analogue of the magnitude of Newtonian gravita-
tional acceleration, and on the black-hole horizon it is
known as surface gravity (on stationary horizons it is
uniform, which is the case here).
On the level of curvature (second derivatives of the

metric), one can find 14 algebraically independent invar-
iants. In the vacuum case, only two quadratic and two cubic
invariants are left,

RμνκλRμνκλ ≡ K … Kretschmann scalar;
�RμνκλRμνκλ ≡ �K … Chern-Pontryagin scalar;

Rμν
κλRκλ

αβRαβ
μν; �Rμν

κλRκλ
αβRαβ

μν;

where Rμ
νκλ is the Riemann tensor and �Rμνκλ ≡

1
2
ϵμναβRαβ

κλ is its left dual. In the nonvacuum case, the
remaining 10 scalars are determined by the Ricci tensor.
For a static space-time, the scalars given by Riemann-
tensor dual vanish.
Also worth recalling is the special case with just the

source-free electromagnetic field present (called the elec-
trovacuum case) when the energy-momentum tensor reads

Tμν ¼
1

4π

�
FμλFν

λ −
1

4
gμνFκλFκλ

�
; ð2Þ

with Fμν ≡ Aν;μ − Aμ;ν denoting the electromagnetic-field
tensor and Aμ the electromagnetic four-potential. Such an
energy-momentum tensor is traceless, Tν

ν ¼ 0, so the
Einstein equations (without the cosmological term) imply
that the Ricci scalarR≡ Rν

ν is zero, too. It is alsowell known
that Fμν yields just two nontrivial and independent invar-
iants,FμνFμν andFμν

�Fμν, of which the second, given by the
dual tensor �Fμν ≡ 1

2
ϵμναβFαβ, vanishes in a static situation.

Hence, in nonstatic (but stationary) vacuum space-times,
there are only two quadratic curvature invariants, the
Kretschmann scalar and the Chern-Pontryagin scalar. On
the other hand, in static electrovacuum space-times, there
are again only two quadratic curvature invariants, the
Kretschmann scalar and the trace of the Ricci-tensor square

RμνRμν ¼ 4FμλFνλFνκFμκ − ðFμνFμνÞ2
¼ ðFμνFμνÞ2 þ ðFμν

�FμνÞ2 ¼ ðFμνFμνÞ2: ð3Þ

A. Basic scalars in a static axisymmetric electrovacuum

We add several remarks to simplifications and problems
that occur in the computation of the above invariants in static
(and axially symmetric) electrovacuum space-times. For an
extreme horizon, there is no dynamical region, so the lapse
squaredN2 ¼ −gtt and κ2 ¼ giiðN;iÞ2 are nowhere negative.
Below a nonextreme horizon, N2 ¼ −gtt is negative, so N2

itself or jNj ¼ ffiffiffiffiffi
gtt

p
has to be treated there instead of

N ¼ ffiffiffiffiffiffiffiffi−gtt
p

. Consequently, since N is pure imaginary there,
its gradient is also pure imaginary, so for our diagonal metric
κ2 ¼ g11ðN;1Þ2 þ g22ðN;2Þ2 is real everywhere. One can
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imaginenow thatweuse as x1 some radial coordinatewhich is
constant all over the horizon, and as x2 the usual latitudinal
coordinate θ which ranges from θ ¼ 0 to θ ¼ π which
correspond to the opposite halves of the symmetry axis.
Then N;θ ¼ 0 at θ ¼ 0, and if the space-time is reflection
symmetric with respect to the θ ¼ π=2 plane (called equa-
torial),N;θ ¼ 0 at θ ¼ π=2 aswell (the latterwouldnot hold if
therewas somemass line/mass shell along these locations, but
there cannot be any below a regular static horizon). Hence, at
θ ¼ 0 (and θ ¼ π=2) one has just κ2 ¼ grrðN;rÞ2, which is
positive because grr < 0 below the horizon. This indicates
that κ remains real even inside a nonextreme black hole.
Let us repeat basic facts on Weyl solutions [8] now (see

Appendix C of [9]). If a space-time is static and axially
symmetric, then in regions where the energy-momentum
tensor satisfies T1

1 þ T2
2 ¼ 0 (note that x1 and x2 cover the

meridional planes orthogonal to Killing directions t, ϕ) the
metric can be written in the Weyl form

ds2 ¼ −e2νdt2 þ ρ2e−2νdϕ2 þ e2λ−2νðdρ2 þ dz2Þ; ð4Þ
where the unknown functions ν and λ only depend on
cylindrical-type radius x1 ≡ ρ and the “vertical” linear
coordinate x2 ≡ z which cover the meridional planes in
an isotropic manner. The simplest metric scalars are
obvious, N ¼ eν and ffiffiffiffiffiffiffigϕϕ

p ¼ ρ=N. Einstein’s field equa-
tions reduce to (e.g. [10])

ν;ρρ þ
ν;ρ
ρ
þ ν;zz ¼ 4πe2λ−2νðTϕ

ϕ − Tt
tÞ ð5Þ

¼ e2λ−2νðFϕλFϕλ − FtλFtλÞ ð6Þ
¼ e−2ν½ðΦ;ρÞ2 þ ðΦ;zÞ2�; ð7Þ

λ;ρ − ρðν;ρÞ2 þ ρðν;zÞ2 ¼ 4πρðTρρ − TzzÞ ð8Þ

¼ ρðFρλFρ
λ − FzλFz

λÞ ð9Þ

¼ −ρe−2ν½ðΦ;ρÞ2 − ðΦ;zÞ2�; ð10Þ

λ;z − 2ρν;ρν;z ¼ 8πρTρz ð11Þ

¼ 2ρFρλFz
λ ð12Þ

¼ −2ρe−2νΦ;ρΦ;z; ð13Þ

λ;ρρ þ λ;zz þ ðν;ρÞ2 þ ðν;zÞ2 ¼ 8πe2λ−2νTϕ
ϕ ð14Þ

¼ 1

2
e2λ−2νð4FϕλFϕλ − FμνFμνÞ

ð15Þ
¼ e−2ν½ðΦ;ρÞ2 þ ðΦ;zÞ2�;

ð16Þ

where the second forms of the right-hand sides specialize
to the pure-electromagnetic energy-momentum tensor (2)
and the third forms are obtained after restriction to the
electrostatic situation when the electromagnetic field can be
expressed in terms of a scalar potential Φðρ; zÞ as

Aμ ¼ ð−Φ; 0; 0; 0Þ ⇒ Ftρ ¼ Φ;ρ; Ftz ¼ Φ;z: ð17Þ

The last of the field equations need not be considered as it is
satisfied automatically due to conservation laws and the
other three field equations. These three have to be solved
together with the Maxwell equations which in the electro-
static case have only one nontrivial component

Φ;ρρ þ
Φ;ρ

ρ
þ Φ;zz ¼ 2ν;ρΦ;ρ þ 2ν;zΦ;z: ð18Þ

It is also easy to find

FμνFμν ¼ −2e−2λ½ðΦ;ρÞ2 þ ðΦ;zÞ2�; ð19Þ

as well as to check that 4πðTρ
ρ þ Tz

zÞ ¼ FρzFρz − FtϕFtϕ is
really zero, as required for the Weyl form of the metric.
In a more restricted sense, the Weyl solutions are only

those for which the gravitational potential ν and the
electrostatic potential Φ are functionally dependent. As
shown by [8,11], if the space-time is to be asymptotically
flat, the only type of such dependence allowed by the field
equations is

e2ν ¼ 1 −
2M
Q

Φþ Φ2; ð20Þ

where M and Q represent total mass and charge. With
such a relation, the search for ν can be reduced to a
solution of the Laplace equation as in the vacuum case (e.g.
[12]). Almost all static axisymmetric electrovacuum
solutions with an acceptable interpretation fall into the
Weyl class; this also applies to the Majumdar-Papapetrou
metrics (specified by Q2 ¼ M2) which will be treated
in Sec. IV.
Just to remind the reader, in case of the (generic)

Weyl metric (4) and electrovacuum field equations (7),
(10), (13), and (16), the Riemann tensor has nonzero
components

