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Abstract. The method of analytic continuation in the coupling constant in combina-
tion with the use of statistical Padé approximation is applied to the determination of
complex S-matrix poles, i.e. to the determination of resonance energy and widths.
These parameters are of vital importance in many physical, chemical and biological
processes. It is shown that an alternative to the method of analytic continuation in
the coupling constant exists which in principle makes it possible to locate several res-
onances at once, in contrast to the original method which yields parameters of only
one resonance. In addition the new approach appears to be less sensitive to the choice
of the perturbation interaction used for the analytical continuation than the original
method. In this paper both approaches are compared and tested for model analytic
separable potential. It is shown that the new variant of the method of analytic contin-
uation in the coupling constant is more robust and efficient than the original method
and yields reasonable results even for data of limited accuracy.

PACS: 31.15.-p
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1 Introduction

Resonances defined as complex poles of the S-matrix [1] play an essential role in many
areas of physics, chemistry, astronomy, biology, etc. The reason is that the presence of
a resonance may increase the rate of a dynamical process by many orders of magni-
tude and in fact make it the dominant process. Let us mention for example the atomic
processes controlling formation of stars and galaxies [2], radiation damage in biologi-
cal tissues [3], formation of metastable long-lived states in molecular hydrogen [4], etc.
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(L. Pichl)

http://www.global-sci.com/ 1154 c©2017 Global-Science Press
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There exist several methods for the determination of resonance parameters (i.e. the real
and imaginary part of the complex energy of the S-matrix pole). Let us mention just a
few of them: stabilisation methods [5–7], Stieltjes imaging techniques [6], complex rota-
tion [8, 9], complex absorbing potential [10, 11], etc. All the methods are computationally
demanding requiring usually the use of complex arithmetics. The method of analytic
continuation in the coupling constant represents the less computationally demanding
method which uses real arithmetics only. This is a very important fact because for the
determination of resonances of extended many electron systems which are essential in
various biological and chemical processes (for example radiation damage of DNA) one
has to use commercial quantum chemistry codes which are limited to real arithmetics
only. The method of analytic continuation in coupling constant (ACCC) has been intro-
duced in nuclear physics by Krasnopolsky and Kukulin [12,13] and is described in detail
in the monograph [1]. The ACCC approach has found several applications mainly in
nuclear physics, see e.g. [14–18]. Recently Horáček et al. [19] and Papp et al. [20] have
applied the ACCC method to real molecular resonances, discussing the 2Πg state of N−

2

resonance of molecular nitrogen and resonance of amino acid molecules (alanine, glycine
and valine). In addition Horáček, Paidarová and Čurı́k applied a modification of the
ACCC method to the determination of resonance energy and width of the 2B2g shape
resonance of ethylene [21] and diacetylene [22] proving that the ACCC method can yield
accurate resonance energies and widths for non-model situations based on data obtained
by using standard quantum chemistry codes. It therefore seems worthwhile to study the
properties and numerical efficiency of the method in order to get a deeper insight into
its properties. One of the open questions is the right selection of the perturbation inter-
action; this problem seems to be of crucial importance. It is the purpose of this work to
propose a new form of the ACCC method, to test the role and choice of the perturbation
potential and to compare the numerical efficiency of both approaches. In what follows
we shall use units h̄=1 and m= 1

2 unless explicitly stated.

2 Description of resonances

In its simplest form (i.e. one dimensional radial problem) the resonances are defined as
solutions of the following integro-differential Schrödinger equation

−d2ψl(r)

dr2
+V(r)ψl(r)+

l(l+1)

r2
ψl(r)+

∫ ∞

0
W(r,r

′
)ψl(r

′
)dr

′
= k2ψl(r) (2.1)

satisfying the boundary conditions of Siegert [27]

ψl(0)=0,
ψ

′
l(R)

ψl(R)
= ik′, (2.2)

where R is a distant point at which the interaction V and W is negligible and l is the
angular momentum of the resonance. For realistic molecular resonance the equation is of
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course multidimensional. The term V(r) stands for the local interaction, whereas W(r,r′)
denotes the nonlocal interaction term. The number of independent variables is typically
several tens up to hundreds. It is important to stress that the sought after eigenvalue k is
complex and in addition it appears in the boundary condition Eq. (2.2). This combination
makes the eigenvalue problem Eq. (2.1) nonlinear. Of physical importance is the quantity
ER =Re(k)2−Im(k)2 which represents the energy of the resonance and Γ=4Re(k)Im(k)
its width.

