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We revisit the global dynamics of unified dark matter cosmological models and analyze it in a new
dynamical system setting. In particular, by defining a suitable set of variables we obtain a bounded variable
space, a feature that allows a better control of the critical elements of the system. First, we give a
comprehensive cosmological interpretation of the critical points. Then, we turn our focus on particular
representative trajectories with physically motivated initial conditions studied in the first paper of the series,
andwediscuss how the scale factor relates to the equation of state parameter.We review and complement these
results in the light of the new variable approach by discussing the issue of whether the system is chaotic or not.
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I. INTRODUCTION

The current standard cosmological model is the Λ cold
dark matter (ΛCDM) scenario, which includes two ele-
ments whose components have unknown nature: the dark
matter and the dark energy. This simple model fits quite
well the observed behavior of our Universe [1,2] at least
from the matter-dominated epoch on, where structure
formation starts. However, the nature of both the dark
components is still elusive and it is matter of intense debate;
see, e.g., [3,4] for a broad overview. While part of the
literature approaches the study of this topic by keeping the
dark sector divided into two separate components, efforts
have been put also into unifying the effect of both dark
energy and dark matter under the same mechanism, for
example through the modified Chaplygin gas models (see,
e.g., [5] and references therein). Along the same lines, in
[6,7] a scalar field potential was introduced, which is able
to act both as dark matter and dark energy, hence dubbed
unified dark matter (UDM). Since its introduction it has
been the subject of detailed analysis [8–13].
Here we revisit the dynamical aspect of the UDM

cosmology first addressed in [8], where such a scalar field
was studied in the background of a spatially curved
Friedmann-Robertson-Walker (FRW) spacetime. The result-
ing cosmological model was recast as a Hamiltonian system
of two coupled oscillators and studied as such. The phase
space of the system was unbounded and allowed trajectories
to escape to infinity.Moreover, in the case of a positive spatial
curvature, indications of chaotic behavior were found for
some sets of initial conditions. These indications were based
on transient features of the characteristic Lyapunov number
and of a similar chaotic indicator, so the chaotic behaviorwas
called chaotic scattering instead of chaos. In general, when

one addresses the issue of whether a dynamical system
suffering escapes exhibits chaos or not, Lyapunov-like
indicators should be used with caution; see, e.g., [14]. In
fact, in the literature there is a variety of approaches different
from Lyapunov-like indicators to address the search for
chaos in scalar field cosmologies, starting, e.g., from Page
[15] to more recent developments such as [16,17] and
references therein.
In the present paper we mainly address the study of the

same cosmological model as in [8], but we introduce a
different parametrization of the dynamical variables. This
parametrization confines the system “in a box,” i.e. in a
bounded variable space. Such reparametrization has been
widely used in previous works on cosmological dynamical
systems (see, e.g., [18–22]) and it is especially useful in
treating cosmological models with spatial positive curva-
ture, where the possibility of recollapsing universes has to
be taken into account. In fact, in such models, the usual
definition of expansion-normalized variables is doomed to
present singular behavior in the turning points of the scale
factor.
Such reparametrization allows us to uncover new infor-

mation regarding the dynamics of the system. On one hand
it allows us to study the specific features of the cosmo-
logical model encoded in the critical points. On the other
hand it allows us to have a new perspective on the dynamics
of the system. Namely, in the box version of the UDM
model we have sinks, and every orbit will end up in one of
these sinks. Thus, by studying the structure of the basins of
attraction of these sinks we can tell whether the system is
chaotic or not. If a system is chaotic, then the sensitivity on
the initial condition will be represented by a fractal
structure of the basins of attraction; see, e.g., [23,24],
and references therein. Our analysis shows that the basins
of attraction do not have a fractal structure, so the orbital
dynamics of the UDM model should not be chaotic, which
is in fact in agreement with [16].
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The paper is structured as follows. In Sec. II we present
and analyze the UDM cosmological model. We first briefly
review the Hamiltonian formulation and then provide the
bounded dynamical system; the latter is analyzed in detail
from both mathematical and cosmological perspectives. In
Sec. III we focus on the analysis of some representative
orbits of the variable space, providing their interpretation in
cosmological terms; moreover, we address the problem of
the lack of chaos in the system by inspecting the basins of
attraction of the sinks. Eventually, Sec. IV summarizes the
main results. In this work the geometric units are employed.