Rz
ρzρ ¼ ðν;ρÞ2 þ ðν;zÞ2 −

ν;ρ
ρ
; ð21Þ

Rϕ
ρϕρ ¼ −ν;zz − 2ðν;zÞ2 þ ðν;ρÞ2

− ρν;ρ½ðν;ρÞ2 − 3ðν;zÞ2�
þ e−2νρν;ρ½ðΦ;ρÞ2 − ðΦ;zÞ2�
− 2e−2νρν;zΦ;ρΦ;z þ 2e−2νðΦ;zÞ2; ð22Þ
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Rt
ρtρ ¼ −ν;ρρ − 2ðν;ρÞ2 þ ðν;zÞ2

þ ρν;ρ½ðν;ρÞ2 − 3ðν;zÞ2�
− e−2νρν;ρ½ðΦ;ρÞ2 − ðΦ;zÞ2�
þ 2e−2νρν;zΦ;ρΦ;z; ð23Þ

Rϕ
ρϕz ¼ ν;ρz þ 3ν;ρν;z þ ρν;z½ðν;zÞ2 − 3ðν;ρÞ2�

þ e−2νρν;z½ðΦ;ρÞ2 − ðΦ;zÞ2�
− 2e−2νð1 − ρν;ρÞΦ;ρΦ;z; ð24Þ

Rt
ϕtϕ ¼ ρ2e−2λRz

ρzρ; ð25Þ

Rt
ztz ¼ Rϕ

ρϕρ − 2e−2νðΦ;zÞ2; ð26Þ

Rϕ
zϕz ¼ Rt

ρtρ þ 2e−2νðΦ;ρÞ2; ð27Þ

Rt
ρtz ¼ −Rϕ

ρϕz − 2e−2νΦ;ρΦ;z; ð28Þ

and nonzero components of the Ricci tensor simplify to

−Rt
t ¼ Rϕ

ϕ ¼ e−2λ½ðΦ;ρÞ2 þ ðΦ;zÞ2�; ð29Þ

−Rρ
ρ ¼ Rz

z ¼ e−2λ½ðΦ;ρÞ2 − ðΦ;zÞ2�; ð30Þ

Rρz ¼ −2e−2νΦ;ρΦ;z: ð31Þ

In case of the vacuum Weyl metric (Φ ¼ 0), the
Kretschmann scalar reduces to [13]

RμνκλRμνκλ

¼ 8e4ν−4λ½ðRρ
zρzÞ2 þ ðRϕ

ρϕρÞ2 þ ðRt
ρtρÞ2 þ 2ðRϕ

ρϕzÞ2�;
ð32Þ

where the relevant components read

Rz
ρzρ ¼ ðν;ρÞ2 þ ðν;zÞ2 −

ν;ρ
ρ
; ð33Þ

Rϕ
ρϕρ ¼ −ν;zz − 2ðν;zÞ2 þ ðν;ρÞ2 − ρν;ρ½ðν;ρÞ2 − 3ðν;zÞ2�;

ð34Þ

Rt
ρtρ ¼ −ν;ρρ − 2ðν;ρÞ2 þ ðν;zÞ2 þ ρν;ρ½ðν;ρÞ2 − 3ðν;zÞ2�;

ð35Þ

Rϕ
ρϕz ¼ ν;ρz þ 3ν;ρν;z þ ρν;z½ðν;zÞ2 − 3ðν;ρÞ2�: ð36Þ

It is thus clear that the scalar is nowhere negative in vacuum
static axisymmetric regions.1 The explicit result is

e4λ−4ν

16
RμνκλRμνκλ

¼ ðν;ρρÞ2 þ ðν;zzÞ2 þ ðν;ρzÞ2 þ ν;ρρν;zz

þ 3ð1 − ρν;ρÞ½ðν;ρÞ2 þ ðν;zÞ2�2 þ ρ2½ðν;ρÞ2 þ ðν;zÞ2�3
þ 3ν;ρρðν;ρÞ2 þ 3ν;zzðν;zÞ2 þ 6ν;ρzν;ρν;z

þ ρν;ρ½3ðν;zÞ2 − ðν;ρÞ2�ðν;ρρ − ν;zzÞ
þ 2ρν;ρzν;z½ðν;zÞ2 − 3ðν;ρÞ2�: ð37Þ

From the usual decomposition of the Riemann tensor
into the Weyl tensor and contributions from the Ricci tensor
and scalar curvature, one has the generally valid decom-
position of the Kretschmann scalar [14]

K ¼ W þ 2RμνRμν −
R2

3
; ð38Þ

where W ≡ CμνκλCμνκλ is the analogous quadratic scalar
given by the Weyl tensor.2 For any Einstein-Maxwell
space-time (pure electrovacuum) this reduces to

K ¼ W þ 2RμνRμν

¼ W þ 2ðFμνFμνÞ2 þ 2ðFμν
�FμνÞ2: ð39Þ

Abdolrahimi et al. showed in [5] that on any static black-
hole horizon the above scalars are related in a quite simple
way to the Gauss curvature ð2ÞR=2 of the horizon’s t ¼
const section (ð2ÞR is the Ricci scalar of the 2D horizon),3

W ¼H 3ðð2ÞR − FμνFμνÞ2: ð40Þ

In the vacuum limit (Fμν ¼ 0, Cμνκλ ¼ Rμνκλ) it reduces to

W ¼ K ¼H 3ðð2ÞRÞ2 which had already been presented in
[4]. This helps intuition by saying that space-time is
strongly curved around places where the horizon is sharply
bent.

1We will see in the following paper [7] that in space-times
containing black holes this actually holds above horizons only,
while in dynamical regions inside the holes the Kretschmann
scalar can become negative. It is consistent with the given
formula since below the horizon the Weyl radius is imaginary
effectively.

2The dual scalars are equal,
�K ≡ �RμνκλRμνκλ ¼ �CμνκλCμνκλ ≡ �W:

3The index “H” indicates equations only valid at the horizon.
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III. CURVATURE OF KERR AND
KERR-NEWMAN SPACE-TIMES

We start the discussion of specific space-times from the
Kerr solution, though it describes the purely vacuum field
of an isolated black hole (or naked singularity) and though
the behavior of its curvature scalars is quite well known.
Namely, the scalars have a quite complex shape in central
regions, involving several sectors of negative value and
nontrivial divergence at the ring singularity. It will be
interesting to compare the deformation induced by rota-
tional dragging and ringlike singularity with that caused by
additional sources in the black-hole neighborhood which
will be treated in the following sections.
In the Boyer-Lindquist coordinates r, θ, the

Kretschmann scalar of the Kerr solution characterized by
mass M and specific angular momentum a is given by the
surprisingly simple expression

K ≡ RμνκλRμνκλ

¼ 48M2

Σ6
ðr2 − a2cos2θÞðΣ2 − 16r2a2cos2θÞ; ð41Þ

where Σ≡ r2 þ a2cos2θ is the function whose zero iden-
tifies the singularity. First, the expression contains only
even powers of all the quantities; in particular, it does not
depend on the sign of r. Zeros lie—within any meridional
section—on 3þ 3 circles (e.g. [15]),

r ¼ �a cos θ; r ¼ �ð2 −
ffiffiffi
3

p
Þa cos θ;

r ¼ �ð2þ
ffiffiffi
3

p
Þa cos θ;

which are all tangent to each other at r ¼ 0. In the
equatorial plane the scalar is independent of a, namely
Kðcos θ ¼ 0Þ ¼ 48M2=r6, so at given r it is the same as for
the Schwarzschild field. On the rotation axis,

Kðcos2θ ¼ 1Þ ¼ 48M2

ðr2 þ a2Þ6 ðr
2 − a2Þ½ðr2 þ a2Þ2 − 16r2a2�

which ismuchmore complicated. This starts from a negative
value ð−48M2=a6Þ at r ¼ 0, in the interval ð2 − ffiffiffi

3
p Þa <

r < a it is positive, but then at a < r < ð2þ ffiffiffi
3

p Þa it falls
below zero again; finally, above r ¼ ð2þ ffiffiffi

3
p Þa it remains

positive already, falling off as 1=r6 at infinity. If a > M=2,
then ð2þ ffiffiffi

3
p Þa is bigger than the outer-horizon radius

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, so for moderately and rapidly spin-

ning holes the invariant is negative along the axis even above
the horizon, up to r ¼ ð2þ ffiffiffi

3
p Þa.