3 Analytic continuation in the coupling constant

To calculate the bound state energies and their square integrable wave functions is now
a routine task even for large polyatomic molecules and many commercial programs are
available. The calculation of resonance energy and width is however a serious problem
[8] whereas bound state energy calculations is easy. It is therefore natural to ask whether
one can obtain the resonance energy and perhaps even its width from a knowledge of
the bound state energies alone. This really can be done in several more or less accurate
ways, see for example [23]. Here we describe one method which is able to provide the
resonance energy and also the resonance width to a high degree of accuracy, the method
of analytical continuation in the coupling constant (ACCC). The ACCC method works as
follows [1]: let us for simplicity assume that motion of the electron in the vicinity of a
molecule is determined by a Hamiltonian H which generates a resonance at a complex
energy E

E=ER−
i

2
Γ,

where ER is the resonance energy and Γ is the resonance width. Let us now add an
attractive short-range interaction U to the original Hamiltonian H multiplied by a real
positive parameter λ

H→H+λU. (3.1)

At increasing λ the new Hamiltonian H gets more attractive and some resonance states
eventually transform into bound states. At such values of λ the bound state energies
E(λ) may be easily obtained. The problem now stands how to find from the knowledge
of E(λ) calculated in the bound state region the complex quantity E(λ=0). All calculated
E(λ) values are real and any extrapolation must yield real value only whereas to find the
resonance parameters we must determine a complex number. It is shown in [1] that a
naive extrapolation of energy in λ, E ≈ E0+E1λ+E2λ2 ··· , sometimes used in quantum
chemistry is not sufficient to get both the resonance energy and the resonance width
and that the extrapolations should be replaced by an analytic continuation. In addition
the parameter used for the continuation is not the parameter λ itself but a new variable
y =

√
λ−λ0 which will be discussed below. The function to be analytically continued

is the momentum k(λ(y)), h̄2k2/2m= E where m is the reduced mass. This is the most
essential ingredient of the ACCC method.



J. Horáček and L. Pichl / Commun. Comput. Phys., 21 (2017), pp. 1154-1172 1157

In this work we will carry out the analytic continuation by using the so called statis-
tical Padé approximation (Padé III approximation) [1]. This approach has several advan-
tages:

1. It allows to use low-order Padé approximations even if a large number of points are
available.

2. It allows us to take into account the inaccuracy of the input data.

3. It can describe a much broader range of functions: for example functions with poles
and cuts.

4. It carries out the analytical continuation automatically [1], etc.

Since an absolute majority of molecular resonances possesses nonzero angular momen-
tum l we will consider here the ACCC method for l 6= 0. For l = 0 the situation is more
complicated and will not be discussed here. As has already been shown (see e.g. [1]), at
small values of k the function k(λ) behaves as k(λ)≈a

√
λ−λ0 where λ0 denotes the point

k(λ0)=0. At smaller values of λ<λ0, k(λ) therefore becomes complex and the resonance
energy acquires its imaginary part.

3.1 ACCC algorithm

The ACCC calculation proceeds as follows:

• Bound state energies Ei are calculated for several values of the parameter λi using
standard quantum chemistry codes and input data {κi(κi =−iki), λi, i=1,2,··· ,L}
are generated (h̄2k2

i /2m=Ei). This step represents a routine task.

• Based on the input data the Padé approximation λ(κ)≈ PN(κ)
QM(κ)

, is constructed and

evaluated at κ=0. In this way the bifurcation point λ0 is found.

• Then the second Padé approximation κ(λ)≈ PN(
√

λ−λ0)
QM(

√
λ−λ0)

is constructed and evalu-

ated at λ=0 and the resonance parameters thus determined

k1+ik2 = k[N/M] (λ=0), (3.2)

ER =(k2
1−k2

2)h̄
2/2m, Γ=2k1k2h̄2/m. (3.3)

3.2 Inverse ACCC algorithm

The standard ACCC method is in fact a two-step method requiring two fits. First the bi-
furcation point is determined and then by the second fit the resonance energy and width
is computed. It is observed that the final value of the resonance parameters is very sen-
sitive to the precise value of the bifurcation point λ0. Even minor changes of its value
may lead to significant changes of the obtained resonance parameters. There is however