II. THEORETICAL ANALYSIS

A. The cosmological model

We consider a cosmological model described by the
homogeneous and isotropic FRW metric,

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sin2θdϕ2

�
; ð1Þ

where a is the scale factor. Open, flat and closed spatial
geometries correspond respectively to k < 0, k ¼ 0 and
k > 0. In the following we will be interested in the spatially
closed case, which allows for recollapsing cosmological
scenarios. As a source in Einstein’s field equations we
consider the energy-momentum tensor Tμν of a massive
scalar field, uniquely described by its energy density and its
pressure given respectively by

ρϕ ¼ −T0
0 ¼

1

2
_ϕ2 þUðϕÞ; ð2Þ

pϕ ¼ Ti
j ¼

1

2
_ϕ2 −UðϕÞ; ð3Þ

where the · symbol indicates the derivative with respect to
the cosmic time t. Hereafter, we assume an effective
barotropic equation of state (EoS) pϕ ¼ wρϕ for the scalar
field. The potential U in [7,8] was chosen to have the form

UðϕÞ ¼ c1cosh2
� ffiffiffi

3

8

r
ϕ

�
þ c2; ð4Þ

where c1 and c2 are real constants. In order for the field to
have a real non-negative mass, such constants are required
to satisfy the conditions c1 ≥ 0 and c1 þ c2 ≥ 0 [7,8]. As
already stated before, this kind of scalar fluid has been
considered as a possible candidate for unifying the effect of
the whole dark sector.

An alternative form of the potential [12] reads

UðϕÞ ¼ b1

�
1þ 3cosh2

� ffiffiffi
3

8

r
ϕ

��

þ b2

�
3 cosh

� ffiffiffi
3

8

r
ϕ

�
þ cosh3

� ffiffiffi
3

8

r
ϕ

��
: ð5Þ

In the Appendix we discuss briefly the case b1 ¼ b2, i.e.

UðϕÞ ¼ b1

�
1þ cosh

� ffiffiffi
3

8

r
ϕ

��3

; ð6Þ

which is a particular case of a potential already introduced
in [6].
By implementing metric (1) and source (2), (3) into

Einstein’s field equations and explicating the covariant
conservation of energy-momentum, the following system is
obtained:

H2 þ k
a2

¼ 1

6
_ϕ2 þ 1

3
UðϕÞ; ð7Þ

2 _H þ 3H2 þ k
a2

¼ −
1

2
_ϕ2 þUðϕÞ; ð8Þ

ϕ̈þ 3H _ϕþ ∂ϕU ¼ 0; ð9Þ

where we employed the Hubble expansion param-
eter H ¼ _a=a.

B. UDM as coupled oscillators

In [8] the UDM cosmology was expressed in terms of
two coupled oscillators. To achieve that the variables were
changed from ða;ϕÞ to

x ¼ Aa3=2 sinh ðcϕÞ
y ¼ Aa3=2 cosh ðcϕÞ ð10Þ

with c2 ¼ 3=8. This transformation results in a
Hamiltonian function

H ¼ 1

2

��
p2
x −

3

4
c2x2

�
−
�
p2
y −

3

4
ðc1 þ c2Þy2

��

−
1

2
½34=3kðy2 − x2Þ1=3� ð11Þ

wherepx ¼ _x, py ¼ −_y denote the canonical momenta. The
Hamiltonian function (11) describes two coupled oscillators,
which makes the UDM analysis more dynamically intuitive.
However, since c1 þ c2 ≥ 0, the constant c2 can be negative
and one of the oscillators offers hyperbolic solutions; this
implies the presence of trajectories escaping to infinity
ða → ∞Þ even if k > 0. Moreover, a closed universe implies
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also the possibility of recollapsing models ða → 0Þ. Since in
this coupled oscillators formalism the system suffers from
escapes to infinity and recollapses, the phase space is not
bounded (see [13] for details), and this brings along certain
difficulties in performing a dynamical study of the UDM
cosmology [8]. In the following section we overcome the
unboundedness by performing a novel reparametrization.

