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In 2009, Bañados, Silk, and West (BSW) pointed out the possibility of having an unbounded limit of
center-of-mass collision energy for test particles in the field of an extremal Kerr black hole, if one of them
has fine-tuned parameters and the collision point is approaching the horizon. The possibility of this “BSW
effect” attracted much attention: it was generalized to arbitrary (“dirty”) rotating black holes and an analogy
was found for collisions of charged particles in the field of nonrotating charged black holes. Our work
considers the unification of these two mechanisms, which have so far been studied only separately.
Exploring the enlarged parameter space, we find kinematic restrictions that may prevent the fine-tuned
particles from reaching the limiting collision point. These restrictions are first presented in a general form,
which can be used with an arbitrary black-hole model, and then visualized for the Kerr-Newman solution
by plotting the “admissible region” in the parameter space of critical particles, reproducing some known
results and obtaining a number of new ones. For example, we find that (marginally) bounded critical
particles with enormous values of angular momentum can, curiously enough, approach the degenerate
horizon, if the charge of the black hole is very small. Such “mega-BSW” behavior is excluded in the case of
a vacuum black hole, or a black hole with large charge. It may be interesting in connection with the small
“Wald charge” induced on rotating black holes in external magnetic fields.
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I. INTRODUCTION

After initial discussions of how to extract energy from a
black hole by particle decays in its vicinity [1,2], a concern
was raised whether this “Penrose process” is compatible
with realistic interactions responsible for the disruption [3].
Further studies [4,5] sought more possibilities, turning to
much less restrictive collision kinematics (the “collisional
Penrose process”). One of their observations was that in
certain limiting cases the center-of-mass collision energy
between the colliding particles can grow unboundedly. This
gained considerable attention much later, after Bañados,
Silk, and West (BSW) [6] discovered another, more subtle
yet more realistic, possibility of this kind. In this so-called
BSWeffect a collision between two ingoing particles in the
field of the extremal Kerr black hole is considered. One of
the particles must have fine-tuned parameters (angular
momentum), whereas the other must not. Then, the
center-of-mass collision energy can grow without bound
if the collision point is approaching the black-hole horizon.
Various other scenarios of obtaining arbitrarily high

center-of-mass collision energywere explored in subsequent
works. For instance, in the Piran-Shaham effect (called so

retrospectively after [5]), a collision of an outgoing and
ingoing particle near an extremal black hole is considered,
see, e.g., [7]. For a general review, cf. [8]. Some other
examples are mentioned in the discussion of collisions near
the inner horizon in [9]. Multiple-scattering mechanisms are
also frequently studied. In scenarios where the particles
taking part in the final collision cannot reach the spot from far
away due to kinematic restrictions, they can be produced in a
preceding collision. This idea was pioneered by Grib and
Pavlov [10,11] usingan astrophysically relevant setup (a fast-
spinning but nonextremal Kerr black hole).
The proposal by Grib and Pavlov can be seen partly as a

response to ongoing disputes about the practical limitations
of the BSW effect. In particular, the maximum achievable
center-of-mass energy with particles coming from rest at
infinity grows very slowly with the decreasing deviation
from extremality [12,13]. Further issue with the BSW-like
processes is the significance of various types of back-
reaction. For example, gravitational wave emission related
to the BSWeffect was modeled in [12]. A different aspect of
the problem is the adequacy of the test particle approxima-
tion for these processes. Kimura et al. [14] turned to
colliding dust shells in Kerr background, so that they could
include self-gravity of the colliding objects. In their setup,
the collision energy observable from infinity turned out to be
finite. On the other hand, later results indicate that the BSW
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effect still exists for point particles even when some self-
force contributions are considered [15]. Another issue is
whether the high-energy collisions can lead to a significant
energy extraction and observable signatures. The stringent
early assessment of bounds on extracted energy in [13] was
identified as too crude in [10]. Later, more detailed inves-
tigations of energy extraction were conducted [16–22],
sometimes using the term “super-Penrose process” for the
possible high-energy gain. Observable signatures of high-
energy collisions (annihilations) of conjectured dark-matter
particles were estimated in [23,24].
Regardless of all complexities, even the original BSW-

type effect within the test-particle regime is an interesting
theoretical issue and its investigation has continued. Harada
and Kimura analyzed the BSW effect for general, non-
equatorial particles in the Kerr field [25], finding that it
does not work around poles. These results were extended in
[26,27]. Other enhancements stayed within equatorial
motion, two of which we find especially important.
First, the BSW-type effect was generalized to arbitrary
rotating black holes by Zaslavskii [28]. He also noted that
fine-tuning of the parameters of one of the particles is not
sufficient for the BSW effect to occur, since there can be
further restrictions, which are (unlike the fine-tuning)
model dependent. A particular example is given in [29],
where it is shown that there exists a minimum value of the
spin parameter of the extremal Kerr-Newman solution for
the BSW effect (with uncharged particles) to be possible.
Second, Zaslavskii also found [30] that there is an analogy
of the BSW-type effect with charged particles in the
Reissner-Nordström spacetime, which occurs even for
radial motion.
These two variants of the generalized BSW effect have

been studied separately. More importantly, there does not
appear to be any study systematically discussing the
additional restrictions and, for example, generalizing the
results of [29] for the Kerr-Newman solution to charged
particles. We deliver such a study in the present paper: our
purpose is to examine kinematic restrictions for the
generalized BSW effect including effects of both dragging
and electrostatic interaction. We base our study on the
general metric form, which can include black holes with
different types of (matter) fields, sometimes called “dirty”
black holes, or black holes in spacetimes which are not
asymptotically flat.
The generalized BSW effect always constitutes a

“corner case” of the test-particle kinematics, and consid-
ering the setup with both charge and dragging requires a
further increased rigor. Moreover, the notation and methods
vary significantly among different authors. Thus, to be able
to give a unified picture, in Sec. II we thoroughly go
through methods of qualitative study of electrogeodesic
motion, building up on classical works of Wilkins [31] and
Bardeen [32]. Some further details are given in the
Appendix.