1158 J. Horáček and L. Pichl / Commun. Comput. Phys., 21 (2017), pp. 1154-1172

another much simpler approach which requires only one function to be fitted. This ap-
proach is based on the analytical continuation of the function λ(κ) (the inverse function
to the function κ(λ)). For this reason we will call the new approach the inverse ACCC
method (IACCC). Let us start from the first fit of the ACCC method

λ(κ)≈ PN(κ)

QM(κ)
. (3.4)

Then the resonance parameters may be obtained by solving the simple polynomial equa-
tion

PN(κ)=0. (3.5)

The bifurcation point λ0 = PN(0). Resonances are determined directly as the physical
roots of PN. In addition this approach may in principle be able to determine positions
of virtual states and of other resonances because solving Eq. (3.5) provides us with N
solutions. The standard ACCC method allows for determination of only one resonance
which is connected with the bound state region through the origin. An open question
remains the stability of this approach. It is well known that determination of polynomial
roots is a very sensitive problem. A variant of the IACCC was proposed in [22]. In the
following we compare the basic properties of both ACCC and IACCC approaches.

4 Model potential

As a model potential for the study of the numerical performance of both methods we use
the separable interaction

U(r,r′)=∑gi(r)gi(r
′). (4.1)

In what follows the local term is set as V(r) = 0, which is consistent with the fact that
separable interactions represent at low energies good description of local short range
interactions.

This type of interaction is often used for the description of nuclear forces or effective
interactions in atomic, molecular physics and other fields [24–26] and greatly simplifies
solution of Eq. (2.1). The Schrödinger equation then reads

d2ψl(r)

dr2
+

l(l+1)

r2
ψl(r)+∑gi(r)

∫ ∞

0
gi(r

′
)ψl(r

′
)dr

′
= k2ψl(r). (4.2)

To convert the resonance states into bound states the perturbation interaction must be
attractive. If we choose the perturbation potential in the form (4.1) we can write applica-
tion of the total Hamiltonian Hλ on a wave function ψ(r) as

Hλψ(r)=Hψ(r)−λ∑gi(r)
∫ ∞

0
gi(r

′)ψ(r′)dr′, (4.3)

where H is the original unperturbed Hamiltonian and the perturbation is of an attractive
nature for λ≥0.
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The projective nature of the perturbation allows for an explicit determination of the
coupling parameter λ(κ) as a function of κ, k=iκ, E=−κ2 [28]. For one term perturbation
potential and for H=H0 where H0 denotes the free Hamiltonian we get

λ(κ)=− 1
∫

dr
∫

dr′g(r)G(r,r′ ,−κ2)g(r′)
, (4.4)

where G(r,r′,k) is the Green’s function of the unperturbed problem. The behavior of
λ(κ) has been studied in detail only for the partial wave l = 0 in [28]. Since most of
the atomic and molecular resonances are formed by centrifugal repulsive interaction we
will consider the partial wave l = 1 as representative of all nonzero angular momentum
partial waves. In accordance with the nomenclature in scattering theory we represent the
function g(r), the so-called form factor, in the form

g(r)=

√

π

2

∫ ∞

0
g(p)jl(pr)pdp, (4.5)

where jl(x) is the spherical Bessel function.
To start with we choose the form factor g(p) in the form proposed by Mongan [24]

g(p)=
p

p2+α2
(4.6)

which fulfils the threshold law [24]

gl(p)∼ pl , for p→0. (4.7)

For this potential we get

λ(κ)=
4

π

(α+κ)2

α+2κ
. (4.8)

Solving this equation for κ gives two solutions

κ1,2=µ−α±
√

µ(µ−α), (4.9)

where µ = πλ
4 . It follows from this equation that the resonances (i.e. solutions with

nonzero imaginary part) exist only in a narrow range of λ values

0<
πλ

4
<α. (4.10)

Outside this range both solutions are real and represent a pair of one bound and one
virtual state or two virtual states. For λ >

4α
π we have one bound state which moves

from zero to infinity at increasing λ and one virtual state which moves from zero to − α
2 .