C. UDM in a box

In constructing a cosmological dynamical system with
flat or negative curvature, it is usually sufficient to define
dimensionless variables by normalizing the relevant
dynamical quantities over the expansion H. However, as
we are considering geometries with k > 0, such a choice
includes recollapsing solutions. While cosmological obser-
vations [1] tend to rule out the presence of a nonvanishing
spatial curvature, we are especially interested in including
in the picture the possibility of recollapse because of its rich
and interesting dynamics [25]. However, a recollapsing
scenario can lead to singular behaviors of the usual
normalized variables in the turning points of the scale
factor, whereH ¼ 0. This problem can be circumvented by
noting that, while H alone can vanish during the evolution,
the left-hand side of Eq. (7) instead is always positive.
Hence, one can define a new set of variables by normalizing
over the quantity

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k

a2

r
: ð12Þ

The dimensionless variables obtained with such choice are
the following:

Xϕ ¼
_ϕffiffiffi
6

p
D
; ð13Þ

XU ¼
ffiffiffiffi
U

p
ffiffiffi
3

p
D
; ð14Þ

XH ¼ H
D
; ð15Þ

X∂U ¼ −
∂ϕU

U
; ð16Þ

F ¼ ∂2
ϕU

U
: ð17Þ

The definitions (16) and (17) are inspired by the quantities
used in the study of cosmological tracking solutions (see,
e.g., [26,27]). The function F has to be included in order to
close the system, but we stress the fact that it does not act as
an independent variable. In fact, knowing in principle the
dependence of the potential on the field, one could invert
Eq. (16) and obtain ϕ ¼ ϕðX∂UÞ, which could then be

plugged into Eq. (17) to obtain FðX∂UÞ. In the specific
case of potential (4), one can see that the function X∂U is
invertible in the whole range of ϕ only if α ¼
c2=c1 ≥ −1=2; however, if −1 < α < −1=2 the inversion
can be carried out only piecewise because the function is
not monotonic anymore. Here, we focus our attention on
the range α ≥ −1=2which, apart from including physically
relevant situations, allows for a quite general description, as
the features of the critical elements of the variable space
turn out to be effectively independent of the specific value
of α. Hence, if α ≥ −1=2, the function X∂U is monotonic in
ϕ and bounded. It is then straightforward to find ϕ as
function of X∂U, i.e.

ϕ ¼
ffiffiffi
2

3

r
log

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

3
X2∂Uαð1þ αÞ

q
−

ffiffi
2
3

q
X∂Uð1þ 2αÞ

1þ
ffiffi
2
3

q
X∂U

3
75

ð18Þ

as a consequence of the boundedness of X∂U, which is
defined in the range X∂U ∈ ½− ffiffiffiffiffiffiffiffi

3=2
p

;
ffiffiffiffiffiffiffiffi
3=2

p �. Expression
(18) can be plugged into Eq. (17) in order to express it as a
function of X∂U, that is

FðX∂UÞ ¼
ð1þ 2αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

3
αð1þ αÞX2∂U

q
− 1

8
3
αð1þ αÞ : ð19Þ

With regard to other variables (13)–(15), it is easy to
check that they are bounded as well. First of all, by
recasting Eq. (7) in terms of the normalized variables
one obtains

X2
ϕ þ X2

U ¼ 1: ð20Þ

Given that XU ≥ 0, then Xϕ ∈ ½−1; 1� and XU ∈ ½0; 1�.
Finally, the variable XH is clearly defined in the interval
½−1; 1�; moreover, we notice that this variable is positive/
negative iff the Universe is expanding/collapsing.
In order to build the dynamical system, it will be useful

to write both Eq. (8) and the evolution equation of the
quantity D in terms of the new variables

_H
D2

¼ 3

2
ðX2

U − X2
ϕÞ − X2

H −
1

2
; ð21Þ

_D
D2

¼ 3

2
XHðX2

U − X2
ϕ − 1Þ: ð22Þ

Defining the new “time” derivative X0 ¼ D−1 _X, the autono-
mous dynamical system is constructed by taking the prime
derivative of the normalized variables (13)–(16). Then, by
implementing Eq. (9) and Eqs. (20)–(22), the system takes
the following form:
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Xϕ
0 ¼

ffiffiffi
3

2

r
ð1 − X2

ϕÞðX∂U −
ffiffiffi
6

p
XHXϕÞ; ð23Þ

X0
H ¼ ð1 − X2

HÞð1 − 3X2
ϕÞ; ð24Þ

X0∂U ¼ −
ffiffiffi
6

p
XϕðF − X2∂UÞ; ð25Þ

where F is the function of X∂U previously defined, which in
terms of the parameters of the potential reads