The Chern-Pontryagin scalar comes out quite simple
as well,

�K ≡ �RμνκλRμνκλ

¼ 96M2

Σ6
ra cos θð3r2 − a2cos2θÞðr2 − 3a2cos2θÞ:

ð42Þ

This is exactly opposite at r > 0 and r < 0 sheets as well as
on opposite sides from the equatorial plane. Zeros lie on
2þ 2 circles

r ¼ � affiffiffi
3

p cos θ; r ¼ �
ffiffiffi
3

p
a cos θ;

again tangent to each other at r ¼ 0, and also on r ¼ 0 and
in the whole equatorial plane. On the axis one has

�Kðcos θ ¼ �1Þ ¼ � 96M2

ðr2 þ a2Þ6 rað3r
2 − a2Þðr2 − 3a2Þ;

this grows toward positive values when going from zero at
r ¼ 0 toward positive radii, then at a=

ffiffiffi
3

p
< r <

ffiffiffi
3

p
a it is

negative and finally positive again above r ¼ ffiffiffi
3

p
a, falling

off as 1=r7 at infinity.
The scalars seem to prove a very complex (though highly

symmetrical) shape of space-time fabric in the central Kerr
region (see Fig. 1), but the modulus of the complex number
K − i�K comes out extremely simple,4

jK − i�Kj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ �K2

q
¼ 48M2

Σ3
: ð43Þ

Hence, if both the independent quadratic curvature scalars
are combined in an obvious manner, they give exactly the
same message as for the Schwarzschild field, only the
singularity is now given by Σ ¼ 0 instead of r ¼ 0. In
particular, the quadratic curvature does not indicate any
directional behavior of the Kerr singularity, as already
pointed out by [15]. Both r > 0 and r < 0 sheets of the
metric have the same curvature structure (just with �K
having the opposite sign), which is in contrast with the
causal structure, very different in the two sheets.
The two Kerr-field curvature scalars are represented

even more neatly in the Kerr-Schild coordinates
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, Z ¼ r cos θ. The Kretschmann scalar

reads

4From treatment of the Petrov-type-D metrics in the Newman-
Penrose formalism it is known that W − i�W ¼ 48ðΨ2Þ2, where
Ψ2 is the second Newman-Penrose-tetrad projection of the Weyl
tensor. In the vacuum case it is W ¼ K, and for the Kerr metric
one has Ψ2 ¼ −M=ðr − ia cos θÞ3, from where the modulus
jK − i�Kj follows immediately.
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K ¼ 48M2

Σ6
ðR2 þ Z2 − a2Þ½ðR2 þ Z2 − a2Þ2 − 12a2Z2�;

ð44Þ

where Σ2 ¼ ðR2 þ Z2 − a2Þ2 þ 4a2Z2. Hence [14,15], in
the ðR; ZÞ plane, it is zero and changes sign on three circles
given by

R2 þ Z2 ¼ a2 and R2 þ ðZ �
ffiffiffi
3

p
aÞ2 ¼ 4a2: ð45Þ

These circles intersect at the singularity ðR ¼ a; Z ¼ 0Þ
exactly under the angles π=3. The Chern-Pontryagin scalar
assumes the form

�K ¼ 96M2aZ
Σ6

½3ðR2 þ Z2 − a2Þ2 − 4a2Z2�; ð46Þ

so it vanishes and changes sign on two circles

R2 þ
�
Z � affiffiffi

3
p

�
2

¼ 4a2

3
: ð47Þ

The circles intersect at the singularity as well, again forming
(together with the Z ¼ 0 axis) a ðπ=3Þ-segmentation of the
meridional plane around the singularity which is exactly
complementary to the one defined by zero circles of the
Kretschmann scalar. This makes the whole pattern quite
“magic.” In particular, the crossing under 60° means that the
circles of Chern-Pontryagin–scalar zeros go through each
other’s center, while in their outer parts they pass exactly

FIG. 1. Curvature of the Kerr space-time represented in the Boyer-Lindquist coordinates r sin θ, r cos θ (left) and in the Kerr-Schild
coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, Z ¼ r cos θ (right). The six/three blue circles indicate zeros of the Kretschmann scalar, and the four/

two red circles (plus red-colored horizontal axis) indicate zeros of the dual, Chern-Pontryagin scalar. The arrangement is quite
“miraculous” in the Kerr-Schild plot: all the circles intersect at the singularity ðR ¼ a; z ¼ 0Þ and define a (π=6)-segmentation of
meridional planes there; a remarkable symmetry of the pattern is revealed on tangents to the circles drawn (in green color) at the
singularity (note, for example, that the tangents only intersect at the circles). In the Boyer-Lindquist picture (left), the pattern based on
circles’ tangents is, of course, degenerate, and the only other straight lines one can draw are diagonals crossing the circles at their
leftmost/rightmost points.
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through centers of the Kretschmann-scalar big two circles.
Tangents to the circles drawn at the singularity form a highly
symmetrical triangular pattern inscribed to the circles; see
Fig. 1 (right plot).
In both scalars the massM only scales the multiplicative

factor, and the dependence on the other parameter a also
reduces, in the Kerr-Schild coordinates, to a simple scaling;
the “curvature pattern” is independent. Actually, if the
scalars are expressed in terms of dimensionless ~a≡ a=M,
~R≡ R=M, and ~Z≡ Z=M, then they are proportional to
M−4 and (if χ is some constant)

KðM; χ ~a; χ ~R; χ ~ZÞ ¼ χ−6KðM; ~a; ~R; ~ZÞ; ð48Þ

�KðM; χ ~a; χ ~R; χ ~ZÞ ¼ χ−6KðM; ~a; ~R; ~ZÞ: ð49Þ

This implies that the curvature pattern is not correlated
with the appearance and position of structures given
by the metric itself, like static-limit surfaces and
horizons, in particular, it does not distinguish between
black holes and naked singularities. However, since
the dependence of the radii of static limits and

horizons on a=M is different and does not reduce to
any simple scaling, the curvature pattern and metric
features “fit together” differently for different a=M—
see Fig. 2.
Let us note that recently the authors of [16] presented

a thorough picture of gradient fields of the four Kerr-
metric Weyl invariants (of which two coincide with the
scalars treated here), showing an interesting dependence
on the center’s spin. (See [17] for an introductory
review on invariants polynomial in curvature and on
the gradient-flow method, and [18] for its application to
Chazy-Curzon solution.) Let us also add here that an
alternative way of curvature visualization has been
developed by [19]; it was applied to stationary black
holes by [20].

A. Kerr-Newman generalization

If the center is endowed with an electric charge Q, the
above “miraculously simple” picture is somewhat dis-
turbed. The Kretschmann-scalar expression for the Kerr-
Newman space-time with parameters M, a, Q remains
rather simple,

FIG. 2. Kretschmann scalarK in the central part of the Kerr space-time, as depicted in the meridional plane represented in the Kerr-Schild
coordinates ðR; ZÞ, with ergospheres indicated for three different values of a=M—0.8 (green lines), 1.0 (red lines: extreme), and 1.33 (blue
lines: naked). The axes are given in the units ofa, whichmakes the curvature pattern unchanging,while the horizons (drawn in solid lines) and
static-limit surfaces (drawn in short-dashed lines) shift accordinglywitha=M. The contours ofK are shown togetherwith grey shadingwhich
indicates its value: darker/lighter grey means bigger positive/negative values; K ¼ 0 circles are drawn in solid black.
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FIG. 3. Kretschmann-scalar landscape in the central part of the Kerr-Newman space-time, depicted in the Kerr-Schild coordinates
ðR; ZÞ as in Fig. 2 (the Kerr case), for a ¼ ð10=17ÞM ≐ 0.59M and three different chargesQ (from top to bottom):M, ð ffiffiffiffiffiffiffiffi

189
p

=17ÞM ≐
0.81M (extreme), and ð15=17ÞM ≐ 0.88M (naked). The axes are given in the units of a, solid red lines represent horizons, and short-
dashed red lines represent static limits. Upper/lower parts of the plots show r > 0=r < 0 space sheets, with discontinuity in the
equatorial plane indicated.
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K ¼ 8