For negative λ we have two virtual states originating at κ=−α, one moves towards − α
2 ,
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Figure 1: Trajectory of resonance poles k=k1+ik2 for single separable term (4.1) with the formfactor (4.6) for
α= π

4 in dependence on the coupling parameter λ. The triangle denotes the pole of the function λ(κ) located

at κ=− α
2 . The open and full circles indicate positions of the resonances at µ= 3α

4 and µ= α
2 , respectively.

the other to −∞. The resonances are limited to a circle of radius α
2 centered at − α

2 . The

function κ(λ) has thus two square-root-type singularities, one at λ= 4α
π , the other at λ=0.

In addition there is one pole at κ=− α
2 . This finite value of κ can be reached only for

λ→±∞. For µ= α
2 the resonance is located at k=±π

8 −i π
8 , see Fig. 1 showing the trajectory

of k(λ) where this resonance is denoted by the solid circles. This choice represents an
extreme case: the resonance energy ER=0 whereas the width Γ=α2. A physically relevant
resonance (i.e. E>0 and Γ<E) obtained with µ= 3α

4 is denoted by open circles in Fig. 1.

To describe a more realistic case to which both the ACCC and IACCC methods can be
applied we use the interaction consisting of two separable terms

Vψ=−λ1gα(r)
∫

gα(r
′)ψ(r′)dr′−λ2gβ(r)

∫

gβ(r
′)ψ(r′)dr′ (4.11)

with

gα(p)=
p

p2+α2
, gβ(p)=

p

p2+β2
. (4.12)

The parameters λ2 and β are chosen so as to form a resonance pair at κR = ±κ1+ıκ2

whereas the parameter λ1 has been varied as the coupling constant in the ACCC method.
For λ1 = 0 the resonance should be obtained. Solving Eq. (4.2) with the potential (4.11)
and (4.12) leads to

λ1(κ)=
4(α+β)2(α+κ)2[λ2π(β+2κ)−4(β+κ)2 ]

π[λ2π(α−β)2(αβ+2ακ+2βκ)−4(α+β)2(β+κ)2(α+2κ)]
. (4.13)
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Figure 2: Trajectories of the resonance (virtual and bound states) as functions of the parameter λ1 for the
potential (4.11) and (4.12) consisting of two separable terms. In this figure α=3.0, β= π

4 and λ2 =0.5.

The trajectory of κ as function λ1 now gets more complicated. λ1(κ) is given in the
form of a ratio of two polynomials P(κ) and Q(κ), Eq. (4.13)

λ1(κ)=
P(κ)

Q(κ)
(4.14)

of the order 4 and 3 respectively. Hence we will have four solutions of the equation

P(κ)=0 (4.15)

and the function λ1(κ) will possess three poles. According to Eq. (4.13) P(κ) has one
root of the second order at κ=−α. This root is related to the perturbation potential only
and has no physical relevance. The other roots of P(κ) determine the position of the
resonance. The crucial question now is how does the trajectory depend on the parameter
α determining the perturbation used for the process of analytic continuation. In Fig. 2 we
plot the trajectories of the resonance roots of P(κ) for α=3.0, β= π

4 , λ2 =0.5. This is the
extreme case of resonance mentioned above. Physically relevant resonances are located
closer to the origin. The resonance is now located on the outer curve as indicated by the
open circles. The trajectories now consist of two loops; one adjacent to the origin the
other not. At reducing α the loops approach each other, see Fig. 3 for α= 1.0 and Fig. 4
for α= 0.5. At further reducing the value of α the loops interchange their positions and
the resonance is eventually located on the lower loop, see Fig. 5 for α=0.1.

For this choice of α the journey of the function κ(λ) from positive values of κ corre-
sponding to the bound states to the resonance represents a very complicated trajectory
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Figure 3: The same as Fig. 2 but for α=1.0.

Figure 4: The same as Fig. 2 but for α=0.5.

and it is expected that the classical ACCC method may have serious problems to reach
the resonance. It is obvious that to represent such a complicated behavior would require
a very high order of Padé approximation. For the inverse method, however, this behavior
represents no difficulty. This feature also indicates that the good choice of the perturba-
tion potential is essential. Since, however, in real applications the underlying interaction
is not known, one has to try to find the best choice by trial and error.
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Figure 5: The same as Fig. 2 but for α=0.3.

5 Determination of Padé approximants

Whereas Padé approximants of types I and II have been widely used in physics for many
years [29–35] the number of applications of Padé approximants of type III (also known
as statistical Padé approximants) has been much more limited, and most of these appli-
cations have been developed relatively recently.