F ¼
ðc1 þ 2c2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ 8

3
c2ðc1 þ c2ÞX2∂U

q
− c21

8
3
c2ðc1 þ c2Þ

: ð26Þ

By building the system in this way we decouple the
evolution of D from the rest of the variables and, through
the constraint (20), we can disregard the evolution of XU.
Note that the quantities X2∂U and F are known in cosmology
as the “slow-roll parameters,” ϵ and jηj respectively; this
means that an exponential behavior of the scale factor is an
expected feature whenever jX∂Uj ≪ 1 [28].
The scale factor as a function of the new variables is

a ¼
ffiffiffiffiffi
3k

p
XUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − XH
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1cosh2ð

ffiffi
3
8

q
ϕÞ þ c2

r ; ð27Þ

where ϕ is given by Eq. (18).

D. Analysis and interpretation of critical points

The critical points of the system are those values of
the variables fXϕ; XH; X∂Ug for which X0 ¼ 0 is satisfied.
The stability of critical points is then analyzed by inspect-
ing the eigenvalues of the Jacobian matrix evaluated at the
points themselves. If the real part of all the eigenvalues is
negative (positive) then the critical point is a sink (a
source), while if the sign of the eigenvalues is mixed then
the critical point is a saddle; in the latter case, the stable
eigendirections are given by the eigenvectors correspond-
ing to the negative eigenvalues. For the system (23)–(25)
we list the critical points, their stability and cosmological
interpretation in Table I, while their location inside the
invariant subsets are shown in Figs. 1–3 for the specific
choice α ¼ 1. In such plots we specify with dots the
locations of sources (blue), sinks (green) and saddles
(black). It is worth noting that both the location and the
stability of the critical points are independent of the values
of the parameters c1 and c2 as long as their ratio α ≥ −1=2,
so that the situations portrayed are easily generalizable.
Here we discuss in detail the cosmological interpretation of
the critical points. This can be done by calculating the
deceleration parameter q and the effective EoS parameter
w, which are given respectively by

q ¼ 3X2
ϕ − 1

X2
H

; ð28Þ

w ¼ 2X2
ϕ − 1: ð29Þ

Eventually, one can calculate the cosmic time-dependent
scale factor of the models by integrating Eqs. (21), (22) in
the critical points.

TABLE I. Critical points of the system, their stability and
corresponding cosmological parameters.

fXϕ; XH; X∂Ug Stability q w

f0;−1; 0g Source −1 −1
f0; 1; 0g Sink −1 −1
f�1; 1;� ffiffiffiffiffiffiffiffi

3=2
p g Source 2 1

f�1;−1;∓ ffiffiffiffiffiffiffiffi
3=2

p g Sink 2 1

f�1; 1;∓ ffiffiffiffiffiffiffiffi
3=2

p g Saddle 2 1

f�1;−1;� ffiffiffiffiffiffiffiffi
3=2

p g Saddle 2 1

f�1=2; 1;� ffiffiffiffiffiffiffiffi
3=2

p g Saddle −1=4 −1=2
f�1=2;−1;∓ ffiffiffiffiffiffiffiffi

3=2
p g Saddle −1=4 −1=2

f�1=
ffiffiffi
3

p
;� ffiffiffi

3
p

=2;
ffiffiffiffiffiffiffiffi
3=2

p g Saddle 0 −1=3
f�1=

ffiffiffi
3

p
;∓ ffiffiffi

3
p

=2;−
ffiffiffiffiffiffiffiffi
3=2

p g Saddle 0 −1=3

FIG. 1. Invariant sets XH ¼ 1 (left panel) and XH ¼ −1 (right
panel). The points identify sources (blue), saddles (black) and
sinks (green).