In Sec. III we review how to take a horizon limit of
the center-of-mass collision energy and the way to show
that there are particles with distinct type of motion in a
near-horizon zone, so-called critical particles, and that these
particles cause the BSW singularity in the center-of-mass
collision energy. We present formulas for different types of
collisions.
Section IV contains the main results. We prove that the

critical particles can approach the position of the horizon
only if it is degenerate and their parameters satisfy certain
restrictions. We discuss how these restrictions depend on
the properties of the black hole and identify two cases
corresponding to the original centrifugal and electrostatic
mechanisms of the generalized BSW effect. Two other
“mixed” cases are also seen to be possible.
In Sec. V we illustrate these results with the example of

the extremal Kerr-Newman solution, where just one of the
mixed cases applies. Apart from the general restrictions on
particles at any energy, we study what happens for the
critical particles that are coming from rest at infinity or are
bounded. We notice that, for a very small charge of the
black hole, this kind of particle can reach the position of the
degenerate horizon even with enormous values of angular
momentum (and specific charge). Such a “mega-BSW”
effect is possible neither in the vacuum case nor in the case
with a large charge of the black hole.
Finally, let us mention one area where the present work

can be extended. As we discussed in the introduction of
[33], the interaction of black holes with external (magnetic)
fields is of considerable astrophysical interest, even for
(nearly) extremal black holes. Particle collisions near
magnetized black holes have been already studied, first
in a simple model by Frolov [34] and later by others in
more versatile setups [35,36]. However, these works
considered only test fields. In contrast, in [33] we studied
exact models of black holes in strong external magnetic
fields. Combining the presented general scheme for exam-
ining particle collisions with results and techniques of [33],
we hope to get a new perspective on the problem.1

II. ELECTROGEODESIC MOTION
IN BLACK-HOLE SPACETIMES

Let us consider an axially symmetric, stationary space-
time with the metric

g ¼ −N2 dt2 þ gφφðdφ − ωdtÞ2 þ grr dr2 þ gϑϑ dϑ2; ð1Þ

which will serve as a model of an electrovacuum black
hole. [The cosmological constant can also be included. For
conditions on matter fields compatible with (1), see e.g.
[38] and references therein.]

1The paper is based on preliminary results obtained in [37],
which were substantially reworked and augmented during the
Ph.D. study of F.H. at CENTRA in Lisbon.
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We assume the choice of coordinate r such that hyper-
surface r ¼ rþ is the black-hole horizon, where N2

vanishes. If the black-hole horizon is degenerate (which
will be denoted by r0), the following factorization of (1)
is useful:

g ¼ −ðr − r0Þ2 ~N2 dt2 þ gφφðdφ − ωdtÞ2 þ ~grr
ðr − r0Þ2

dr2

þ gϑϑ dϑ2; ð2Þ

where ~N2 and ~grr are nonvanishing and finite at r ¼ r0.
Let us further require that the electromagnetic field

accompanying (1) has the same symmetry as the metric,
exhibited by the following choice of gauge:

A ¼ At dtþ Aφ dφ ¼ −ϕdtþ Aφðdφ − ωdtÞ: ð3Þ

Here ϕ ¼ −At − ωAφ will be called the generalized electro-
static potential. Introducing the locally nonrotating frame
(cf. [3]) associated with (1),

eðtÞ ¼
1

N

�
∂
∂t

þ ω
∂
∂φ

�
; eðφÞ ¼

1ffiffiffiffiffiffiffigφφ
p ∂

∂φ
; ð4Þ

eðrÞ ¼
1ffiffiffiffiffiffi
grr

p ∂
∂r

; eðϑÞ ¼
1ffiffiffiffiffiffiffi
gϑϑ

p ∂
∂ϑ

; ð5Þ

we see that ϕ is proportional to AðtÞ. Let us also consider an
energy of a test particle locally measured in this frame
given by εLNRF ≡ uðtÞ.
Equations of motion for test particles (with rest mass m

and charge q ¼ ~qm) influenced solely by the Lorentz force,
i.e., of electrogeodesic motion, can be derived from the
Lagrangian

ℒ ¼ 1

2
mgμνuμuν þ qAμuμ: ð6Þ

The corresponding canonical momentum is

Πα ¼
∂ℒ
∂uα

¼ pα þ qAα: ð7Þ

Its projections on ∂=∂t, ∂=∂φ, the two Killing vectors of
(1), are conserved during the electrogeodesic motion. They
can be interpreted as (minus) energy E and axial angular
momentum Lz. In our coordinates they read

−Πt ¼ −pt − qAt ¼ E ¼ εm;

Πφ ¼ pφ þ qAφ ¼ Lz ¼ lm: ð8Þ

Dividing by the mass m of the particle, we can get
expressions for two contravariant components of the
velocity,

ut ¼ ε−ωl− ~qϕ
N2

; uφ ¼ ω

N2
ðε−ωl− ~qϕÞ þ l− ~qAφ

gφφ
:

ð9Þ

Assuming further that metric (1) is invariant under reflec-
tions ϑ → π − ϑ, i.e., under “mirror symmetry” with
respect to the equatorial “plane,” we can consider motion
confined to this hypersurface (with conserved conditions
ϑ ¼ π=2, uϑ ¼ 0). The remaining component of the veloc-
ity then follows from its normalization,

ur ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2grr

�
ðε − ωl − ~qϕÞ2 − N2

�
1þ ðl − ~qAφÞ2

gφφ

��s
:

ð10Þ

Hence, we have a full set of the first-order equations of
motion for an equatorial electrogeodesic test particle. (See
[39] for references.)
There are some qualitative features of the motion that

follow directly from the equations above. The motion of
particles with some parameters may be forbidden in certain
ranges of r. The first restriction comes from the conven-
tional requirement (positivity of the locally measured
energy εLNRF) for motion “forward” in coordinate time t,
which applies for r > rþ (or N2 > 0). From ut in (9) we
infer

X≡ ε − ωl − ~qϕ > 0: ð11Þ

(Later, we also consider the possibility X → 0 for N → 0.)
Another restriction is due to the square root in (10). If

we assume that the metric determinant for (1), which is
given by

ffiffiffiffiffiffi
−g

p ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrgφφgϑϑ

p
; ð12Þ

is nondegenerate, the expression N2grr under the square
root in (10) is nonvanishing and positive. Therefore, the
square root will be defined in real numbers if

W ≡ ðε − ωl − ~qϕÞ2 − N2

�
1þ ðl − ~qAφÞ2

gφφ

�
≥ 0: ð13Þ

Zeros of function W with respect to radius are turning
points (because of that, W is often called effective poten-
tial). Stationary and inflection points ofW with respect to r
are used to find circular orbits and marginally stable
circular orbits [3,40] (see also the Appendix). However,
W is not unique; for example, if we multiply it with a
positive integer power of r, the results will be the same.
This led to different conventions in literature [3,40].
Nevertheless, we can define another effective potential
which will be unique and also have other advantages.
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First, for r ≥ rþ, we can factorize W as

W ¼ ðε − VþÞðε − V−Þ; ð14Þ

where2

V� ¼ ωlþ ~qϕ� N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl − ~qAφÞ2

gφφ

s
: ð15Þ

Since Vþ ≥ V−, the condition W ≥ 0 is fulfilled whenever
ε ≥ Vþ or ε ≤ V−. Considering l ¼ 0, ~q ¼ 0 and compar-
ing with (11), we can identify ε ≤ V− as the domain of
unphysical particles moving “backwards in time.”
[Conversely, we see that restriction ε ≥ Vþ is stronger
than (11), so it ensures motion “forward in time,” and
manifests (11) to be preserved during motion.]
Therefore, we can define V ≡ Vþ and use ε ≥ V as a

condition for the motion to be allowed (in the r ≥ rþ, or
N2 ≥ 0, domain). In this sense, V is the best analogy of a
classical effective potential. It is also called a “minimum
energy” [32]. The ranges of radii where ε < V are referred
to as “forbidden bands,” whereas the ones with ε > V are
called “allowed bands.” Condition ε ¼ V implies W ¼ 0
and thus corresponds to a turning point. For the conven-
ience of the reader, in the Appendix we derive relations
between the derivatives of W and V.