The type-III Padé approximant of order [N,M] representing a set of empirical values
fi (i=1,··· , J) of a function f (x), measured at points xi with statistical errors ε i, is defined
as the rational function PN(x)/QM(x), where

PN(x)=
N

∑
j=0

pjx
j, QM(x)=1+

M

∑
k=1

qkxk (5.1)

are polynomials of degrees N and M, respectively (with M+N< J−1), which minimizes
the functional

χ2=
J

∑
l=1

[

PN(xl)

QM(xl)
− fl

]2

. (5.2)

Unlike the approximants of types I and II, Padé approximants of type III allow for the
finite accuracy of the data used for their construction. Accordingly, they provide a more
suitable representation of empirically determined physical quantities.

However, the wider application of type-III Padé approximants has been hindered
by the nonlinearity of the equations that must be solved for direct determination of the
minimum of χ2 in a least-squares fit. Moreover, the χ2 surface may have complicated
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structure in the parameter space, with a large number of local minima, so that a numeri-
cal search procedure starting from a given point in parameter space does not necessarily
lead to the global minimum. To overcome the problem of minimization of such compli-
cated functions, several authors, see for example [32] have proposed iterative methods
which reduce the original nonlinear problem of minimization of χ2 to a succession of
more tractable problems of solving a set of linear algebraic equations in each step. So far,
no sufficient conditions for the convergence of these methods are known.

The basic problem is to find the sets of coefficients pj and qk in (5.2) which minimize
the χ2 functional (5.2). For this, we set the partial derivative of χ2 with respect to each of
the coefficients equal to zero:

∂χ2

∂pj
=0 (j=0,1,··· ,N),

∂χ2

∂qk
=0 (k=1,2,··· ,M). (5.3)

This leads to the set of equations

N

∑
J=0

Hlj pj−
M

∑
k=1

Klkqk =Kl0 (l=0,1,··· ,N), (5.4)

−
N

∑
J=0

Lmjpj+
M

∑
k=1

Mmkqk =−Mm0 (m=1,2,··· ,M), (5.5)

where

Hij =
J

∑
i=1

x
i+j
i

Z2
i

, (5.6)

Klk=
J

∑
i=1

fix
l+k
i

Z2
i

, (5.7)

Lmj=
J

∑
i=1

PN(xi)xm+j

QM(xl)Z
2
l

, (5.8)

Mmk=
J

∑
i=1

PN(xi) fix
m+k
i

QM(xi)Z2
i

, (5.9)

Zi=QM(xi). (5.10)

Eqs. (5.4) and (5.5) are nonlinear in the unknown coefficients pj and qk, since these coeffi-
cients occur in the quantities Hlj,Klk,Lmj and Mmk.

There are various methods linearizing the nonlinear equations, see e.g. [32]. Here
we will follow the method [25] which consists of replacing the unknown values of
PN(xl)/QM(xl) in the definitions of Lmj and Mmk by a linear combination of the pre-
viously computed values. Again we obtain an approximation to all the coefficients pj

and qk in a single step by solving a set of linear equations.
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6 Numerical tests

In this Section, we compare the numerical efficiency of both the ACCC and IACCC ap-
proaches. In addition we will try to find some hints how to choose the perturbative po-
tential. In the original applications of the ACCC method to molecular resonances there
was no possibility to change the parameters of the perturbative potential; the only choice
was the Coulomb potential. Nowadays however short range perturbations may be in-
corporated into standard quantum chemistry codes and the problem how to choose the
perturbative interaction deserves attention. To test the sensitivity of the ACCC method
to the choice of the perturbative potential, here the parameter α in Eq. (4.6), we carried
out calculations of the real and imaginary parts of the resonance position for β=π and
λ2 = 3.8 using both the ACCC and the IACCC approaches. The calculations were done
for three choices of α:

1. α = 8.0; the perturbative potential is in this case of much shorter range than the
original potential β=π;

2. The choice α= 4.0 which is close to the potential generating the resonance and fi-
nally,

3. a potential of much longer range with α=0.1. All the calculations were done using
the double precision accuracy. For the model potential in Eqs. (4.11) and (4.12)
we choose 100 points κi, κi = κo+ih with h = 0.01 and κo = 6h and calculate the
corresponding values λi.