FIG. 2. Invariant sets Xϕ ¼ 1 (left panel) and Xϕ ¼ −1 (right
panel). The points identify sources (blue), saddles (black) and
sinks (green).
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There are three sources in the variable space. The point
f0;−1; 0g is located in the invariant subset XH ¼ −1 and
hence describes collapsing models with negligible curva-
ture with respect to the Hubble parameter. Moreover, the
fact that Xϕ ¼ 0 implies that the field’s potential energy
dominates over the kinetic energy; hence, these models are
collapsing exponentially, i.e. a ∼ e−H0t, starting from the
infinite past of cosmic time. As expected, the parameters q
and w have the values corresponding to a cosmological
constant. The other two sources f�1; 1;� ffiffiffiffiffiffiffiffi

3=2
p g instead,

being in the invariant set XH ¼ 1, describe expanding
models with negligible curvature. In these points the kinetic
energy dominates and the cosmological parameters are
q ¼ 2 and w ¼ 1, corresponding to a stiff matter behavior.
The scale factor is polynomial: in fact, both points describe
models with a ∼ t1=3 in the phase near the big bang a → 0.
There are also three sinks and for their interpretation one

follows the same approach as for the previous ones. The
point f0; 1; 0g, in the invariant subset XH ¼ 1, is an
asymptotically expanding model with exponential scale
factor a ∼ eH0t and parameters q ¼ w ¼ −1. The other two
sinks f�1;−1;∓ ffiffiffiffiffiffiffiffi

3=2
p g represent polynomially collaps-

ing models with a ∼ t−1=3 and stiff matter behavior. All
these points describe phases with negligible curvature.
Finally, the variable space has a number of saddle points

which act as transients for some trajectories. The points
f�1=2; 1;� ffiffiffiffiffiffiffiffi

3=2
p g describe expanding flat models with

scale factor a ∼ t4=3, while at points f�1=2;−1;∓ ffiffiffiffiffiffiffiffi
3=2

p g
the models are collapsing with scale factor a ∼ t−4=3.
For both pairs of points we have w ¼ −1=2, which is a
common EoS parameter found in quintessence models.
The points f�1=

ffiffiffi
3

p
;

ffiffiffi
3

p
=2;� ffiffiffiffiffiffiffiffi

3=2
p g present a different

behavior from the other cases, because the curvature here
is not negligible with respect to the expansion: in this case
the model is linearly expanding with a ∼ t and the
EoS parameter w ¼ −1=3 is the one corresponding to
a “curvature fluid.” The same goes for the points
f�1=

ffiffiffi
3

p
;−

ffiffiffi
3

p
=2;∓ ffiffiffiffiffiffiffiffi

3=2
p g, with the difference that these

describe collapsing phases with a ∼ t−1.

One should note that the system defined by the
Hamiltonian of Secs. II A and II B is conservative, in
the sense that Liouville’s theorem ensures preservation
of the phase-space volumes under the Hamiltonian flow.
Or, equivalently, there are no attractors in the Hamiltonian
system when the trajectories are plotted in canonical
coordinates. We stress this since it has been shown that
apparent attractors can appear when Lagrangian variables
are used instead of the canonical ones [29]. However, it is a
quite well-known procedure to transform a nonconservative
system into a conservative one and vice versa by combining
variables and evolution parameter transformations [30],
which is actually what was performed in Sec. II C.

III. ORBITAL ANALYSIS

The critical points tell us about the basic global structure
of the model, but they do not tell us all the details of how
individual initial conditions evolve. To study individual
evolutions is like doing orbital analysis of the system.
In [8] the dynamical study was reduced to the case c1 ¼
c2 ¼ 1 with k ¼ 10−3 which was called the “semiflat”
model, and in particular the following five initial conditions
were considered: (1) y ¼ 0.0001, x ¼ 0, px ¼ 0.006;
(2) y ¼ 0.0001, x ¼ 0, px ¼ 0.03; (3) y ¼ 0.0001,
x ¼ 0, px ¼ 0.04; (4) y ¼ 0.0001, x ¼ 0, px ¼ 0.041;
(5) y ¼ 0.0001, x ¼ 0, px ¼ 0.099, where the missing
variable py was evaluated through Eq. (11) withH ¼ 0 and
by choosing the negative sign in front of the square root
of p2

y.
The analysis in Sec. II D showed us that the structure of

the parameter space of UDM cosmology is independent of
α in the range α ≥ − 1

2
, i.e. for any pair of c1, c2 satisfying

such condition the nature of the critical points does not
change. Thus, for simplicity and without loss of generality
one can indeed choose c1 ¼ c2 ¼ 1 to study the dynamics.
In the top panel of Fig. 4 we show the five representative

trajectories evolving inside the three-dimensional variable
space. We implement the same initial conditions by trans-
lating them to the variables fXϕ; XH; X∂Ug, through the
following transformation formulas:

Xϕ ¼ y_x − x_yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34=3kðy2 − x2Þ4=3 þ ðy_y − x_xÞ2

p ; ð30Þ

XH ¼ y_y − x_xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34=3kðy2 − x2Þ4=3 þ ðy_y − x_xÞ2

p ; ð31Þ

X∂U ¼
ffiffiffi
3

2

r
c1xy

ðc1 þ c2Þy2 − c2x2
: ð32Þ

Orbit 1 ends in the sink
n
1;−1;−

ffiffi
3
2

q o
following approx-

imately the flow of the invariant set shown in the top panel

of Fig. 2. Orbits 2 and 3 end up in the sink
n
−1;−1;

ffiffi
3
2

q o
.

FIG. 3. Invariant sets X∂U ¼ ffiffiffiffiffiffiffiffi
3=2

p
(left panel) and X∂U ¼

−
ffiffiffiffiffiffiffiffi
3=2

p
(right panel). The points identify sources (blue), saddles

(black) and sinks (green).
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These different recollapsing scenarios could not be dis-
cerned in the Hamiltonian formalism. Orbits 4 and 5 end up
in the de Sitter sink f0; 1; 0g. Moreover, we know now
from a dynamical point of view why orbits 3 and 4 split
from each other after evolving almost identically for a
considerable time. Namely, orbits 3 and 4 follow the flow
along the separatrix on the invariant set shown in the right
panel of Fig. 3, until they reach the saddle point�
− 1ffiffi

3
p ;

ffiffi
3

p
2
;−

ffiffi
3
2

q �
where they split following two different

eigendirections. The evolution of the EoS parameter for all
these orbits as a function of the cosmic time is shown in the
bottom panel of Fig. 4. Apparently all the initial conditions
correspond to an initial epoch where stiff matter EoS w ¼ 1
dominates. Orbit 1 does not deviate much from this
behavior and quite soon enters the recollapsing phase.
All the other orbits passing through all the intermediate
values of w reach a transitory phase of exponential

expansion (w ¼ −1). After this common de Sitter phase,
orbits 2 and 3 return to a stiff-matter phase by following a
recollapsing dynamics. For orbit 4 instead the EoS param-
eter momentarily increases up to a dustlike behavior w ¼ 0,
before returning to the de Sitter expansion with w ¼ −1. As
for orbit 5, its final fate is the same as trajectory 4 but the
intermediate phase reaches w ¼ −1=2.

A. Remarks on the equation of state

The evolution of the scale factor of orbits 4 and 5 should
be qualitatively close to theΛCDMmodel [8]. However, by
comparing Fig. 1(b) of [8] with the bottom panel of Fig. 4,
we can see that the EoS parameter values are not in
complete agreement with the inclinations of the scale
factor’s logarithmic plot. For example the scale factor of
orbit 4 appears to follow the matter-dominated era incli-
nation, i.e. a ∝ t2=3, at −0.6≲ log10t≲ 0, but for this time
range w undergoes a transition from −1 to 0 and back to
−1. Thus, the following two questions arise: (a) Are the
UDM models compatible with an effective description
using a barotropic equation of state? (b) Can one infer
the dominating era of a component of the Universe by the
evolution of the scale factor?
To answer these questions we searched for a trajectory

having w ≈ 0 for a considerable time. Since we want to
impose w ¼ 0, from Eq. (29) we get that this is achieved
when X2

ϕ ¼ 1=2. Moreover, we want the scenario to be
expanding and the curvature to be negligible in comparison
to the expansion, so XH ≈ 1. In order to find the appropriate
value for X∂U we performed a scan in the range of its
possible values, i.e. ½− ffiffiffiffiffiffiffiffi

3=2
p

;
ffiffiffiffiffiffiffiffi
3=2

p �, and Fig. 5 shows the
scenario which we were looking for. Namely, the parameter
w (continuous curve) behaves like dust from the start until
t ≈ 1, with negligible variations; in this time range, since
the fluid is barotropic, one would anticipate that the scale
factor should grow approximately like a ∝ t2=3 since the
scale factor for a barotropic fluid grows like

FIG. 4. Top panel: Five representative trajectories in the
variable space; the initial conditions corresponding to the
numbers are given in the text; the dots indicate the attractors.
Bottom panel: The evolution of the effective EoS parameter as a
function of the cosmic time for the same initial conditions.