III. COLLISION ENERGY AND
CRITICAL PARTICLES

Let us consider two colliding (charged) particles in an
arbitrary spacetime. The natural generalization of the
center-of-mass frame from special relativity is a tetrad,
where the total momentum of the colliding particles at the
instant of collision has just the time component

ðECM; 0; 0; 0Þ ¼ m1uð1Þ þm2uð2Þ: ð16Þ

This tetrad component can be interpreted as the center-of-
mass collision energy. To get rid of the frame, we can take
square of the above expression and define an invariant
related to this quantity (cf. [11], for example)

E2
CM

2m1m2

¼ m1

2m2

þ m2

2m1

− gικuιð1Þu
κ
ð2Þ: ð17Þ

Let us now investigate how this invariant behaves for
collisions of electrogeodesic particles in black-hole space-
times. Using the metric coefficients of (1), the expressions
for components of particles’ velocities given by first-order
equations of equatorial electrogeodesic motion (9) and (10),
and the definition (11) of “forwardness” X, we obtain

E2
CM

2m1m2

¼ m1

2m2

þ m2

2m1

−
ðl1 − ~q1AφÞðl2 − ~q2AφÞ

gφφ
þX1X2

N2

∓ 1

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 − N2

�
1þ ðl1 − ~q1AφÞ2

gφφ

�s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 − N2

�
1þ ðl2 − ~q2AφÞ2

gφφ

�s
: ð18Þ

The ∓ sign before the last term corresponds to particles
moving in the same or the opposite direction in r.
Now, let us consider the limit N → 0. We need to Taylor

expand the square roots
ffiffiffiffiffi
W

p
coming from the radial

components of the particles’ velocities. For each of the
colliding particles, there are twovery different cases depend-
ing on the value XH of X on the horizon. For a generic
particle (XH > 0), the expansion looks as follows:

ffiffiffiffiffi
W

p ≐ X −
N2

2X

�
1þ ðl − ~qAφÞ2

gφφ

�
þ…: ð19Þ

If we consider two generic particles moving in the same
direction [upper sign in (18)], this behavior leads to the
cancellation of the terms that are singular in the limitN → 0,
and a finite limit arises,3

E2
CM

2m1m2

����
N¼0

¼ m1

2m2

þ m2

2m1

−
ðl1 − ~q1AφÞðl2 − ~q2AφÞ

gφφ

����
N¼0

þ 1

2

�
1þ ðl2 − ~q2AφÞ2

gφφ

�����
N¼0

XH
1

XH
2

þ 1

2

�
1þ ðl1 − ~q1AφÞ2

gφφ

�����
N¼0

XH
2

XH
1

: ð20Þ

The presence of XH for both particles in the denominators
suggests that for the so-called “critical particles”withXH¼0
[so far excluded, see (11)] the limit may not be finite.
To verify this, let us first expand “forwardness” X of a

critical particle around rþ,

X ≐ −
�
∂ω

∂r
lþ ~q

∂ϕ

∂r

�����
r¼rþ;ϑ¼π

2

ðr − rþÞ þ…: ð21Þ

Thus, for a critical particle, X2 is proportional to ðr − rþÞ2
(with higher-order corrections). However, for a subextremal
black hole, we expect N2 to be proportional just to r − rþ,
so the positive term under the square root in

ffiffiffiffiffi
W

p
will go to

zero faster than the negative one. We thus anticipate that the
motion of critical particles towards the horizon is forbidden
for subextremal black holes. We return to these kinematic
restrictions below.

2Note that we assume gφφ > 0, i.e., the absence of closed
timelike curves.

3The case of the particles going in opposite directions, i.e., a
plus sign in (18), leads to the so-called Piran-Shaham effect (cf.
the Introduction).
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In case of an extremal black hole (2) with N2 ¼ ðr − r0Þ2 ~N2, we get an expansion for
ffiffiffiffiffi
W

p
of a critical particle very

different from (19),

ffiffiffiffiffi
W

p
jXH¼0 ≐ ðr − r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ω

∂r
lþ ~q

∂ϕ

∂r

�
2

− ~N2

�
1þ ðl − ~qAφÞ2

gφφ

�s �����
r¼r0;ϑ¼π

2

þ…: ð22Þ

Now, if we again consider particles moving in the same direction, but assume that particle 1 is critical, whereas particle 2 is
generic (usually referred to as “usual” in literature), we get the following leading-order behavior in the limit r → r0
(or N → 0):

E2
CM

2m1m2

≈ −
XH

2

r − r0

(
1

~N2

"
∂ω

∂r
l1 þ ~q1

∂ϕ

∂r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ω

∂r
l1 þ ~q1

∂ϕ

∂r

�
2

− ~N2

�
1þ ðl1 − ~q1AφÞ2

gφφ

�s #)�����
r¼r0;ϑ¼π

2

: ð23Þ

The expression diverges like ðr − r0Þ−1, so we confirmed
that the different behavior of

ffiffiffiffiffi
W

p
for critical particles

leads to singularity in the center-of-mass collision energy
invariant.
Since the divergent contribution is proportional toXH of

the usual particle, we see that for a collision of two critical
particles the limit is again finite, namely,

E2
CM

2m1m2

����
N¼0

¼ m1

2m2

þ m2

2m1

−
ðl1− ~q1AφÞðl2− ~q2AφÞ

gφφ

����
r¼r0;ϑ¼π

2

þ
(

1

~N2

"�
∂ω

∂r
l1þ ~q1

∂ϕ

∂r

��
∂ω

∂r
l2þ ~q2

∂ϕ

∂r

�

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

∂
2Wð1Þ
∂r2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

∂
2Wð2Þ
∂r2

s #)�����
r¼r0;ϑ¼π

2

; ð24Þ

where we observed

∂
2W
∂r2

����
r¼r0;XH¼0

¼ 2

��
∂ω

∂r
lþ ~q

∂ϕ

∂r

�
2

− ~N2

�
1þ ðl − ~qAφÞ2

gφφ

�	����
r¼r0;ϑ¼π

2

: ð25Þ

IV. KINEMATICS OF CRITICAL PARTICLES

We have seen that particles with zero forwardness X at
the horizon, i.e., critical particles, constitute a distinct kind
of motion with a different behavior of the radial velocity,
leading to the singularity in the collision energy. The
condition XH ¼ 0 can be formulated as a requirement
for the particle’s energy to have a critical value

εcr ¼ lωH þ ~qϕH ¼ Vjrþ ; ð26Þ

which coincides with the value of effective potential (15) at
the radius of the horizon. Thus if the minimum energy V
grows for r > rþ, the motion of critical particles towards rþ
is forbidden, since their energy will be lower than that
allowed for r > rþ. On the other hand, if the effective
potential decreases, the motion of critical particles towards
rþ will be allowed. Thus, we have to look at the sign of the
radial derivative of V to discriminate between the cases. For
the geodesic ( ~q ¼ 0) case, the discussion has already been
carried out by Zaslavskii [28], who utilized rather math-
ematical considerations contained in [41].