As Eq. (4.13) suggests at large values of κ, λ(κ) behaves as a linear function of κ.
The same also holds for Coulomb potential, where the energy E= κ2 ≈λ2. To keep our
approximation as close as possible to the studied case, we limit ourselves to Padé ap-
proximations which fulfill this criterion. This means that the lowest approximation will
be the 3/1 approximation and the higher ones will be 4/2,5/3,··· . For example for N=3
we have

λ[3/1](κ)=
λ0+µ1κ+µ2κ2

1+µ3κ
(6.1)

and for the original ACCC method

λ0=λ[3/1] (κ=0), (6.2)

κ[3/1](λ)=
p1

√
λ−λ0+p2(

√
λ−λ0)2+p3(

√
λ−λ0)3

1+p4

√
λ−λ0

. (6.3)

The convergence rate of both approaches for the potential parameters α= 8.0,β=π
and λ2 = 3.8 are shown in Table 1. The convergence is rapid and already the 4/2 ap-
proximation is correct to four significant digits. The results for smaller α = 4 are even
faster and more stable, see Table 2. However, if we choose α small α= 0.1, we find (see
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Table 1: Calculation of the real and imaginary part of the resonance pole k for α=8.0, β=π and λ2 =3.8.

Method ACCC ACCC IACCC IACCC

Padé order N/M Re (k) Im (k) Re (k) Im (k)

3/1 0.683227 -0.157307 0.627490 -0.211979

4/2 0.684650 -0.157025 0.684669 -0.157066

5/3 0.684735 -0.157012 0.684680 -0.157079

6/4 0.684725 -0.156996 0.684694 -0.157075

7/5 0.684560 -0.157068 0.684696 -0.157076

8/6 0.685613 -0.156065 0.684711 -0.157081

9/7 0.672437 -0.166696 0.684714 -0.157107

Exact 0.684694 -0.157080 0.684694 -0.157080

Table 2: Calculation of the real and imaginary part of the resonance pole k for α=4.0, β=π and λ2 =3.8.

Method ACCC ACCC IACCC IACCC

Padé order N/M Re (k) Im (k) Re (k) Im (k)

3/1 0.683775 -0.157754 0.673108 -0.170714

4/2 0.684672 -0.157064 0.684693 -0.157079

5/3 0.684678 -0.157055 0.684694 -0.157080

6/4 0.684760 -0.157064 0.684694 -0.157080

7/5 0.684687 -0.157082 0.684696 -0.157081

8/6 0.684492 -0.157152 0.684747 -0.157070

9/7 0.684855 -0.156951 0.684484 -0.157006

Exact 0.684694 -0.157080 0.684694 -0.157080

Table 3: Calculation of the real and imaginary part of the resonance pole k for α=0.1, β=π and λ2 =3.8.

Method ACCC ACCC IACCC IACCC

Padé order N/M Re (k) Im (k)

3/1 0.562201 -0.441700 0.677297 -0.354440

4/2 0.729859 0.029740 0.785465 -0.126171

5/3 0.603559 -0.135412 0.684694 -0.157080

6/4 0.741936 -0.184830 0.684694 -0.157080

7/5 0.398952 -0.398606 0.684695 -0.157081

8/6 0.431249 -0.329162 0.684690 -0.157077

9/7 0.407140 -0.316552 0.684559 -0.157087

Exact 0.684694 -0.157080 0.684694 -0.157080

Table 3) that the results obtained with the IACCC method keep their high accuracy and
speed of convergence whereas the results obtained with the ACCC method rapidly lose
their accuracy. This is clearly demonstrated in Table 4 which shows the results of the 5/3
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Table 4: Relative error of the real and imaginary part of resonance position calculated by both methods for
α=8.0, 4.0 and 0.1.

Method ACCC ACCC IACCC IACCC

Relative error Re (k) Im (k) Re (k) Im (k)

α

8 0.000060 0.00043 0.000024 0.000006

4 0.000023 0.00016 <0.000001 <0.000001

0.1 0.12 0.14 <0.000001 <0.000001

Padé approximation for all three choices of α. These results indicate that a good choice of
the perturbative potential is of vital importance. This study suggests that the best conver-
gence is obtained for α=4.0 which is close to the potential generating the resonance β=π,
i.e. the perturbative potential should be as close to the original potential as possible.

