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a b s t r a c t

For total energies below the ionization threshold it is possible to dramatically reduce the computational
burden of the solution of the electron-atom scattering problem based on grid methods combined with
the exterior complex scaling. As in the R-matrix method, the problem can be split into the inner and outer
problem, where the outer problem considers only the energetically accessible asymptotic channels. The
(N+1)-electron inner problem is coupled to the one-electron outer problems for every channel, resulting
in a matrix that scales only linearly with size of the outer grid.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The quantum collisions of electrons with atoms belong to-
day among classical disciplines of the quantum physics. Through-
out the decades several successful calculation methods emerged,
which are able to simulate the collisions to a good accuracy. A
few notable examples are the R-matrixmethod [1], the convergent
close coupling [2,3] and various formulations of direct discretiza-
tion of the Schrödinger equation, like the finite element discrete
variable representationwith exterior complex scaling [4] andother
grid based methods.

The exterior complex scaling (ECS) method has been popu-
larized in quantum electron-atom scattering calculations by Mc-
Curdy and Rescigno [5] as a simple tool to replace outgoing-wave
boundary conditions by Dirichlet boundary conditions when nu-
merically solving the scattering Schrödinger equation discretized
using the finite difference or finite element approach or using a
B-spline basis. Bartlett [6] developed a modification for electron-
hydrogen scattering (and other two-dimensional systems) – the
‘‘Propagating ECS’’ – where the sparse two-dimensional problem
is reformulated as a sequence of dense one-dimensional problems.
Volkov et al. [7] suggested further extension of ECS for scattering
on charged ions employing the potential splitting approach. There
is also a freely available implementation of the ECS method for
electron-hydrogen scattering in the B-spline radial basis [8] based
on the work of McCurdy and Martín [9].

While ECS has been particularly useful above the ionization
threshold, where the proper boundary condition is complicated,
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the usage of ECS below the ionization threshold is possible, too,
without any modification. However, close above the excitation
thresholds it is necessary to account for the long-range dipole (and
higher multipole) coupling, see [10], by extending the simulated
domain to large radii: to thousands of atomic units, or even more.
This can be to some degree circumvented by radial extrapolation of
the calculated cross sections as suggested by Bartlett [11]. In dense
environment the inter-particle Coulomb potentials are effectively
damped and need not be considered to so large distances, see [12].
Generally, in an N-electron atom the scattering wave-function for
a fixed angular state is (N + 1)-dimensional, hence its size – and
likewise the rank of the matrix of the system that is to be solved
in a particular basis – rises with the domain size to the (N + 1)th
power.

In further text a one-electron atom is assumed, as the main
purpose of this extension is to speed up the implementation [8].
It is, nevertheless, very straightforward to generalize the theory
to many-electron atoms and other multidimensional scattering
systems.

The discussion deals only with total energies below the ioniza-
tion threshold. The reason for this is that the proposed method
expands parts of the solution as a linear combination of energet-
ically allowed bound states. This is not advantageous close to and
above the ionization threshold, because the number of allowed
channels considerably increases. But sufficiently below the ioniza-
tion threshold there are only a handful of bound states and the
new approach then allowsmore efficient application of the chosen
grid based method. It is then possible to accurately simulate the
scattering at low impact energies even on excited targets, where
the above mentioned long-range effects are more pronounced.
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In practical calculations the grid can always support only a finite
number of bound states and just a discrete subset of the continuum
states, so the a priory restriction on below-ionization energies due
to an unbounded amount of states is more or less artificial. Instead
of the eigenstates given by analytic expressions one could employ
bound states and a discretization of the continuum obtained by
some numerical approach, for example, using the Sturmian basis.
This is a straightforward generalization of the present method,
which allows its extension to above-ionization energies. For clarity,
though, we restrict the further presentation only to the exact
bound states and low energies.