A. Derivative of the effective potential

Taking the derivative of the effective potential (15), we
obtain four terms

∂V
∂r

¼ ∂ω

∂r
lþ ~q

∂ϕ

∂r
þ ∂N

∂r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl − ~qAφÞ2

gφφ

s

þ N
∂

∂r

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl − ~qAφÞ2

gφφ

s !
: ð27Þ

The fourth term is proportional to N, so we do not consider
it in the limit N → 0. The third term can be modified to the
following form:

lim
N→0

∂V
∂r

¼ lim
N→0

"
∂ω

∂r
lþ ~q

∂ϕ

∂r
þ

∂ðN2Þ
∂r

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðl− ~qAφÞ2

gφφ

s #�����
ϑ¼π

2

:

ð28Þ

In subextremal cases the radial derivative of N2 is nonzero
for N → 0, i.e., the third term blows up in the limit that we
wish to take. This term is manifestly positive in the
near-horizon regime, so its domination means that no
critical particles can approach rþ for subextremal black
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holes. Zaslavskii’s result [28] is thus generalized to the
~q ≠ 0 case.
On the other hand, in the extremal case the radial

derivative of N2 vanishes in the limit N → 0. Using again
the decomposition (2), N2 ¼ ðr − r0Þ2 ~N2, we get (for
r ≥ r0) ∂N=∂r ¼ ~N þ ðr − r0Þ∂ ~N=∂r. This enables us to
take the r → r0 limit of the third term and to drop the
contribution proportional to r − r0; thus,

∂V
∂r

����
r¼r0

¼
 
∂ω

∂r
lþ ~q

∂ϕ

∂r
þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl − ~qAφÞ2

gφφ

s !�����
r¼r0;ϑ¼π

2

:

ð29Þ

This final expression is indeed finite. However, it depends
heavily on the parameters l, ~q of the particle as well on
the properties of the black-hole model in question. Thus
(as already noted by Zaslavskii in [28] for the ~q ¼ 0 case)
kinematic restrictions on the motion of critical particles
towards r0 cannot be worked out in a model-independent
way. However, one can qualitatively study the dependence
of the kinematic restrictions on the features of a general
model and then use these considerations to get quantitative
results for particular models. This is our main aim in what
follows.

B. Remarks on motion towards r0
Before we analyze when the motion of critical particles

towards r0 is allowed and when it is not, let us first elucidate
some features that this motion has if it is allowed. First,
let us note that, comparing the behavior of X (21) and
N2 ¼ ðr − r0Þ2 ~N2, we see that ut → ∞ with r → r0 even
for critical particles. For usual particles the locally measured
energy εLNRF also blows up. However, the r → r0, r ≥ r0
limit of εLNRF for the critical particles is finite, namely,

εLNRF ≡ uðtÞ ≐ −
∂ω
∂r lþ ~q ∂ϕ

∂r
~N

����
r¼r0;ϑ¼π

2

þ…: ð30Þ

This important distinction seems to have been noticed
only lately [42] (for the ~q ¼ 0 case), although note it can
be deduced from earlier calculations presented in [43].
There it is shown that critical particles have, unlike usual
ones, a nondivergent redshift factor with respect to the
stationary tetrad in the horizon limit. Therefore, although
the BSW-type effects are often advertised as particle
acceleration, they are in fact caused by “slowness” of the
critical particles.
Let us illustrate this in yet another way. We have

already noticed that ε ¼ V at r0 for critical particles, which
impliesW ¼ 0. Furthermore, it follows easily from (22) [or
(A1)] that

∂W
∂r

����
r¼r0;XH¼0

¼ 0: ð31Þ

Concurrence of these conditions would seem to suggest
that there is a circular orbit at r0 for parameters of each
critical particle. However, there exist doubts about the
properties of orbits in the r ¼ r0 region (cf. [3,44]).
Regardless of these doubts, let us select an arbitrary radius
rorb ≥ rþ, and seewhat it implies if we assume thatW and its
first derivative are zero there. Expanding (10) around rorb
(for r ≥ rorb), we get

ur ≡ dr
dτ

≐ �ðr − rorbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2 ~N2 ~grr

∂
2W
∂r2

s �����
r¼rorb

þ…: ð32Þ

This equation has an asymptotic solution of the form

r ≐ rorb

�
1þ exp

�
� τ

τrelax

��
þ…;

1

τrelax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 ~N2 ~grr

∂
2W
∂r2

s �����
r¼rorb

; ð33Þ

which is valid for early proper times for outgoing particles
(plus sign) and for late ones for incoming particles (minus
sign). We can apply the result to critical particles by
choosing the minus sign and rorb ¼ r0. The result that
critical particles only asymptotically approach the radius
of the degenerate horizon and donot reach it in a finite proper
time has already been derived in a slightly different way in
various cases, see, e.g., [10,28]. Above, we have shown that
it applies to the ~q ≠ 0, ω ≠ 0 case as well.
Let us yet mention that it follows from (22) [or (A3)] that

∂
2W
∂r2

����
r¼r0;XH¼0

¼ 2

�
∂Vþ
∂r

∂V−

∂r

�����
r¼r0

: ð34Þ

This interconnection between derivatives of W and V� of
different orders appears rather unusual regarding the
general form of (A3).