Σ6
½6M2ðr2 − a2cos2θÞðΣ2 − 16r2a2cos2θÞ

− 12MQ2rðr4 − 10r2a2cos2θ þ 5a4cos4θÞ
þQ4ð7r4 − 34r2a2cos2θ þ 7a4cos4θÞ�: ð50Þ

As opposed to the uncharged, Kerr case, the radius
r now appears in both even and odd powers, so the
curvature “landscape” is different for the r > 0 and
r < 0 space sheets. Besides several special directions θ
along which the invariant does not diverge at Σ → 0,
the only case when it remains finite at the singularity is
when both M and Q vanish. Actually, charge Q even
makes the singularity stronger than mass M, in particular,
the limit M ¼ 0, a ¼ 0, Q ≠ 0 yields K ¼ 56Q4=r8

which is more divergent at r → 0 than the
Schwarzschild expression K ¼ 48M2=r6. In the equa-
torial plane the dependence on a is again suppressed,
and the scalar assumes the Reissner-Nordström form
Kðcos θ ¼ 0Þ ¼ ð8=r8Þð6M2r2 − 12MQ2rþ 7Q4Þ. (See
[21] for visualization.)
The other independent scalar reads

�K ¼ 96a cos θ
Σ6

ð3Mr2 −Ma2cos2θ − 2Q2rÞ
× ½Mrðr2 − 3a2cos2θÞ −Q2ðr2 − a2cos2θÞ�; ð51Þ

so it also depends on the sign of r nontrivially. This even
applies to the modulus of K − i�K which is no longer that
short as in the Kerr limit,

K2 þ �K2 ¼ 64

Σ10
½Σ2ð6M2Σ − 12MrQ2 þ 7Q4Þ2

−24Q4a2cos2θð3Mr2 −Ma2cos2θ − 2Q2rÞ2�:
ð52Þ

With growing charge Q, the pattern of scalars gradually
moves away from the Kerr picture; namely in the Kerr-
Schild coordinate representation the zero-value circles
“reconnect” and the disconnected negative-value regions
get kidney-shaped—see Fig. 3.

IV. MAJUMDAR-PAPAPETROU BINARY
BLACK HOLE

In order to subject a black hole to a strong and highly
inhomogeneous external field, the best possibility seems to
be another black hole. The resulting binary would almost
never be in stationary equilibrium, which the Einstein
equations ingeniously “repair” by adding singular struts
into a system. The only known stationary (actually even
static) regular possibility is the Majumdar-Papapetrou
configuration when the gravitational attraction between
sources is counterbalanced by electric repulsion. Exact
equilibrium requires, as in the case of Newtonian gravity,

that all the sources have charges of the same sign and of
extreme values equal to their masses (see e.g. [11,22]). In
this section we will consider a binary version of these
solutions: two extreme black holes of masses M1, M2 and
charges Q1 ¼ �M1, Q2 ¼ �M2 at some coordinate dis-
tance 2b in a static equilibrium. Such a system is axially
symmetric about the axis going through the black-hole
centers; it is reflectionally symmetric only if the masses are
equal. The solution is electrovacuum, so its metric can be
written in the Weyl form (4); more specifically, it belongs
to the Weyl class with the relation e2ν ¼ ð1 ∓ ΦÞ2 between
the gravitational and electrostatic potentials.

A. Metric and coordinates

The Majumdar-Papapetrou family of solutions provides
the only known case of singularity-free stationary electro-
vacuum space-times with more than one black hole [23]. Its
metric is usually presented in Cartesian-type coordinates
ðx; y; zÞ,

ds2 ¼ −N2dt2 þ N−2ðdx2 þ dy2 þ dz2Þ; ð53Þ

where the lapse function N ≡ eν is given by

1

N
¼ 1þ

Xn
j¼1

Mj

j~r − ~rjj
;

n being the number of black holes and Mj and ~rj ≡
ðxj; yj; zjÞ denoting their masses and positions (namely the
positions of their horizons which are represented as points
in the above coordinates). The electromagnetic field is
given by potential Aμ ¼ ð�N; 0; 0; 0Þ.5 For just two black
holes, the system is axially symmetric about their connect-
ing line. Identifying the latter as the z axis, the Weyl form
of the metric follows immediately by putting x ¼ ρ cosϕ,
y ¼ ρ sinϕ; since it involves gρρ ¼ gzz ¼ N−2 ≡ e−2ν, it
corresponds to λ ¼ 0. Let us choose the coordinate origin
so that the horizons lie at ð0; 0;þbÞ and ð0; 0;−bÞ. The
lapse then reads

1

N
¼ 1þ M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − bÞ2
p þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ bÞ2
p ; ð54Þ

where the denominators represent coordinate distances of a
given location from horizons in the ðρ; zÞ plane. Note that
the separation of black holes 2b must not be too small in

5One should actually take Aμ ¼ ð�ðN − 1Þ; 0; 0; 0Þ for full
consistency with the general electrostatic expression Aμ ¼
ð−Φ; 0; 0; 0Þ and with the Majumdar-Papapetrou prescription
N2 ≡ e2ν ¼ ð1 ∓ ΦÞ2, but conventionally the lapse itself is
chosen in the role of Φ. This only corresponds to normalizing
the potential to 1 instead of 0 at spatial infinity; in particular, no
difference arises in the field (Fμν).
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order for the binary not to be enclosed in a common
apparent horizon—see [24] (Table I there).
The Weyl-type coordinates ðρ; zÞ cover only the region

outside the black holes (their horizons appear as points). In
order to also include the inner regions, we will introduce
two other coordinate couples in the meridional planes. The
first of them, ðσ; ζÞ, is given by

ðσ − ζÞ2 ¼ ρ2 þ ðz − bÞ2; ðσ þ ζÞ2 ¼ ρ2 þ ðzþ bÞ2;
ð55Þ

or, in the inverse sense,

ρ2 ¼ x2 þ y2 ¼ ðσ2 − b2Þðb2 − ζ2Þ
b2

; z ¼ σζ

b
: ð56Þ

The lapse function then appears as

1

N
¼ 1þ M1

σ − ζ
þ M2

σ þ ζ
ð57Þ

and the Majumdar-Papapetrou metric as

ds2 ¼ −N2dt2 þ 1

N2

�ðσ2 − b2Þðb2 − ζ2Þ
b2

dϕ2

þðσ2 − ζ2Þ
�

dσ2

σ2 − b2
þ dζ2

b2 − ζ2

��
: ð58Þ

Representation of the meridional plane in ðσ; ζÞ is depicted
in Fig. 4. The domain of outer communications, just
covered by ðρ; zÞ, corresponds to the ranges σ ∈ hb;∞Þ,
ζ ∈ h−b;þbi. The black-hole horizons are given by σ ¼ b,
ζ ¼ �b, and the dynamical regions below horizons by
σ < b, jζj > b, being bounded “from bottom” by space-
time singularities localized where 1=N ¼ 0 and represented
as parts of the hyperbola

�
σ þM1 þM2

2

�
2

−
�
ζ −

M1 −M2

2

�
2

¼ M1M2: ð59Þ

The hyperbola has asymptotes ζ ¼ �σ þ 1
2
ðM1 −M2Þ and

always passes through (σ ¼ 0, ζ ¼ 0).
The transformation (55), (56) clearly does not recognize

the signs of x and y, but this does not matter if only
meridional projection is in question (one may identify the
points with all possible combinations of x and y signs due
to the axial symmetry about the z axis).
The last coordinate system we will use is the usual

spheroidal system ðr; θÞ, adapted to the “first” black hole,

ðr −M1Þ2 ¼ ρ2 þ ðz − bÞ2; tan θ ¼ ρ

z − b
; ð60Þ

with the inverse relation

ρ ¼ ðr −M1Þ sin θ; z − b ¼ ðr −M1Þ cos θ: ð61Þ

The lapse function now writes

1

N
¼ 1þ M1

r −M1

þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr −M1 þ 2b cos θÞ2 þ 4b2 sin θ2

p
¼ 1

1 − M1

r

þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr −M1 þ 2b cos θÞ2 þ 4b2 sin θ2

p ;

ð62Þ

and the metric assumes the form

ds2 ¼ −N2dt2 þ dr2

N2
þ ð1 − M1

r Þ2
N2

r2ðdθ2 þ sin2θdϕ2Þ:
ð63Þ

In the limit of a single black hole (M2 ¼ 0), this reduces
to the extreme Reissner-Nordström metric in spherical
coordinates,

M2 ¼ 0 ⇒ N ¼ 1 −
M1

r

⇒ ds2 ¼ −N2dt2 þ dr2

N2
þ r2ðdθ2 þ sin2θdϕ2Þ:

ð64Þ

In the ðr; θÞ coordinates, the first black-hole horizon lies on
r ¼ M1, and the second one remains pointlike at θ ¼ π,
r ¼ M1 þ 2b. Singularity (1=N ¼ 0) is only reached inside
the first black hole, at a radius given by the solution of a
quartic equation.