2. Theory

In the case of the scattering of an electron on a hydrogen atom
the complete wave function for a fixed total spin S can be written
as

Ψ S(r1, r2) = Ψ S
i (r1, r2) + Ψ S

sc(r1, r2) (1)

= ψni limi (r1)e
iki·r2 +

1
r1r2

∑
LMℓ1ℓ2

ψ LMS
sc,ℓ1ℓ2 (r1, r2)Y

LM
ℓ1ℓ2

(r̂1, r̂2) (2)

and the Schrödinger equation as

(Etot − Hfull)Ψ S
sc = HintΨ

S
i , (3)

where the following property of the initial state has been used:

(Etot − Hfree)Ψ S
i = 0, (4)

with Hfull = Hfree +Hint. The free and interaction hamiltonians are

Hfree = −
∇

2
1

2
−

∇
2
2

2
−

1
r1
, (5)

Hint =
1
r12

−
1
r2
, (6)

where indices 1 are related to the atomic electron and indices 2 to
the projectile electron. The right-hand side of (3) is symmetrized or
antisymmetrized prior to the solution, depending on the value of
S. The set of equations for the individual componentsψ LMS

sc,ℓ1ℓ2
of the

angular expansion in (1) can be obtained by a projection of Eq. (3)
on the coupled angular state YLM

ℓ1ℓ2
resulting in∑

ℓ′1ℓ
′
2

[
(Etot − H1 − H2) δ

ℓ′1
ℓ1
δ
ℓ′2
ℓ2

− V12

]
ψ LMS

sc,ℓ′1ℓ
′
2

= χ LMS
ℓ1ℓ2

, (7)

where the electron–electron interaction potential V12 is given by

V12 =

∑
λ

f λ
ℓ1ℓ2ℓ

′
1ℓ

′
2;L

rλ<
rλ+1
>

(8)

and the angular integrals f λ
ℓ1ℓ2ℓ

′
1ℓ

′
2;L are defined in Eq. (6.41) of [13].

A typical visualization of the radial part of the solution is pre-
sented in Fig. 1, where it is apparent that apart from the evanescent
waves running along the axes, in most of the coordinate space the
wave function is equal to zero.

An arbitrary two-dimensional wave-function can be expanded
into a complete basis of hydrogen eigenstates Pnℓ in either of its
coordinates,

ψ LMS
sc,ℓ1ℓ2 (r1, r2) =

∑∫
m

F (1)
mℓ1

(r1)Pmℓ2 (r2) =

∑∫
n

Pnℓ1 (r1)F
(2)
nℓ2

(r2).

The sum-integral symbol represents a summation over bound
states and an integration over the continuous part of the spectrum,
though in the numerical realization on a grid there are discrete
states only. The expansion is valid for all coordinates r1 and r2.

Fig. 1. Angular segment ψ000
sc,00 of the scattering wave function at total energy

Etot = −0.35 Ry for initial state H(1s). Cropped at r1,2 = 100 a.u.

However, if one of the coordinates is large enough, the expansion
can be simplified, because the channel functions Fn correspond-
ing to energetically forbidden channels exponentially vanish. In
asymptotic distances, where r2 ≪ r1 → +∞ or r2 ≪ r1 → +∞,
the electrons become distinguishable and the atomic electron,
which is bound to the nucleus, has to be in one of the energetically
allowed atomic states. It is then

ψ LMS
sc,ℓ1ℓ2 (r1, r2) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(1)
c∑

m=1

F (1)
mℓ1

(r1)Pmℓ2 (r2) [r1 → +∞],

N(2)
c∑

n=1

Pnℓ1 (r1)F
(2)
nℓ2

(r2) [r2 → +∞],

0 [r1, r2 → +∞],

(9)

where Pnl(r) = rRnl(r) is the hydrogen bound state radial function
multiplied by the radius, F (a)

nl (r) is the corresponding (unknown)
projectile channel function for asymptotic ra → +∞ andN (a)

c is the
number of possible scattering channels. The summationoverm and
n includes only energetically allowed states, i.e. states with energy
lower than the total energy Etot. Note that the channel functions
F (a)
nl should actually bear all the indices ofψ LMS

sc,ℓ1ℓ2
, because they are

unique for each of these angular components. However,most of the
discussion deals with a single block for given angular momenta, so
we use a simplified notation without these indices.