C. The hyperbola

As we have seen above, whether the motion of critical
particles towards r0 is forbidden or not depends on whether
the radial derivative of V at r ¼ r0 is positive or not. To
study the division between the critical particles that can
approach r0 and those that cannot, we thus consider the
condition

∂V
∂r

����
r¼r0

¼ 0 ð35Þ

as a function of parameters ~q and l of the (critical) test
particles. Regarding (29), one sees that it actually
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corresponds to a branch of a hyperbola in variables ~q and l.
To study its properties, we remove the square root in (29)
and thus recover the second branch

�ð∂ω
∂r lþ ~q ∂ϕ

∂rÞ2
~N2

−
ðl − ~qAφÞ2

gφφ

�����
r¼r0;ϑ¼π

2

¼ 1: ð36Þ

This equation corresponds in fact to

∂
2W
∂r2

����
XH¼0;r¼r0

¼ 0: ð37Þ

Regarding (34) [cf. also the calculations leading to (29)],
we find that the second branch corresponds to similar
division for nonphysical particles moving backwards
in time.
We already observed that conditions (31) and W ¼ 0

always hold for critical particles at r0; thus, the simulta-
neous validity of (37) signifies the usual requirement for a
marginally stable circular orbit, often called innermost
stable circular orbit (ISCO). Then, from (34) we see that
the condition (35) also implies the ISCO in this sense
(restricting to particles moving forward in time, it is in fact
equivalent to the requirement for ISCO).
The curve described by Eq. (36) is indeed a hyperbola,

except for the case when the two squared expressions
become proportional to each other. This would happen if�

∂ϕ

∂r
þ ∂ω

∂r
Aφ

�����
r¼r0;ϑ¼π

2

¼ 0: ð38Þ

Calculating the derivative of the generalized electrostatic
potential (3),

∂ϕ

∂r
¼ −

∂At

∂r
− ω

∂Aφ

∂r
−
∂ω

∂r
Aφ; ð39Þ

and using the expression for the radial electric field strength
in the locally nonrotating frame (4) and (5), which reads

FðrÞðtÞ ¼
1

N
ffiffiffiffiffiffi
grr

p
�
∂At

∂r
þ ω

∂Aφ

∂r

�
; ð40Þ

we can write

∂ϕ

∂r
¼ −N

ffiffiffiffiffiffi
grr

p
FðrÞðtÞ −

∂ω

∂r
Aφ ¼ − ~N

ffiffiffiffiffiffi
~grr

p
FðrÞðtÞ −

∂ω

∂r
Aφ:

ð41Þ

Since the product N2grr is finite and nonvanishing [as
manifested by passing to ~N2 and ~grr in extremal case,
cf. (2)], the condition (38) reduces to

FðrÞðtÞjr¼r0;ϑ¼π
2

¼ 0: ð42Þ

In this degenerate case Eq. (36) defines just a pair of
straight lines in l ~q plane rather than a hyperbola.
The hyperbola (36) has asymptotes

l ¼ − ~q
ffiffiffiffiffiffiffigφφ

p ∂ϕ
∂r � ~NAφffiffiffiffiffiffiffigφφ

p ∂ω
∂r ∓ ~N

����
r¼r0;ϑ¼π

2

: ð43Þ

We can also rewrite (36) as

�
l2
�ð∂ω

∂rÞ2
~N2

−
1

gφφ

�
þ ~q2

�ð∂ϕ
∂rÞ2
~N2

−
A2
φ

gφφ

�

þ2l ~q

�
∂ω
∂r

∂ϕ
∂r

~N2
þ Aφ

gφφ

�	����
r¼r0;ϑ¼π

2

¼ 1: ð44Þ

The coefficients in this form determine the orientation of
the hyperbola with respect to axes ~q and l. We will
distinguish several cases and denote them by numbers
and letters (by which they are identified in figures
in Sec. V).
Case 1a: If

�
gφφ

�
∂ω

∂r

�
2

− ~N2

�����
r¼r0;ϑ¼π

2

> 0; ð45Þ

(44) is valid for ~q ¼ 0, which means that both branches
exist for both signs of ~q, i.e., both cross the l axis.
Case 1b: If, on the other hand,

�
gφφ

�
∂ω

∂r

�
2

− ~N2

�����
r¼r0;ϑ¼π

2

< 0; ð46Þ

(44) cannot be satisfied for ~q ¼ 0, so the branches are
separated by the l axis and each of them corresponds to
different sign of ~q. The marginal case 1c occurs when
in (44)

�
gφφ

�
∂ω

∂r

�
2

− ~N2

�����
r¼r0;ϑ¼π

2

¼ 0; ð47Þ

i.e., the coefficient multiplying l2 vanishes. Comparing
with (43), we see that this corresponds to one of the
asymptotes having infinite slope, thus coinciding with the
l axis.
A similar discussion applies to the coefficient of ~q2.
Case 2a: If

�
gφφ

�
∂ϕ

∂r

�
2

− ~N2A2
φ

�����
r¼r0;ϑ¼π

2

> 0; ð48Þ

both branches of the hyperbola cross the ~q axis and exist for
both signs of l.
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Case 2b: The opposite inequality,�
gφφ

�
∂ϕ

∂r

�
2

− ~N2A2
φ

�����
r¼r0;ϑ¼π

2

< 0; ð49Þ

means that the branches are separated by the ~q axis and
each of them has different sign of l.
Case 2c: If�

gφφ

�
∂ϕ

∂r

�
2

− ~N2A2
φ

�����
r¼r0;ϑ¼π

2

¼ 0; ð50Þ

one can see again from (43) that this means that (at least)
one of the asymptotes has zero slope, i.e., it coincides with
the ~q axis.
Case 3: If�

gφφ
∂ω

∂r
∂ϕ

∂r
þ ~N2Aφ

�����
r¼r0;ϑ¼π

2

¼ 0; ð51Þ

the coefficient multiplying l ~q vanishes. In that case, the
hyperbola is symmetrical with respect to the inversions
l → −l and ~q → − ~q. Since we are interested in just one of
the branches, only one of the symmetries matters.
Let us note that when the electromagnetic field

vanishes, the conditions (38), (50), and (51) are satisfied
simultaneously—the charge of the particle loses any effect
on kinematics.
Turning back to (29) in general, it is obvious that the

radial derivative of the effective potential at r0 will be
positive for l ¼ 0, ~q ¼ 0. Therefore, the “admissible
region” in the l ~q plane will be “outside” the hyperbola
branch given by (35) with (29). If the branches are
separated by one of the axes, critical particles must have
a specific sign of one of the parameters to possibly reach r0.
Therefore, the difference among the a and b subcases of
cases 1 and 2 is essential.
It is even more important to look at combinations of

these subcases. There are two generic possibilities, when
one of the two BSW mechanisms prevails: the combination
1a2b, when only the sign of l is restricted, corresponds to
the “classical” centrifugal mechanism of BSW effect (first
described in [6] and generalized in [28]). On the other hand,
the variant 1b2a with a restriction on the sign of ~q signifies
the dominance of the electrostatic analogy of the BSW
effect (conceived in [30]).
However, in the ω ≠ 0, ~q ≠ 0 case, another two (more

unusual) combinations can possibly occur. Scenario 1a2a
means that the sign of neither l nor ~q is restricted. In this
case, there will be critical particles with both signs of l and
with both signs of ~q that can approach r0. Just one
combination of signs of both parameters will be excluded.
In contrast, the possibility 1b2b would mean that signs of
both l and ~q are restricted, i.e., that only critical particles
with just one combination of signs of l and ~q can approach

r0. Curiously enough, for the extremal Kerr-Newman
solution (see below), of those two, only the 1a2a case
can occur. However, the 1b2b variant could possibly be
realized in more general black-hole models.
As the c cases represent transitions between different

combinations described above, the corresponding condi-
tions (47) and (50) have particular physical significance; it
is of primary interest if these conditions can be satisfied for
some black-hole solution and for which values of its
parameters.
Finally, let us note that the condition (26) for critical

particles can be used to define a system of parallel lines
(labeled by different values of εcr) in the l ~q plane.4 Apart
from the orientation of the hyperbola, it is also of interest to
examine how the branch defined by (35) with (29)
intersects these critical energy lines and which critical
energies belong to the admissible region.