B. Gravitational acceleration and curvature

Since the electrostatic potential is Φ ¼ �ð1 − NÞ
(actually the renormalized alternative Φ ¼∓ N is being
considered conventionally) and λ ¼ 0 for the Majumdar-
Papapetrou field, the electromagnetic scalar (19) is propor-
tional to the gravitational-acceleration square (1) which for
any Weyl metric reads κ2 ¼ e2ν−2λ½ðN;ρÞ2 þ ðN;zÞ2�,

FμνFμν ¼ −2½ðN;ρÞ2 þ ðN;zÞ2� ¼ −2κ2=N2 ð65Þ

⇒ RμνRμν ¼ ðFμνFμνÞ2 ¼ 4κ4=N4: ð66Þ

Both N and κ vanish on both horizons, while the Ricci-
square scalar combines them into the finite value 4=ðM1Þ4
on the first horizon and 4=ðM2Þ4 on the second horizon;
RμνRμν diverges where N has a divergence (which is not at
r ¼ 0). The Ricci tensor itself is also found immediately
from its general Weyl form (29)–(31),
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−Rt
t ¼ Rϕ

ϕ ¼ ðN;ρÞ2 þ ðN;zÞ2;
−Rρ

ρ ¼ Rz
z ¼ ðN;ρÞ2 − ðN;zÞ2;

Rρ
z ¼ −2N;ρN;z: ð67Þ

The Riemann tensor of the Majumdar-Papapetrou
metric can be obtained according to the general

Weyl electrovacuum form (21)–(28), just using
ν;i ¼ −Nð1=NÞ;i, but it will be better to evaluate it in
some coordinates which also cover the black-hole
interior. We choose the ðσ; ζÞ coordinates in which
the tensor appears relatively simple, mainly if expressed
suitably in terms of sums and differences of its mixed
components,

Rtϕ
tϕ ¼ Rσζ

σζ ¼ −N4

�
M1

ðσ − ζÞ3 þ
M2

ðσ þ ζÞ3 þ
4M1M2

ðσ2 − ζ2Þ3 b
2

�
;

Rϕσ
ϕζ − Rtσ

tζ ¼ 6N4
σ2 − b2

σ2 − ζ2

�
M1

ðσ − ζÞ3 −
M2

ðσ þ ζÞ3 þ
4M1M2

ðσ2 − ζ2Þ3 σζ
�
;

Rϕσ
ϕζ þ Rtσ

tζ ¼ 2N4
σ2 − b2

σ2 − ζ2

� ðM1Þ2
ðσ − ζÞ4 −

ðM2Þ2
ðσ þ ζÞ4

�
;

Rϕσ
ϕσ − Rtζ

tζ ¼ 2N4
b2 − ζ2

σ2 − ζ2

�
M1

ðσ − ζÞ2 −
M2

ðσ þ ζÞ2
�
2

;

Rϕζ
ϕζ − Rtσ

tσ ¼ 2N4
σ2 − b2

σ2 − ζ2

�
M1

ðσ − ζÞ2 þ
M2

ðσ þ ζÞ2
�
2

;

Rϕσ
ϕσ þ Rtζ

tζ ¼
−2N4

σ2 − ζ2

��
M1

ðσ − ζÞ3 þ
M2

ðσ þ ζÞ3
�
ðσ2 þ 2ζ2 − 3b2Þþ 4M1M2

ðσ2 − ζ2Þ3 ð3σ
2ζ2 − b2ζ2 − 2b2σ2Þ

�
;

Rϕζ
ϕζ þ Rtσ

tσ ¼
2N4

σ2 − ζ2

��
M1

ðσ − ζÞ3 þ
M2

ðσ þ ζÞ3
�
ð2σ2 þ ζ2 − 3b2Þþ 4M1M2

ðσ2 − ζ2Þ3 ð3σ
2ζ2 − 2b2ζ2 − b2σ2Þ

�
:

The Kretschmann scalar can be written fully explicitly,

ðσ2−ζ2Þ8
8N8

K¼ðM1Þ4ðσþζÞ8þðM2Þ4ðσ−ζÞ8þ4M1M2½ðM1Þ2ðσþζÞ4þðM2Þ2ðσ−ζÞ4�ðσ2−ζ2Þðσ2þζ2−2b2Þ
þ2ðM1M2Þ2½3ðσ2−ζ2Þ2−8ðσ2−b2Þðb2−ζ2Þþ48b4�ðσ2−ζ2Þ2
þ24ðM1Þ2M2½3ðσζþb2Þ2−b2ðσþζÞ2�ðσ2−ζ2Þ2ðσþζÞ
þ24M1ðM2Þ2½3ðσζ−b2Þ2−b2ðσ−ζÞ2�ðσ2−ζ2Þ2ðσ−ζÞþ6½ðM1Þ2ðσþζÞ6þðM2Þ2ðσ−ζÞ6�ðσ2−ζ2Þ2
þ12M1M2½ðσ2þζ2−2b2Þ2−2ðσ2−b2Þðb2−ζ2Þ�ðσ2−ζ2Þ3: ð68Þ

On the first horizon (σ ¼ b, ζ ¼ þb) it yields 8=ðM1Þ4, and
on the second horizon (σ ¼ b, ζ ¼ −b) it yields 8=ðM2Þ4.
It is easy to check that the formula [5]

K¼H 3ðð2ÞR − FμνFμνÞ2 þ 2ðFμνFμνÞ2; ð69Þ

valid on any static electrovacuum horizon, really holds for
the Majumdar-Papapetrou values: the Ricci scalars of our
horizon 2D metrics6

ds2¼H ðM1Þ2ðdθ2 þ sin2θdϕ2Þ ð70Þ

are ð2ÞR¼H 2=ðM1Þ2 and ð2ÞR¼H 2=ðM2Þ2, respectively, for
the first and the second horizons, and the electromagnetic
invariant assumes exactly the same values there; namely
FμνFμν¼H ð2ÞR holds on both horizons, so the above formula
reduces to

K¼H 2ðFμνFμνÞ2 ¼H 2ð2ÞR2¼H 8=ðM1;2Þ4: ð71Þ

C. Meissner-like effect and geometry of the horizon

It is well known that rotating and charged black holes
tend to “expel” stationary axisymmetric external fields; as

6This is, in fact, only the metric of the first horizon: in the
coordinates adapted to the first black hole, the second horizon is
singular.
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the black hole approaches the extreme state, the external
field lines are pushed out and their flux across any part of
the horizon vanishes. This was demonstrated on external
(electro)magnetic fields, test (or weak) ones either in the
Kerr [25–28] and the Reissner-Nordström [29,30] space-
times or within the exact Ernst solution for magnetized Kerr
(-Newman) black holes [31–34]; see [35] for a review.
Astrophysical implications of the effect are still under
discussion, in particular, it has been shown [36,37] that the
fields can penetrate the horizon if currents are present. In
[38] we studied a stationary and axisymmetric exact
solution [39,40] describing a rotating black hole in an
external gravitational field generated by a disk and found
that in the extreme limit the “external” field vanishes on the
black-hole horizon.
However, it is not clear whether the “gravitational