The asymptotic forms (9) can be plugged into the scattering
equation (7), resulting in (for r1 → +∞)

[
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or similarly
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for the other asymptote (r2 → +∞). The kinetic energy operators
are

Tℓi = −
1
2
∂2

∂x2i
+
ℓi(ℓi + 1)

2r2i
.

The proposition (9) is satisfied very accurately already for mod-
erate distances, because all energetically forbidden channels Fn ex-
ponentially decreasewith the distance and only the asymptotically
allowed states Pnl remain in the expansion. If there is a distance
Ra where (9) is satisfactorily accurate, it is possible to solve the
problem (7) only for radii smaller than Ra and Eqs. (10) and (13)
only beyond the dividing radius Ra. The only remaining question
is that of the boundary conditions, for which we will use ECS,
and of the continuity, which is discussed further in the B-spline
framework.

ψ LMS
sc,ℓ1ℓ2 (r1, r2) =

N∑
k,l=1

Bk(r1)Bl(r2)ψ LMS
sc,ℓ1ℓ2,kl, (14)

F (1)
mℓ1

(r1) =

N∑
k=1

Bk(r1)F
(1)
mℓ1,k

, (15)

F (2)
nℓ2

(r2) =

N∑
l=1

Bl(r2)F
(2)
nℓ2,l

. (16)

The B-splines are hill-like polynomial functions with given order O
and compact support [14]. They are defined by a knot sequence;
each B-spline then spans O + 1 knots. Likewise, only O + 1 B-
splines contribute to the point value of a function they approxi-
mate. Every B-spline in a basis overlaps with 2O other B-splines.
The full problem knot sequence is chosen along an ECS contour
(as in [8]), i.e. knots are real up to some sufficiently far R0 ≫

Ra, where the multipole coupling can be neglected, and complex
with geometrically increasing distances until the point where all
outgoing waves are effectively damped by ECS to the numerical
zero. Now assume that approximately N0 leading B-splines fit into
the inner radius Ra. This will be the ‘‘inner basis’’. All further B-
splines are considered the ‘‘outer’’ basis. There is N1 = N − N0

outer B-splines. The overlapping B-splines offer a simple means of
enforcing the continuity between the inner and outer regions.

By projecting Eq. (7) on the product Bi(r1)Bj(r2) and the one-
dimensional equations (10) and (13) on Bi(r1) and Bj(r2), respec-
tively, we obtain a triplet of matrix equations in the full B-spline
basis,

∑
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′
2
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AL
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′
1ℓ

′
2,ijkl
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= χℓ1ℓ2,ij, (17)
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∑
ℓ′1ℓ

′
2
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′
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. (19)

Typically, the solution vector ψ LMS
sc,ℓ′1ℓ

′
2,kl

is found by a straightfor-

ward solution of the coupled set (17). However, the three sets
(17)–(19) can be combined into a single system that is mostly
much smaller than (17) alonewhen the assumption (9) is used. The

B-spline equivalents of (9) are

ψ LMS
sc,ℓ1ℓ2,kl =

N(1)
c∑

m=1

F (1)
mℓ1,k

Pmℓ2,l [k ≳ N0], (20)

=

N(2)
c∑

n=1

Pnℓ1,kF
(2)
nℓ2,l

[l ≳ N0], (21)

= 0 [k, l ≳ N0].

These relations have a simple inversion originating in orthogonal-
ity

∑N0
i,j=1Pmℓ,iSijPnℓ,j = δmn of the hydrogen orbitals:

F (1)
mℓ1,k

=

N0∑
i,j=1

Pmℓ2,iSijψ
LMS
sc,ℓ1ℓ2,kj [k ≳ N0], (22)

F (2)
nℓ2,l

=

N0∑
i,j=1

Pnℓ1,jSijψ
LMS
sc,ℓ1ℓ2,il [l ≳ N0]. (23)

The summation can be truncated already at N0 due to exponential
decay of the orbitals. The matrix Sij is the overlap matrix of the
B-spline basis, Sij =

∫
Bi(r)Bj(r)dr .