For smaller values of α the convergence of ACCC method gets worse. The reason for
this behavior is the presence of poles in the function λ(κ), Eq. (4.13). For α=4 this function
has one real pole at κ=−3.845 and two complex conjugate poles at (−2.219±i0.685). At
α=0.1 there are three real poles at κ1=−0.0637,κ2=−0.209 and κ3=−6.060. These poles
are much closer to the origin and much closer to the resonance than in the case α= 4.0.
This is probably the reason for the bad convergence (or even divergence) of the ACCC
method. In fact, if the choice of the perturbative potential is wrong the resonance may
occur on the second loop, as shown in Fig. 5, which is disconnected from the bound state
region. On the other hand if we choose α too big the minimum value of the coupling
parameter λ0 needed to convert the resonance into a bound state increases making the
perturbation big in comparison with the potential generating the resonance. For α= 8.0
the critical value is λ0 = 0.621578 whereas for α= 0.1 it is much smaller λ0 =0.0389. It is
therefore necessary to find a compromise value between these two extremes to get the
best convergence rate.

In all cases discussed above the inverse IACCC approach has no difficulty and a high
accuracy is obtained even for the “bad choice” α=0.1.

7 Restricted accuracy

It is well known that methods using analytic continuations require very precise input
data. For example, Chao et al. [36] in applying a stabilization method combined with an
analytic continuation to complex stationary points found that it is necessary to have at
least six significant figures of accuracy in the real energies in order to accurately char-
acterize the resonances. It is extremely difficult to get outputs from quantum chemistry
codes converged to six significant digits. Rather the accuracy of 3-4 digits seems more
realistic. It is therefore worthwhile to study the properties of the presented method with
respect to rather limited accuracy of the input data. As well known it is important to



1168 J. Horáček and L. Pichl / Commun. Comput. Phys., 21 (2017), pp. 1154-1172

Table 5: Calculation of the real and imaginary part of the resonance pole k for α=4.0, β=π and λ2=3.8 using
Eq. (7.2).

Padé order N/M Re (k) Im (k)

3/1 0.685627 -0.168435

4/2 0.684693 -0.157080

5/3 0.684693 -0.157080

Exact 0.684694 -0.157080

include any known feature into the representation of the function to be continued to im-
prove the stability and accuracy of the continuation. Here we have one important fact at
hand:

According to [1, 12, 13] it is known that at κ→0

λ(κ)≈λ0+λ2κ2+··· . (7.1)

To incorporate this feature into the fit we may represent λ[M/N] as

λ
[M/N]
Q (κ)=

λ0+λ1κ2+λ2κ3+λ3κ4+···
1+q1κ2+q2κ3+··· . (7.2)

This expression has the right asymptotic behavior at large values of κ for M=N−2 and
fulfills the condition of missing the linear term Eq. (7.1) at κ→0 where N and M represent
the number of coefficient in the nominator and denominator of Eq. (7.2), respectively. The
convergence rate of the approximation (7.1 ) is very fast, see Table 5. To test the sensitivity
of the present approach to the accuracy of the data we artificially reduced the accuracy
of the input data by rounding the calculated bound state energies to smaller number
N of significant digits down to N = 2 and applied the approximation Eq. (7.2) at 3/1,
4/2 and 5/3 levels to data with decreasing number of significant digits. The results are
summarized in Tables 6, 7 and 8. The left column represents the number of significant
digits used for the process of analytic continuation, in the other columns the real and
imaginary part of the S-matrix pole is shown. The calculation was done at α=4.0. These
Tables demonstrate the unusual stability of the IACCC method. It is seen that to get
three figures accuracy of the S-matrix pole (such high accuracy is seldom obtained in
experimental data, see for example [19, 37]) it is sufficient to use data accurate to four
significant digits easily obtainable from commercial quantum chemistry codes.

Let us remark at this point that a wealth of mathematical literature is available for the
case of local interaction. Similar studies have been rigorously carried out, within a gen-
eral scattering framework, see e.g. [38], where the reader is referred for rigorous analytic
studies of Jost functions and S-matrices, generalized Levinsons theorem, partial wave ex-
pansions, Breit Wigner Ansatz, Fano parameters and the inverse problem. B. Simon [39]
in “Resonances in n-body quantum systems with dilatation analytic potentials and the
foundations of time-dependent perturbation theory” studied the method of analytic con-
tinuation in the coupling constant. In Ref. [39] Simon merges in detail the work on the
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Table 6: 3/1 calculation of the real and imaginary part of the resonance pole k for α=4.0 using Eq. (7.2) with
the reduced accuracy of the input data. The first column indicates the number of significant digits used. β=π
and λ2=3.8.