Meissner effect” actually has a good sense. Namely, there
are two simple coordinate-independent ways to character-
ize the gravitational-field intensity: by a magnitude of four-
acceleration of some fiducial (“stationary”) observer, or by
some invariant determined by first derivatives of metric.
The first proposal runs into problems exactly on the
horizon, because acceleration of a stationary observer is
infinite there in any case. The second proposal leads to the
gravitational acceleration κ; this is, in fact, a renormalized
(by lapse N) version of the stationary-observer accelera-
tion. It stays regular on the horizon (being called surface
gravity there), but on extreme horizons it is zero by
definition. In this sense, extreme holes expel (all) gravita-
tional fields by definition, so the gravitational Meissner
effect occurs inevitably.
The gravitational acceleration κ really vanishes on the

horizons of our Majumdar-Papapetrou binary black hole,
and the scalar obtained from it by further differentiation,

gαβκ;ακ;β ¼ N2½ðκ;1Þ2 þ ðκ;2Þ2�;

is zero there as well. One can still analyze several other
geometric quantities which remain finite at the horizon.
First, it is the ratio κ=N that goes to

lim
N→0

κ

N
¼ 1

M1

: ð72Þ

Other ones are the electromagnetic invariant FμνFμν, the
Ricci-tensor quadratic invariant RμνRμν, the Kretschmann
scalar K, and the 2D-horizon Gauss curvature ð2ÞR=2. On
the horizon (let us focus on “the first one” without any loss
of generality), all these scalars become extremely simply
related and reduce to the value

K¼H 2RμνRμν ¼ 2ðFμνFμνÞ2 ¼H 2ð2ÞR2 ¼H 8=ðM1Þ4; ð73Þ

which is not affected by the other black hole—it depends
neither on the other-hole massM2 nor on the separation 2b.

The same observation also applies to all other (higher-
power) scalars obtained from the Riemann or/and Ricci
tensor, for example,

Rα
βR

β
γR

γ
δR

δ
α ¼H 4

ðM1Þ8
;

Rα
βR

γ
δR

βδ
κλRκλ

αγ ¼H
8

ðM1Þ8
;

Rα
βR

γ
δR

βκ
αλRδλ

γκ ¼H 4

ðM1Þ8
:

When speaking about Gauss curvature, we should also
recall mean curvature and the main geometric property of
horizons: that they are minimal submanifolds. In the
Majumdar-Papapetrou (hence stationary) case, the horizon
N ¼ 0 is a minimal 2D surface within the 3D slicing
ft ¼ constg; thus it represents the apparent horizon of all
these hypersurfaces, and its history forms a trapping
horizon, an isolated horizon, and an event horizon at the
same time. Namely, the horizon is a Killing one since the
Killing field ημ becomes null on it. The main “quasilocal”
property of the horizon is the vanishing of the expansion of
the outgoing (geodesic) null normal congruence, in other
words, vanishing of the mean curvature of the horizon’s
ft ¼ constg sections within the ft ¼ constg hypersurfaces.
Introducing the “time” unit normal nμ, the “radial”
unit normal rμ, and the outgoing null normal kμ to the
ft ¼ const; N ¼ constg surfaces,

nμ ≡ 1

N
ημ; rμ ≡ 1

κ
N;μ; kμ ≡ 1ffiffiffi

2
p ðnμ þ rμÞ;

the metric of these surfaces is ~hμν ¼ gμν þ nμnν − rμrν and

the expansion of kμ, ~hμνkμ;ν, is given by

ffiffiffi
2

p
~hμνkμ;ν ¼ ~hμνðnμ;ν þ rμ;νÞ

¼ nμ;μ þ rμ;μ − nμ;νnνrμ þ rμ;νrνnμ

¼ rμ;μ −
κ

N
; ð74Þ

since nμ;νnμ ¼ 0 and rμ;νrμ ¼ 0 due to normalization,

nμ;μ ¼
1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi

−g
p

nμÞ;μ ¼
1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi

−g
p

ntÞ;t ¼ 0;

and the acceleration of nμ reads nμ;νnν ¼ N;μ

N while the
“acceleration” of rμ is perpendicular to nμ, rμ;νrνnμ ¼ 0.
On our first horizon of the Majumdar-Papapetrou space-
time, we have

rμ;μ ¼H
1

M1

¼H κ

N
; ð75Þ

so the expansion of kμ is really zero there.
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Note on other simple horizon embeddings: (i) Mean
curvature of the horizon as a 3D hypersurface fN ¼ 0g is

given just by rμ;μ ¼H 1
M1
. (ii) Mean curvature of the horizon’s

ft ¼ constg sections within the fN ¼ 0g hypersurface is
zero; this is “inherited” from the fact that the mean
curvature of the ft ¼ constg hypersurfaces themselves
vanishes, nμ;μ ¼ 0.
Other significant submanifolds are the meridional planes

ft ¼ const;ϕ ¼ constg, namely the surfaces orthogonal to
both Killing directions. Their Gauss curvature, given by
half of the Ricci scalar of the respective 2-metric, is quite
complicated, but reduces to zero on the horizons. Their
mean curvatures, given by the corresponding 2D diver-
gence of the unit normals nμ and φμ ≡ ξμ= ffiffiffiffiffiffiffigϕϕ

p , are zero
everywhere, because nμ;μ ¼ 0 as well as φμ

;μ ¼ 0.
We can also add a simple scalar (counterpart of κ) given

by gradient of the second metric invariant ffiffiffiffiffiffiffigϕϕ
p . Resorting

to the spheroidal coordinates, we have N given by (62) and

grr ¼ N2; gθθ ¼ N2

ðr −M1Þ2
;

ffiffiffiffiffiffiffi
gϕϕ

p ¼ r −M1

N
sin θ;

so one easily computes square of the gradient7

λ2 ≡ gijð ffiffiffiffiffiffiffi
gϕϕ

p Þ;ið
ffiffiffiffiffiffiffi
gϕϕ

p Þ;j: ð76Þ

On the Majumdar-Papapetrou horizon (r ¼ rH ¼ M1), the

circumferential radius itself equals ffiffiffiffiffiffiffigϕϕ
p ¼H rH sin θ, while

its gradient squared equals λ2¼H cos2θ. These values are the
same as in the Reissner-Nordström or Schwarzschild space-
time, again being independent of M2 and b.
The independence of the horizon’s basic geometric

characteristics of the other-black-hole parameters indicates
that the horizon might not differ at all from the Reissner-
Nordtröm case of a single black hole. Actually, the horizon
area is [[2], Sec. 113(c)]

AH ¼ lim
r→M1

Z
2π

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p
dθdϕ

¼ lim
r→M1

Z
2π

0

Z
π

0

ðr −M1Þ2
N2

sin θ dθdϕ

¼ 2π

Z
π

0

lim
r→M1

ðr −M1Þ2
N2

sin θ dθ

¼ 2π lim
r→M1

r
Z

π

0

sin θ dθ ¼ 4πðM1Þ2; ð77Þ

the proper distance along any ft ¼ const; r ¼ const;
ϕ ¼ constg meridian reduces, on the horizon, to

lHðθÞ ¼ lim
r→M1

Z
θ

0

ffiffiffiffiffiffi
gθθ

p
dθ ¼

Z
θ

0

lim
r→M1

r −M1

N
dθ

¼ lim
r→M1

r
Z

θ

0

dθ ¼ M1θ; ð78Þ

and the proper azimuthal circumference along the ft ¼
const; r ¼ const; θ ¼ constg circle yields there

oHðθÞ ¼ lim
r→M1

Z
2π

0

ffiffiffiffiffiffiffi
gϕϕ

p
dϕ ¼ 2π lim

r→M1

r −M1

N
sin θ

¼ 2π lim
r→M1

r sin θ ¼ 2πM1 sin θ; ð79Þ

as it should be on a perfect sphere.