Having these relations between the full and asymptotic solu-
tions we can now choose the following subset from Eqs. (17)–(19),
where we suppressed the angular summations and indices:

∀i, j = 1, . . . ,N0 :

χij =

N0∑
k,l=1

Aijklψkl +

N0+O∑
k=N0+1

N0∑
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(1)
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N(2)
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n=1

AijklPnlF
(2)
nl , (24)

∀l = N0 + 1, . . . ,N ∀n = 1, . . . ,N (1)
c :

ξ
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nl =

N(1)
c∑

m=1

N∑
k=N0+1
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mnklF

(1)
mk

+
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mnkl
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PniSijψkj, (25)

∀k = N0 + 1, . . . ,N ∀m = 1, . . . ,N (2)
c :

ξ
(2)
mk =

N(2)
c∑

n=1

N∑
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B(2)
mnklF
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nl

+

N(2)
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n=1

N0∑
l=N0+1−O

B(2)
mnkl

N0∑
i,j=1

PmjSijψil. (26)

These three sub-systems relate the combined solution vec-
tor (ψkl, F

(1)
mk , F

(2)
nl ), see Fig. 2, to the combined right-hand side

(χij, ξ
(1)
nl , ξ

(2)
mk ).

If no outer problem is to be solved (N0 > 0, N1 = 0),
Eqs. (24)–(26) reduce to (17) and the symmetrical matrix of the
linear equations has the structure illustrated in Fig. 3. The rank of
the matrix grows as O(N2).

When the problem is split into the inner and outer part, the
combinedmatrix has a slightly more complicated structure shown
in Fig. 4, but the rank of the combined matrix for fixed inner basis
(fixed N0) scales with O(N1) ∼ O(N) as N1 → +∞, which is
already a great improvement over the original O(N2). Even more,
for general M-electron problem, the number of inner solution
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Fig. 2. Relation of the solution parts ψ , F (1) and F (2) . Every square corresponds to a
B-spline projection of the functions. Only the coloured parts are solved for; yellow
elements correspond to real radial B-splines, green to complex B-splines. Elements
outside of the inner (outer) B-spline basis are combined from the outer (inner)
solutions along the arrows; see also the indicated equations. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Structure of the original B-spline matrix A of Eq. (7) or (17) (one angular
block). The matrix corresponds to the two-dimensional nature of the problem—it
has a regular structure of a tensor product of one-dimensional banded matrices.

elements grows as O(NM
0 ), but with the new approach still just

a few one-dimensional (hence O(N1)) channels will dominate as
N → +∞.

In the Hex implementation of the ECS/B-spline method the
full system (7) is solved iteratively using the conjugate orthogonal
conjugate gradients (COCG) algorithm, preconditioned by inversion
of the diagonal blocks. The inversion is done iteratively, again, with
a user-selectable preconditioner. As noted,matrix blockswith non-
zero number of asymptotic channels (Fig. 4) do not possess the
regular nested structure of the original inner-only problem (Fig. 3),

Fig. 4. Structure of the combined set of Eqs. (24)–(26). The inner problem (top left)
keeps the two-dimensional tensor-product nature, whereas the outer problems
for the various channels (right bottom) are one-dimensional. The inner and outer
problems are coupled (left bottom and right top). Generally the one-dimensional
diagonal blocks can be also coupled to each other, but always only within a set
corresponding to Fnℓ(r1) or Fnℓ(r2), whenever dipole or higher coupling is possible,
see (10) and (13). This figure, however, corresponds to the matrix A0

0000 dealing
with L = ℓ1 = ℓ2 = 0 solution blocks; these solutions asymptotically converge to
a sum of s-states which are not coupled by any multipole.

so that it is not easily possible to use the effective Kronecker prod-
uct approximation preconditioner [15,16]. However, the matrices
are relatively small and it is still computationally feasible to use
the sparse incomplete LU factorization as a preconditioner for the
inner iterations.