FIG. 5. The scale factor a and the EoS parameter w as functions
of the cosmic time t for a trajectory starting from
ð−1= ffiffiffi

2
p

; 0.8;−
ffiffiffiffiffiffiffiffi
3=2

p þ 0.03Þ. ab shows the evolution of the
scale factor in the matter-dominated era, if we assume constant w.
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ab ∝ t
2

3ð1þwÞ; ð33Þ

when w is almost constant. The dashed line shows ab when
w is given by Eq. (29), with the initial value of ab
appropriately rescaled in order to fit the initial value of
the dotted line. The dotted line, in turn, shows the evolution
of the scale factor a as it comes from the equations of
motion (23)–(25) when the inversion equation (27) is
applied; note that in the latter case no assumption is made
regarding the EoS. We see that the dashed and the dotted
curves do not match, so one would assume that the scalar
field is not behaving like a barotropic fluid in the matter-
dominated era. However, such conclusion would be wrong.
If one wants to do the check properly, then from the stress-
energy conservation, i.e.

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ 0; ð34Þ

one gets, by assuming a barotropic fluid behavior for the
scalar field, that

ρϕðaÞ ¼ ρϕða0Þ exp
�
−
Z

a0

a

3ð1þ wð ~aÞÞ
~a

d ~a

�
: ð35Þ

Equation (35) is then substituted into Eq. (7). The solution
of the resulting equation after the above substitution is
giving the scale factor with respect to the cosmic time. Note
that we take the positive root of _a, since we anticipate an
expanding universe. By following the above procedure in
which we employ the numerical found data one gets a scale
factor evolution which reproduces the dotted line of Fig. 5.
Thus, (a) the UDM scalar field is behaving like a barotropic
fluid and (b) we cannot infer the dominating era of a
component of the universe by the evolution of the scale
factor; i.e. Eq. (33) is not proper for the present discussion.

B. Remarks on the chaotic behavior

In the picture of the two coupled oscillators (Sec. II B) the
dynamics indicated chaotic scattering, which would mean
that the basins of attraction in the UDM box description
should have a fractal structure. The basins of attraction are
defined by the sink in which a trajectory ends up.
We start our analysis in the parameter range in which the

five representative trajectories were chosen. Since all the
five orbits start from x ¼ 0, the transformation formula (32)
gives that the plane on which they all lie is X∂U ¼ 0.
Figure 6 shows the basins of attraction on the latter plane;
the positions of orbits 1 and 2 are indicated by the
respective numbers. Actually, orbit 2 also indicates the
area where 3, 4, and 5 approximately lie. The colors
denoting the basins of each sink in Fig. 6 are smoothly
separated with no evidence of smaller structures or mixing.
Thus, there is no indication of fractal structure, which in
turn implies absence of chaos. The absence of fractality was
confirmed by choosing several different planes; a sample of

FIG. 6. A portion of the plane X∂U ¼ 0. The numbers 1 and 2
identify the initial conditions for the respective trajectories of
Fig. 4. The colors correspond to the basins of attraction of the
three sinks for the points in the plane.

FIG. 7. The basins of attraction of the three sinks for the points in the planes X∂U ¼ 0 (left panel), XH ¼ 0 (central panel) and Xϕ ¼ 0
(right panel). The colors correspond to the basins of attraction of the three sinks indicated in Fig. 6.
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them is shown in Fig. 7. This result is in agreement with the
analysis of [16]. In particular, using the notation of [16], the
condition for chaoticity is ϕ0 > 4mp=

ffiffiffi
3

p
: since 2ϕ0 ¼ c−1

and m2
p ¼ 8π in our convention, our parameter c is not in

the chaoticity range.