Number of digits Re (k) Im (k)

16 0.685627 -0.168435

8 0.685627 -0.168435

6 0.685627 -0.168435

5 0.685627 -0.168435

4 0.685850 -0.168185

3 0.683446 -0.170760

2 0.610814 -0.206855

Table 7: 4/2 calculation of the real and imaginary part of the resonance pole k for α=4.0 using Eq. (7.2) with
the reduced accuracy of the input data. The first column indicates the number of significant digits used. β=π
and λ2=3.8.

Number of digits Re (k) Im (k)

16 0.684693 -0.157080

8 0.684693 -0.157080

6 0.684693 -0.157080

5 0.684693 -0.157080

4 0.683605 -0.155528

3 0.683262 -0.162309

2 0.648001 -0.223547

Table 8: 5/3 calculation of the real and imaginary part of the resonance pole k for α=4.0 using Eq. (7.2) with
the reduced accuracy of the input data. The first column indicates the number of significant digits used. β=π
and λ2=3.8.

Number of digits Re (k) Im (k)

16 0.684693 -0.157080

8 0.684693 -0.157080

6 0.684693 -0.157080

5 0.684694 -0.157080

4 0.675128 -0.157612

3 0.669916 -0.160521

2 0.673762 -0.165923

analytic continuation of coupling constants of finite rank potentials with the powerful
method of Balslev-Combes classical work in [40]. The coupling constant threshold behav-
ior for short-range two-body case is studied in detail in [41]. Regarding the applications
to the actual atomic and molecular systems of practical interest, Padé representations to
obtain stable resonance poles were successfully attempted for the classical Stark effect
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in the Hydrogen atom at large electric fields [42] or in the case of Mercury Hydride [43]
for which the increased numerical accuracy was needed in order to separate among the
particular S-matrix poles. The ACCC method detailed in this paper was also successfully
applied to the case 2Πg shape resonance of acetylene anion.

8 Conclusions

In this work the classical ACCC method was extended in two directions:

• To the best of our knowledge all previous application of the ACCC method in nu-
clear physics used the interpolation-type of Padé approximation, i.e. the order of
Padé approximation was determined by the number of data points. As a conse-
quence only a small number of points closest to the origin was used and the infor-
mation contained in the more distant points was lost. In contrast to this approach
we used the statistical Padé (Padé III) approximation. In such a case we can use all
data points and at the same time to keep the order of the Padé approximation low.

• A variant of the ACCC method was proposed which does not require the explicit
determination of the bifurcation point. In addition it appears that this variant has
a broader range of application. In principle it allows for determination of more
than one resonances contrary to the ACCC method which always yields only one
resonance.

Both approaches were tested on the model interaction consisting of two separable terms.
One term determines the resonance the other one is used to convert the resonance to the
bound state. It was shown that a ”good” selection of the perturbation potential is essen-
tial. A ”bad” choice may cause that the sought resonance is disconnected from the bound
state region. In this case the ACCC method fails whereas the inverse ACCC method
works without any problem. Last but not the least stands the fact that the present ap-
proach does not require, contrary to other methods for analytical continuation, extremely
high accuracy of the input data and that to get resonance energies and widths with ex-
perimental accuracy four digits of accuracy in the input data might be sufficient.
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[32] J. Horáček, L. Zejda and N. M. Queen: Comp. Phys. Comm. 74 (1993) 187. Comparative

Study of Methods for the Construction of Padé Approximants of Type III.
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[38] M. Rittby, N. Elander and E. Brändas, Lecture Notes in Physics 325 (1989) 129–151.
[39] B. Simon, Ann. Math. 97 (1973) 247–274.
[40] E. Balslev and J. M. Combes, Commun. Math. Phys. 22 (1971) 280–294.
[41] M. Klaus and B. Simon, Annals of Physics 13 (1980) 251–281.
[42] M. Hehenberger, H. McIntosh and E. Brändas, Phys. Rev. A 10 (1974) 1494 –1506.
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