3. Results

To illustrate the benefits of the suggested approach we did
several simple calculations of the electron-hydrogen scattering at
energies right above two chosen excitation thresholds. All calcula-
tions are for transitions between the s-states and for total quantum
numbers L = S = Π = 0, ℓ1,2 ≥ 0. The B-spline knot spacing is
1 a0 in the real part and gradually increasing in the complex part,
which is 500 a0 long. The results and the required computation
times are summarized in Tables 1 and 2. The scattering equations
have been solved both by the original method presented in [8]
(upper half of each table) and by the new method with dividing
radius Ra (lower half). The upper half of each table documents
an undesired rapid increase of the solution time with the in-
creasing real grid length R0, while the radial convergence of the
cross sections is quite slow. The lower half of each table contains
the split calculation with the inner region radius Ra chosen far
enough to contain all asymptotically forbidden components of the
solution. Clearly, the channel reduction introduced in the previous
section dramatically speeds up the calculation while maintaining
the accuracy, and allows an extension of the real radial grid to
large distances. The calculations have been run on a 4-core Intel
i7-4790K processor with the MUMPS LU decomposition library
[17] in an out-of-core mode used for preconditioning. Of course,
the speed-up of the new method does not depend on a particular
choice of the numerical library and was observed also for other
packages supported by the code (e.g. Pardiso, UMFPACK, SuperLU).

We also present three real-world sample results for excitations
of the hydrogen atom from the ground state to the 3s, 3p and
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Table 1
Partial singlet cross sections for the H(1s) → H(2s) transition at projectile impact
energy Ei = 0.755 Ry. The angular states up to 0 ≤ ℓ1,2 ≤ 3 have been included.
The total energy is Etot = −0.245 Ry, which is 0.005 Ry above the n = 2 threshold,
with 2 allowed asymptotic channels: 1s and 2s. Using Ra = 100 a0 as the inner
region’s radius in the inner-outer-region calculation is enough to match the inner-
region-only results within 0.1%.

Ra [a0] R0 [a0] σ0 [a20] Time [min]

– 200 0.1135 1.0
– 400 0.1151 3.5
– 800 0.1147 39.5
– 1600 0.1145 337
100 200 0.1135 0.1
100 400 0.1151 0.1
100 800 0.1147 0.1
100 1600 0.1146 0.1

Table 2
Partial singlet cross sections for the H(2s) → H(3s) transition at projectile impact
energy Ei = 0.14 Ry. The angular states up to 0 ≤ ℓ1,2 ≤ 7 have been included. The
total energy is Etot = −0.11 Ry, which is approximately 0.001 Ry above the n = 3
threshold, with 3 allowed asymptotic channels: 1s, 2s and 3s. Using Ra = 200 a0 as
the inner region’s radius in the inner-outer-region calculation is enough to match
the inner-region-only results within 0.1%.

Ra [a0] R0 [a0] σ0 [a20] Time [min]

– 400 0.1061 101
– 800 0.1597 533
– 1 600 0.2078 1094
200 400 0.1062 2.7
200 800 0.1598 2.7
200 1 600 0.2079 2.7
200 6 400 0.2406 2.7
200 64 000 0.2506 3.9
200 640 000 0.2516 72.6

3d states compared to previously published data in Fig. 5. These
transitions have been chosen due to the availability of reference
data.We intend, however, to use the newextension particularly for
calculations of scattering on excited states, where the long-range
potentials play a more important role, and to publish the complete
datasets in a separate paper.

4. Conclusion

In this paper we have presented amethod that considerably re-
duces the computational requirements of the low-energy electron-
atom scattering calculations by splitting the full problem into the
inner and outer problems, similarly to the R-matrix approach. But
unlike in the R-matrix method the diagonalization of the large
inner many-electron hamiltonian is avoided. The inner and outer
problems are solved in a common radial B-spline basis and they
are coupled through the overlapping B-splines. The boundary con-
dition is replaced by the ECS complex damping region.

The new formulation allows to extend the full radial basis to
large distances to account for any long-range potentials.We intend
to use the new method to finish the Hex database [19], which is
planned to contain a superset of electron-hydrogen scattering data
currently available in other online databases (e.g. Aladdin or NIST)
with focus on applications in stellar physics.
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