D. Parametric solution

There are many possible parametrizations for
branch(es) of a hyperbola. We will derive a particular
parametrization of the hyperbola branch given by (35) with
(29), which is simple and which can also be used to
describe curves given by analogues of (35) with higher
derivatives.5

Namely, let us make the following change of variables
(assuming Aφjr¼r0;ϑ¼π=2 ≠ 0):

l ¼ ληAφjr¼r0;ϑ¼π
2
; ~q ¼ λð1þ ηÞ; ð52Þ

under which (35) with (29) becomes

 
∂ω

∂r
ληAφ þ λð1þ ηÞ ∂ϕ

∂r
þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

s !�����
r¼r0;ϑ¼π

2

¼ 0:

ð53Þ

Expressing η as

η ¼ −
λ ∂ϕ
∂r þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
λð∂ϕ

∂r þ ∂ω
∂r AφÞ

��������
r¼r0;ϑ¼π

2

¼
λ ∂ϕ
∂r þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
λ ~N

ffiffiffiffiffiffi
~grr

p
FðrÞðtÞ

��������
r¼r0;ϑ¼π

2

; ð54Þ

4Alternatively, one can also interpret (26) as an equation
of single plane in εl ~q space, as we did in [37].

5One can also express the hyperbola as a pair of functions lð ~qÞ
(as we examined in [37]).
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and plugging back into (52), we get parametric equations
for l; ~q as functions of λ

l ¼ −

0
BB@
λ ∂ϕ
∂r þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
∂ϕ
∂r þ ∂ω

∂r Aφ

Aφ

1
CCA
��������
r¼r0;ϑ¼π

2

¼

0
BB@
λ ∂ϕ
∂r þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
~N
ffiffiffiffiffiffi
~grr

p
FðrÞðtÞ

Aφ

1
CCA
��������
r¼r0;ϑ¼π

2

; ð55Þ

and

~q ¼
λ ∂ω
∂r Aφ − ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
∂ϕ
∂r þ ∂ω

∂r Aφ

��������
r¼r0;ϑ¼π

2

¼
−λ ∂ω

∂r Aφ þ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
~N
ffiffiffiffiffiffi
~grr

p
FðrÞðtÞ

��������
r¼r0;ϑ¼π

2

: ð56Þ

If Aφjr¼r0;ϑ¼π=2 ¼ 0, (35) with (29) is just linear in ~q, so
we can solve for it directly,

~q ¼ −
∂ω
∂r lþ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

gφφ

q
∂ϕ
∂r

������
r¼r0;ϑ¼π

2

: ð57Þ

E. The second derivative

In order for the critical particles to approach r ¼ r0, their
parameters ~q and l must lie in the admissible region. This

region in the ~ql plane is delimited by the hyperbola branch
given by the requirement of zero first derivative of the
effective potential V at r0.

6 There are, however, more subtle
aspects. First, for critical particles with parameters located
(almost) at the border of the admissible region, i.e.,
parameters corresponding to (almost) zero first derivative
of V at r ¼ r0, the second derivative of V determines the
trend of the effective potential V and the admissibility of
motion.
Furthermore, one should distinguish between the

conditions suitable for “black-hole particle supercollider
experiment”, where the motion towards r ¼ r0 should be
allowed to start from some radius well above r0 (if not
from infinity of the spacetime, like in [6]), and a
situation, when the allowed band outside r0 is tiny.7 If
we do not make assumptions about asymptotics of the
effective potential V (or of the spacetime itself), this
distinction also depends on the second derivative of V at
r ¼ r0. There are multiple possibilities inside the admis-
sible region. If the first derivative of V at r ¼ r0 is
negative but very small, whereas the second one is
positive, V will reach a minimum and start to increase
for some radii not much higher than r0. Thus, the motion
of the corresponding critical particle will be allowed only
in a modest range of r. On the other hand, if both the
first and the second derivative of V at r ¼ r0 are
negative, they will not be outweighed by higher Taylor
orders until radii of multiples of r0, so the motion can
start well outside of the black hole. (See the Kerr-
Newman example below, cf. Fig. 1.) The higher deriv-
atives can make a difference, even at radii very close to
r0, only in the (uncommon) case when both the first and
the second derivative of V at r ¼ r0 will be very small.
Focusing here on the second derivative of V at r ¼ r0

for an extremal black hole (2), let us proceed analogously
to what we described for the first derivative, namely,
observing ∂

2N=∂r2 ¼ 2∂ ~N=∂rþ ðr − r0Þ∂2 ~N=∂r2. The
result is

∂
2V
∂r2

����
r¼r0

¼

2
64∂2ω
∂r2

lþ ~q
∂
2ϕ

∂r2
þ
�
2
∂ ~N
∂r

−
~N

gφφ

∂gφφ
∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðl− ~qAφÞ2

gφφ

s
þ

~N
gφφ

�
∂gφφ
∂r

− 2~qðl− ~qAφÞ
∂Aφ

∂r

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðl− ~qAφÞ2
gφφ

r
3
775
��������
r¼r0;ϑ¼π

2

:

ð58Þ

Again, we will consider the condition

6Let us note that in Table I of [25], Harada and Kimura propose a classification (for nonequatorial critical particles in the Kerr field)
somewhat similar to our discussion based on ∂V=∂rjr0 . In particular class I critical particles correspond to those inside our admissible
region, class II to those on the border and class III to the ones outside of it.