D. Further symmetries? Only on horizons

We started this work with the intention to subject a black
hole to the strongest possible influence. We expected that
the Majumdar-Papapetrou binary could be the best envi-
ronment in this respect, but now it appears, on the contrary,
that its components are not influenced by each other at all.
This seems rather counterintuitive, but one must realize that
extreme black holes are strange objects, in particular, that a
proper distance from an extreme horizon to any point in its
exterior (also interior) is infinite. This means that any
external source is effectively at infinite distance from it, and
also “explains” its Meissner-like effect. However, our main
aim has been to study the external-source effect on the
black-hole interior. One might tend to expect that in the
Majumdar-Papapetrou system the interior will remain
unaffected as well, but this is not so, as suggested by
uniqueness theorems [23,41,42].
We may verify it by checking whether there exists,

somewhere (in particular, inside the horizon), some other
symmetry besides time and axial symmetry. Were the
black-hole interior unaffected, it could be described by
the Reissner-Nordström solution, so two more rotational
symmetries would have to exist there. The Killing equation

0 ¼ kμ;ν þ kν;μ ¼ kμ;ν þ kν;μ − 2Γα
μνkα ð80Þ

can in the static and axisymmetric case be written out in
components as

kt;1 ¼ 2Γαt1kα; kt;2 ¼ 2Γαt2kα;

kϕ;1 ¼ 2Γαϕ1kα; kϕ;2 ¼ 2Γαϕ2kα;

0¼ Γαttkα; 0¼ Γαϕϕkα;

k1;1 ¼ Γα11kα; k2;2 ¼ Γα22kα; k1;2 þ k2;1 ¼ 2Γα12kα;

which simplifies further after substitution for Christoffel
symbols,

7Note that this quantity must approach unity on the symmetry
axis in any axisymmetric space-time in order that the parameter ϕ
of this symmetry is normalized conventionally.
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kt;1 ¼ 0; kt;2 ¼ 0; kϕ;1 ¼ 0; kϕ;2 ¼ 0;

0 ¼ gtt;jkj; 0 ¼ gϕϕ;jkj;

2g11k1;1 ¼ −g11;jkj; 2g22k2;2 ¼ −g22;jkj;

g11k1;2 þ g22k2;1 ¼ 0: ð81Þ

Looking for some other symmetries than the time and the
axial ones, one focuses on nontrivial solutions of the last
two rows (i.e. on solutions with at least one of the
components k1, k2 nonzero).
Let us discuss the possibilities in the x1 ≡ r, x2 ≡ θ

coordinates. The first of them is gtt;1 ¼ 0, gtt;2 ¼ 0 which is
only possible on r ¼ M1 or at r ¼ M1 þ 2b and θ ¼ π,
i.e. on the horizons. The second possibility is given by
gtt;2 ¼ 0, k1 ¼ 0, gϕϕ;2 ¼ 0, g11;2 ¼ 0, k2;1¼0; this
cannot be satisfied at all, in particular, gtt;2 and g11;2
cannot vanish simultaneously. The third possibility
arises when the determinant of the (81) system is zero,
gtt;2gϕϕ;1 − gtt;1gϕϕ;2 ¼ 0,

k2

k1
¼ −

gtt;1
gtt;2

¼ −
gϕϕ;1
gϕϕ;2

: ð82Þ

Besides the symmetry axis (θ ¼ 0 or θ ¼ π), the determi-
nant only vanishes on the horizons, however. Whereas the
additional Killing symmetries thus prove possible on the
horizons, there are none inside the black holes. Hence,
the Majumdar-Papapetrou horizons are the same whether
they are multiple or just one (extreme Reissner-Nordström),
but their interiors differ between these two cases. It will
be interesting to check this on the behavior of the basic
invariants.

E. Describing the black-hole interior

In order to extend the Majumdar-Papapetrou metric (53)
below some of the horizons, it is sufficient to reverse, in the
lapseN, the sign of the respective mass, sayM1 (see [22] or
Sec. 113 of [2]). When the metric is written in the ðσ; ζÞ
coordinates, (58), it automatically also covers the black-
hole interiors, and it is only necessary to select the
coordinate ranges accordingly: below the horizons, σ<b
and ζ < −b (below the first horizon) or ζ > þb (below the
second horizon)—see Fig. 4; the physical manifold ends at
singularities lying on the red-color hyperbola (there the
curvature scalars diverge). In the spheroidal coordinates
ðr; θÞ, the central curvature singularity lies at a relevant root
of the quartic equation 1=N ¼ 0—see (62). Clearly for
M2 ¼ 0 or b → ∞ the singularity radius vanishes and for
b → 0 it approaches the value M2, but a general solution is
quite lengthy, so we will only give the singularity location
at θ ¼ π (direction toward the second black hole) and θ ¼ 0
(antipodal direction),

2rsingðθ ¼ πÞ
¼ M1 þM2 þ 2b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1 þM2 þ 2bÞ2 − 4M1M2

q
;

2rsingðθ ¼ 0Þ
¼ M1 −M2 − 2bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1 −M2 − 2bÞ2 þ 4M1M2

q
:

As followed in the sense of growing second-hole influence,
these values start from the Reissner-Nordström origin
rsing ¼ 0 in the M2 → 0 or b → ∞ limit, and both increase
with increasing M2 and/or decreasing b, reaching rsing →
2M1 for M2 → ∞.
It is possible to illustrate the deviation of the black-hole

interior from spherical symmetry explicitly, on the behavior
of some suitable invariant quantities. It suffices to show, in
particular, that an invariant behaves differently along the
θ ¼ π and θ ¼ 0 parts of the symmetry axis (which means
along the direction from the singularity toward the other
black hole and away from it, respectively). The dependence

FIG. 4. Meridional plane of the binary Majumdar-Papapetrou
solution represented in the coordinates ðσ; ζÞ. The black holes
have masses M1, M2 ¼ 1.5M1, and their horizons are placed at
z ¼ �b ¼ �M1 on the Weyl axis. Indicated in light blue are
physical regions—the two black holes and the exterior domain.
The horizons are just points at σ ¼ b, ζ ¼ �b, and the singu-
larities inside black holes (where N ¼ ∞) lie on the hyperbola
given in red color. The symmetry axis is made of seven segments:
the part between radial infinity and the first singularity, lying in
the direction opposite to the second black hole, is given by ζ ¼ b,
with σ > b above the (first) horizon and σ < b below it; the part
between the singularities is given by σ ¼ b, with ζ > b below the
first horizon, −b < ζ < þb between the horizons, and ζ < −b
below the second horizon; and the part between the second
singularity and radial infinity is given by ζ ¼ −b, with σ < b
below the (second) horizon and σ > b above it.
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on r itself is not conclusive, of course, but one can take some
invariant which has local extremes (somewhere) on both the
inner parts of the axis, compute the values at these extremes,
and compare them. The ratio κ2=N3 is an example of such a
quantity. It diverges to −∞ both at the singularity and at the
horizon and has a local maximum in between. Choosing
M1 ¼ 1, M2 ¼ 1, and b ¼ 2, for instance, the value of the
maximum on θ ¼ π is ð−11.682Þ, while the value of the
maximum on θ ¼ 0 is ð−12.038Þ. One would prefer to
integrate the invariants along the two interior counterseg-
ments of the axis (and compare the results), but this typically
yields divergence due to the infinite proper distance to the
(extreme) horizon. The study of particle motion (namely
radial motion along the axis) also does not help, since
photons spend infinite Killing time to reach/leave the
horizon, and timelike particles cannot reach the singularity
at all, as in the Reissner-Nordström case (e.g. [2], Sec. 40).
The absence of spherical symmetry below the horizon

can also be proved on mutual independence of the
invariants, namely by showing that their contours do not
coincide. Choosing the simplest two of them, N and κ
(which also determine RμνRμν), it is sufficient to show, for
example, that normals to N−2 ¼ const and to κ2 ≡ N;ιN;ι ¼
const are not parallel, which means to calculate the vector-
product bivector ðN−2Þ;½αðκ2Þ;β� or the related scalar

gαγgβδðN−2Þ;½αðκ2Þ;β�ðN−2Þ;½γðκ2Þ;δ�
¼ 1

2
gσσgζζ½ðN−2Þ;σðκ2Þ;ζ − ðN−2Þ;ζðκ2Þ;σ�2

¼ ð24M1M2Þ2N14

2ðσ2 − ζ2Þ12 ðσ2 − b2Þðb2 − ζ2Þ

× ½M1ðσ þ ζÞðσζ þ b2Þ þM2ðσ − ζÞðσζ − b2Þ�2:
ð83Þ

We have evaluated the expression in the ðσ; ζÞ coordinates
where the lapse has the simplest form (57). It is clear that
the result only vanishes at special locations, not on any
whole domain (like everywhere below the horizon). One,
however, expects the contours to coincide on the axis, and
this is really the case, because

θ ¼ π ⇒ for r < M1 þ 2b∶ σ ¼ b; ζ ¼ bþM1 − r;

for r > M1 þ 2b∶ σ ¼ r −M1 − b; ζ ¼ −b;

θ ¼ 0 ⇒ σ ¼ bþ r −M1; ζ ¼ b;

⇒ σ2 − b2 ¼ 0 or b2 − ζ2 ¼ 0;

so the above vector-product square vanishes there.