IV. CONCLUSIONS

We have analyzed a unified dark matter model in the
background of a Friedmann-Robertson-Walker spacetime
by both revisiting the study performed in [8] and providing
new results. A specific variable transformation has allowed
us to bound in a box the UDM model in the case of a FRW
metric with positive spatial curvature. In this new set of
variables the critical points of the dynamical system, i.e.
sinks, sources and saddle points, were found and inter-
preted according to their dynamical and cosmological
features. In particular, we have found that for the UDM
models there are two dynamically distinct (but cosmologi-
cally indistinguishable) recollapsing scenarios, a feature
that was not found in the previous study [8], and that at the
vicinity of some of the saddle points the scalar field is
behaving like a curvature fluid.
Characteristic evolution scenarios discussed in [8] were

revisited and analyzed in the framework of the new
variables. It was found that these scenarios start from a
stiff matter equation of state w ¼ 1, and most of them reach
the de Sitter phase w ¼ −1 by a smooth transition through
all the values of w in between. At the de Sitter phase either
the scenarios keep exponentially growing after a transient
phase resembling a recollapse, or they actually recollapse.
By taking advantage of the better insight provided by the
new variables, we discussed the barotropic character of the
UDM scalar field. While it makes sense to characterize a
critical point by associating it to a constant effective EoS
parameter w through Eq. (29), different w-dominated
epochs along an orbit are not described by the respective
scale factors given by Eq. (33) with constant EoS param-
eter: one has to keep in mind that the whole integrated
effect along the orbit has to be considered; i.e. one has to
employ Eq. (35).
Lastly, by studying the basins of the sinks in the variable

space, we did not find any sign of fractal structure. This
means that the system, for the range of parameters
considered, is not chaotic, contrary to the findings of [8]
but in agreement with the analysis of [16]. This contra-
diction might resemble the mixmaster case, where contra-
dicting indications have resulted in a long debate on
whether that system was chaotic or not; see e.g. [14,24]
and references therein. However, as was mentioned in the
introduction, Lyapunov-like indicators are not completely
reliable tools for detecting chaos in unbounded systems.

So, given the current results and the investigation of [16],
we can claim that the findings of [8] based on Lyapunov-
like indicators were misleading.
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APPENDIX: ALTERNATIVE FORM OF
POTENTIAL

Let us consider here the case in which the potential is
given by

UðϕÞ ¼ b1

�
1þ cosh

� ffiffiffi
3

8

r
ϕ

��3

; ðA1Þ
where b1 ≥ 0 in order to have a non-negative mass for the
scalar field. The dynamical system can be constructed in a
completely analogousway as for the case of potential Eq. (4);
the only difference being that in this case the variable X∂U is
bounded in the interval ½−ð3=2Þ3=2; ð3=2Þ3=2�. This has
repercussions on the location of some critical points of the
system and their cosmological interpretation, but their total
number and their stability character are unchanged with
respect to the system analyzed in detail in the main text. For
completeness, in Table II we list the critical points and their
features. We can immediately see that the only cosmological
difference regards the behavior of the model in the saddle
points with coordinates Xϕ ¼ �3=4. By assuming the
barotropic equation of state w ¼ 1=8, the effective scale
factor would be a ∼ t16=27, which is in between radiationlike
and dustlike behavior.

TABLE II. Critical points of the system with potential given by
Eq. (5), their stability and corresponding cosmological param-
eters.

fXϕ; XH; X∂Ug Stability q w

f0;−1; 0g Source −1 −1
f0; 1; 0g Sink −1 −1
f�1; 1;�ð3

2
Þ3=2g Source 2 1

f�1;−1;∓ ð3
2
Þ3=2g Sink 2 1

f�1; 1;∓ ð3
2
Þ3=2g Saddle 2 1

f�1;−1;�ð3
2
Þ3=2g Saddle 2 1

f�3=4; 1;�ð3
2
Þ3=2g Saddle 11

16
1=8

f�3=4;−1;∓ ð3
2
Þ3=2g Saddle 11

16
1=8

f� 1ffiffi
3

p ;� 3
ffiffi
3

p
4
; ð3

2
Þ3=2g Saddle 0 −1=3

f� 1ffiffi
3

p ;∓ 3
ffiffi
3

p
4
;−ð3

2
Þ3=2g Saddle 0 −1=3
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