7These other cases may be compatible with the particle starting to plunge after moving on a nongeodesic trajectory
due to viscous losses inside an accretion disk. Such a process was discussed by Harada and Kimura in a slightly different
context [45].
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∂
2V
∂r2

����
r¼r0

¼ 0 ð59Þ

as a prescription of a curve in variables ~q and l. First, one can deduce its asymptotes,

l ¼ − ~q

∂
2ϕ
∂r2 � 1ffiffiffiffiffi

gφφ
p

�

2 ∂ ~N

∂r −
~N

gφφ

∂gφφ
∂r

�
Aφ þ 2 ~N ∂Aφ

∂r

�
∂
2ω
∂r2 ∓ 1ffiffiffiffiffi

gφφ
p



2 ∂ ~N

∂r −
~N

gφφ

∂gφφ
∂r

�
��������
r¼r0;ϑ¼π

2

: ð60Þ

However, since (59) leads to much more complicated curve than a branch of a hyperbola, the asymptotes do not provide
good information. (In fact, for the Kerr-Newman solution it can be seen that in some cases the curve approaches the
asymptotes very slowly and that it may also cross them.)
Nevertheless, we can use change of variables (52) to obtain a parametric solution in the form

l ¼ −

2
664
λ ∂

2ϕ
∂r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
þ 2 ∂ ~N

∂r þ


2 ∂ ~N

∂r −
~N

gφφ

∂gφφ
∂r þ 2

~N
Aφ

∂Aφ

∂r

�
λ2A2

φ

gφφ

∂
2ω
∂r2 Aφ þ ∂

2ϕ
∂r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
þ 2 ~N λAφ

gφφ

∂Aφ

∂r

Aφ

3
775
��������
r¼r0;ϑ¼π

2

ð61Þ

and

~q ¼
λ ∂

2ω
∂r2 Aφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
− 2 ∂ ~N

∂r −


2 ∂ ~N

∂r −
~N

gφφ

∂gφφ
∂r

�
λ2A2

φ

gφφ

∂
2ω
∂r2 Aφ þ ∂

2ϕ
∂r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
þ 2 ~N λAφ

gφφ

∂Aφ

∂r

��������
r¼r0;ϑ¼π

2

: ð62Þ

FIG. 1. Effective potential V for several particles with ∂V=∂rjr¼r0 ¼ 0 moving around the extremal Kerr-Newman black hole with
a=M ¼ 1=2. For 2=3 < ~q < 2=

ffiffiffi
3

p
(in red), the effect of the positive second derivative of V at r0 is clearly visible.
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Once more, when Aφjr¼r0;ϑ¼π=2 ¼ 0 and (52) does not work, we can solve (59) directly for ~q, obtaining

~q ¼ −
∂
2ω
∂r2 l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

gφφ

q
þ 2 ∂ ~N

∂r þ


2 ∂ ~N

∂r −
~N

gφφ

∂gφφ
∂r

�
l2
gφφ

∂
2ϕ
∂r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

gφφ

q
− 2 ~N

gφφ
l ∂Aφ

∂r

������
r¼r0;ϑ¼π

2

: ð63Þ

The details of the behavior of the curve (59) are in general not quite simple, since the curve can have two branches separated
by a “third asymptote.” This is manifested by the fact that denominators of (61) and (62) can go to zero for a finite value of
parameter λ. One can verify that for real λ the only such value can be

λ0 ¼ −

2
664sgn

�
∂Aφ

∂r

� ffiffiffiffiffiffiffigφφ
p
Aφ

∂
2ω
∂r2 Aφ þ ∂

2ϕ
∂r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 ~N2

gφφ



∂Aφ

∂r

�
2
−


∂
2ω
∂r2 Aφ þ ∂

2ϕ
∂r2

�
2

r
3
775
��������
r¼r0;ϑ¼π

2

: ð64Þ

Taking the limit λ → λ0 of the ratio of (61) and (62), we find
the third asymptote to be the line l ¼ ~qAφjr¼r0;ϑ¼π=2. Since
the values of l and ~q given by (61) and (62) for λ ¼ 0 lie on
this line, we see that the curve (59) necessarily crosses this
third asymptote.
In order for the branch separation to occur, λ0 must be a

real number. Therefore, if it holds that

�
4 ~N2

gφφ

�
∂Aφ

∂r

�
2

−
�
∂
2ω

∂r2
Aφ þ

∂
2ϕ

∂r2

�
2
�����

r¼r0;ϑ¼π
2

> 0; ð65Þ

the curve (59) will indeed have two branches, whereas for

�
4 ~N2

gφφ

�
∂Aφ

∂r

�
2

−
�
∂
2ω

∂r2
Aφ þ

∂
2ϕ

∂r2

�
2
�����

r¼r0;ϑ¼π
2

< 0; ð66Þ

there will be only one branch. Interestingly, in the marginal
case,

�
4 ~N2

gφφ

�
∂Aφ

∂r

�
2

−
�
∂
2ω

∂r2
Aφ þ

∂
2ϕ

∂r2

�
2
�����

r¼r0;ϑ¼π
2

¼ 0; ð67Þ

one can verify that the line l ¼ ~qAφjr¼r0;ϑ¼π=2 coincides
with one of the asymptotes (60).
The formulas (61) and (62) can be decomposed into two

contributions

lðλÞ ¼ lregðλÞ þ lsingðλÞ;
~qðλÞ ¼ ~qregðλÞ þ ~qsingðλÞ: ð68Þ

Here lreg and ~qreg are finite for λ → λ0, whereas lsing and
~qsing are given by expressions (61) and (62) with their
numerators evaluated at λ0. One can show that lreg; ~qreg
alone form a parametric expression of a branch of a
hyperbola with asymptotes (60), whereas lsing and ~qsing
parametrize the line l ¼ ~qAφjr¼r0;ϑ¼π=2. Unfortunately,

the resulting expressions are not so “practical” in general
(see A 2), but they become shorter for the Kerr-Newman
case [cf. (87)–(89)].
Leaving aside the technical details, let us note that it is of

interest to study the intersections of curve (61) and (62)
with the border (55) and (56) of the admissible region. If
there is a part of the border that lies inside the region where
the second derivative of V at r0 is positive, the cases
described at the beginning of this section will arise. In the
figures in the next section, these “problematic” parts of the
border will be plotted in red.

V. RESULTS FOR THE KERR-NEWMAN
SOLUTION

For the Kerr-Newman solution with mass M, angular
momentum aM (a ≥ 0), and charge Q, the metric (1) reads

g ¼ −
ΔΣ
A

dt2 þA
Σ
sin2ϑ

�
dφ −

a
A

ð2Mr −Q2Þdt
�
2

þ Σ
Δ

dr2 þ Σdϑ2; ð69Þ

where

Δ ¼ r2 − 2Mrþ a2 þQ2;

Σ ¼ r2 þ a2cos2ϑ;

A ¼ ðr2 þ a2Þ2 − Δa2sin2ϑ: ð70Þ

In the extremal case,M2 ¼ Q2 þ a2 and Δ ¼ ðr −MÞ2, so
Δ plays the role of expression ðr−r0Þ2 factored out in (2)
with r0¼M. It is obvious that one of the parameters, sayM,
constitutes just a scale; only ratios of the other two
parameters with respect to it imply properties of the solution.
Thus, the extremal case is effectively a one-parameter class.
The electromagnetic potential for the Kerr-Newman

solution is
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A ¼ −
Qr
Σ

ðdt − a sin2ϑdφÞ; ð71Þ

which implies the generalized electrostatic potential,

ϕ ¼ Qr
A

ðr2 þ a2Þ: ð72Þ

Substituting (69), (71), and (72) into (15), we get the
effective potential for equatorial electrogeodesic motion
(cf. [32])

V ¼ 1

Aeq

n
ð2Mr −Q2Þalþ ~qQrðr2 þ a2Þ

þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ½Aeq þ ðlr − ~qQaÞ2�

q o
; ð73Þ

whereAeq stands forAjϑ¼π=2. It is interesting to note that in
the extremal case, for particles with special values of
parameters

l ¼ a; ~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q

; ð74Þ

it holds that V ≡ 1.