F. Numerical illustrations

Here the shape of the Majumdar-Papapetrou space will
be illustrated on contours of the invariants discussed above:
the lapse N ¼ ffiffiffiffiffiffiffiffi−gtt

p
, the trace of the Ricci-tensor square

RμνRμν ¼ ðFμνFμνÞ2 ¼ 4κ4=N4, and the Kretschmann

invariant RμνκλRμνκλ. We consider three cases of mass ratio
in order to see how the pattern changes: a symmetrical
binary with M2 ¼ M1, the one with M2 ¼ 3M1, and the
one with M2 ¼ 8M1, where 2b ¼ 2M1 is kept everywhere
as coordinate separation of the holes. The plots are
presented in Figs. 5–7. As expected, the less massive black
hole produces more “sudden” curvature, namely the cur-
vature invariants reach higher values at its horizon, but fall
off more quickly with distance. Between the holes, there
always appears a point where RμνRμν ¼ 0. It is located
where N has a saddle, thus where the gravitational
attraction of the holes is just in equilibrium; the electric

FIG. 5. Lapse function N in the outer region of the meridional
plane of the Majumdar-Papapetrou space-time with two black
holes of masses M1, M2 at coordinate separation 2b ¼ 2M1. The
second-hole (the right-one) mass is M2 ¼ M1 (top), M2 ¼ 3M1

(middle), and M2 ¼ 8M1 (bottom). Cartesian-type coordinates
are used, with horizons represented as points at x ¼∓ b, y ¼ 0,
and axes given in the units of M1.
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field vanishes at that point, too. One finds easily—by
setting σ ¼ b (axis between the horizons) and solving
N;ζ ¼ 0—that this “central” point lies at

ζ ¼
ffiffiffiffiffiffiffi
M2

p
−

ffiffiffiffiffiffiffi
M1

p
ffiffiffiffiffiffiffi
M2

p þ ffiffiffiffiffiffiffi
M1

p b

⇔ r ¼ M1 þ b − ζ ¼ M1 þ
2b

ffiffiffiffiffiffiffi
M1

p
ffiffiffiffiffiffiffi
M1

p þ ffiffiffiffiffiffiffi
M2

p ;

similarly as in Newtonian treatment. The zero-field location
shifts from the first horizon (r ¼ M1) toward the second
horizon (r ¼ M1 þ 2b) when M1 increases from zero to
values much larger than M2.
However, our main aim has been to see how curvature

inside the horizon responds on the external source. We

again plotted contours of the same three invariants as above
and have observed that the patterns are pretty similar, so we
present just the Kretschmann-scalar “interior landscape”
here, this time in spheroidal coordinates (60) adapted to the
first horizon (it is a sphere r ¼ M1 in them)—see Fig. 8.
Finally, Fig. 9 shows the spheroidal-coordinate location of
the singularity in dependence on the other-black-hole mass
M2 and on separation b. The singularity radius grows with
increasingM2 and/or decreasing b, though, needless to say,
the singularity actually remains pointlike in any case [[2],
Sec. 113(c)], as seen from the metric (63) which contains
1=N in all the spatial elements. The above plots indicate
that the divergence of invariants at the singularity is not
directional (the iso-surfaces approach the singularity uni-
formly from all directions).

FIG. 6. RμνRμν scalar in the outer region of the meridional plane
of the same binary Majumdar-Papapetrou space-times as in Fig. 5
(mass ratios “right=left”≡M2=M1 ¼ 1, 3, and 8), plotted in the
same way as there.

FIG. 7. Kretschmann scalar in the outer region of the meridio-
nal plane of the same binary Majumdar-Papapetrou space-times
as in Figs. 5 and 6 (mass ratios “right=left”≡M2=M1 ¼ 1, 3,
and 8), plotted in the same way.
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Let us stress/admit that all the plots are drawn in
coordinates, so they do not represent “true shapes” of
the surfaces; especially one cannot directly compare the
pictures obtained for different spaces (different M1, M2

or/and b). However, isometric embeddings often look much
more “wild,” the more so that extreme horizons are
involved which lie at proper radial infinity from both sides.

V. CONCLUDING REMARKS

In order to check how an external source affects space
curvature generated by a black hole, we have considered a
Majumdar-Papapetrou binary black hole and studied the
behavior of the simplest invariants given by the metric
and its first and second derivatives. Though “the other
black hole” is a very strong source of gravity, the
resulting field is not much deformed within this class
of space-times, in the sense that the spatial behavior of the
invariants is not altered significantly. Even the space-time
curvature inside the black hole retains its original shape,
in particular, the Kretschmann scalar nowhere turns
negative. This is probably connected with the extreme
character of its horizons: such horizons are factually cut
from all the fields, being characterized by zero surface
gravity and shifted to effective infinity. However, the
other black hole is felt inside these horizons—the interior
is not spherically symmetric as for a solitary Reissner-
Nordström hole any longer.
It thus seems more promising to try to distort a black hole

which is far from the extreme state. In such a case, the
external source has to be supported somehow in order to
allow for a stationary configuration rather than falling onto
the hole. Omitting solutions which contain artificial sin-
gular “struts,” one can resort to hoop stresses or centrifugal
force and turn to disks or rings surrounding the hole. In the
simplest approximation, such a configuration can be taken
static and axially symmetric, which allows for its exact
analytical treatment. Therefore, our plan for the next paper
is to consider a Schwarzschild-type black hole with a
concentric thin ring. Apart from its theoretical interest
stemming from the nonlinear superposition, such a system
may cover at least some features of space-times of real
accreting black holes.
Note finally that the most inhomogeneous field is, of

course, generated by pointlike sources. However, these
cannot stay in static or stationary equilibrium with the black
hole (without supporting struts), unless we return to the
Majumdar-Papapetrou type of solutions and endow the
point with extremal charge (and the black hole as well).
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FIG. 9. Location of the singularity below the first horizon of the
binary Majumdar-Papapetrou space-time, in dependence on the
mass ratioM2=M1 (top) and on separation 2b (bottom). Meridio-
nal half-sections are shown again, in the ðr; θÞ coordinates adapted
to the first horizon (represented as the thick r ¼ M1 half-circle),
with the horizontal axis coinciding with the symmetry axis and the
second black hole lying to the right of the plot (θ ¼ π). In brief, the
singularity radius grows with increasing M2 and/or decreasing b.
Numerical details: going from the innermost curve to the outer-
most one, the singularity location is shown (i) top: for b ¼ M1 and
M2=M1¼3ðe−j=10−e−3Þ, j ¼ 29; 28; 27;…; 1; 0 (i.e. M2=M1 ¼
0.016; 0.033; 0.052;…; 2.565; 2.851); (ii) bottom: for M2 ¼ M1

and b=M1 ¼ 3ðe−j=10 − e−3Þ, j ¼ 0; 1; 2;…; 28; 29 (i.e. b=M1 ¼
2.851; 2.565; 2.307;…; 0.033; 0.016).

FIG. 8. Kretschmann scalar below the first horizon of the
same binary Majumdar-Papapetrou space-times as in Figs. 5–7,
plotted in the ðr; θÞ coordinates adapted to the first horizon. The
meridional half-section is shown, with the horizontal axis
representing the symmetry axis and the second black hole lying
to the right of the plot (θ ¼ π). The axes are in the units of M1.
The outermost curve (the r ¼ M1 circle) is the horizon and the
innermost (red) curve is the singularity.
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