A. The hyperbola

Critical particles with given values of ~q and l must have
the energy defined by

εcr ¼
al

Q2 þ 2a2
þ ~qQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q2 þ 2a2

: ð75Þ

Kinematic restrictions on their motion towards r ¼ M are
expressed by the branch of the hyperbola defined by
Eq. (35) with (29), which for the extremal Kerr-Newman
solution takes the form [when multiplied by common
denominator ðQ2 þ 2a2Þ2]

− 2al
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þa2

p
− ~qQ3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þa2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2þ 2a2Þ2þðl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þa2

p
− ~qQaÞ2

q
¼ 0.

ð76Þ

If we turn to the whole hyperbola in the form (36), we get

ð2al
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
þ ~qQ3Þ2

ðQ2 þ a2ÞðQ2 þ 2a2Þ2 −
ðl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
− ~qQaÞ2

ðQ2 þ 2a2Þ2 ¼ 1:

ð77Þ

In the form (44), it reads

l2
3a2 −Q2

ðQ2 þ 2a2Þ2 þ ~q2
Q2ðQ4 −Q2a2 − a4Þ
ðQ2 þ a2ÞðQ2 þ 2a2Þ2

þ 2l ~q
Qað3Q2 þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
p

ðQ2 þ 2a2Þ2
¼ 1. ð78Þ

Equation (43) for the asymptotes of the hyperbola
reduces to

l ¼ ~q
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
p −Q2 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
2a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p : ð79Þ

The parametric solution for (76) given in general by (55)
and (56) turns out to be

l ¼ a
−λQ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þ λ2Q2a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
ðQ2 þ 2a2Þ

; ð80Þ

~q ¼ 2λQa2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þ λ2Q2a2

p
QðQ2 þ 2a2Þ : ð81Þ

B. The second derivative

Regarding (58), we find for the value of the second
derivative of V at r ¼ M

∂
2V
∂r2

����
r¼M

¼ 1

ðQ2 þ 2a2Þ3
h
2að2Q2 þ a2Þlþ 2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
ðQ2 − a2Þ ~q − 4Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þ ðl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
− ~qQaÞ2

q i

þ 2

ðQ2 þ 2a2Þ2
Q4 þ 2Q2a2 þ ~qQaðl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
− ~qQaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQ2 þ 2a2Þ2 þ ðl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
− ~qQaÞ2

q : ð82Þ

One can check that for ~q ¼ 0, l ¼ 0 this expression reduces to
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∂
2V
∂r2

����
r¼M

¼ −
2Q2

ðQ2 þ 2a2Þ2 ; ð83Þ

so that the region of ∂2V=∂r2jr0 > 0 will lie “outside” the curve (59). The parametric Eqs. (61) and (62) for this curve
become

l ¼ a
−2Q2a2 −Q4 þ 1

Q2þ2a2

h
λQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
ðQ2 − a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p
− ð3Q2 þ 2a2ÞQ2a2λ2

i
λQa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
−Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p ; ð84Þ

~q ¼ −
Q4 þ 2Q2a2 þ 1

Q2þ2a2

�
λ Qa2ffiffiffiffiffiffiffiffiffiffi

Q2þa2
p ð2Q2 þ a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p
þ 2Q4a2λ2

�
λQ2a2 − Q3ffiffiffiffiffiffiffiffiffiffi

Q2þa2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQ2 þ 2a2Þ2 þQ2a2λ2
p : ð85Þ

The value λ0, for which the denominators of (84) and (85) vanish, is

λ0 ¼
Q
a

Q2 þ 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ a2Q2 −Q4

p : ð86Þ

Performing the decomposition (68), we find that finite part of (84) is

lreg ¼ a
−Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
ðQ4 − 4Q2a2 − 2a4Þλþ ð2Q4 þ 2Q2a2 þ a4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p
ðQ2 þ 2a2ÞðQ4 −Q2a2 − a4Þ ; ð87Þ

whereas for (85) the finite part (A6) goes over to

~qreg ¼
Qa2ð4Q4 þ 3Q2a2Þλþ ð2Q4 þ 2Q2a2 þ a4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p
QðQ2 þ 2a2ÞðQ4 −Q2a2 − a4Þ : ð88Þ

The contributions (A8) and (A7) that blow up for λ → λ0 are given by8

lsing ¼
QaðQ2 þ a2Þ

Q4 −Q2a2 − a4
ðQ2 þ 2a2Þ2

λa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
−Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ 2a2Þ2 þQ2a2λ2

p ; ~qsing ¼ lsing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Qa

: ð89Þ

The curves (80), (81) and (84), (85) have two inter-
sections. Naturally, one of them coincides with (74). This
corresponds to V ≡ 1, as we stated before; thus, all the
derivatives of V at all radii will be zero for these values
of ~q and l. One can check that the point (74) corresponds
to λ ¼ 0 in (80), (81) and (84), (85). The other intersection
lies at

l ¼ a
jQj

2Q2 þ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p ; ~q ¼ 1

jQj
Q2 − a2

Q
; ð90Þ

and corresponds to

λ ¼ −
1

jQj
Q2 þ 2a2

Q
: ð91Þ

One can make sure that the second derivative of V
at r ¼ M is positive on a finite stretch of the curve (80),
(81), which lies in between these intersections. This
part of the curve is plotted in red in the corresponding
figures.

C. Important special cases

Let us now examine kinematic restrictions coming from
the equations above for some specific cases of the extremal
Kerr-Newman solution.

8Interestingly, all the resulting formulas work well even for the
case when real λ0 does not exist (66). They are not defined in the
marginal case (67).
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1. Extremal Kerr solution

The condition (38) for the hyperbola branch (76) to
degenerate into straight line corresponds to

Q
Q2 þ 2a2

¼ 0 ð92Þ

for the extremal Kerr-Newman solution. We see that this
can be satisfied only by setting Q ¼ 0, i.e., for the
extremal Kerr solution. Regarding (78), the conditions
(50) and (51) (case 2c3) are also satisfied for Q ¼ 0,
which we anticipated for a case without an electromag-
netic field.
Equation (76) is satisfied for l=M ≡ l=a ¼ 2=

ffiffiffi
3

p
.

Therefore, critical particles can approach r ¼ M for
angular momenta l=M > 2=

ffiffiffi
3

p
in this case, which

corresponds to energies εcr > 1=
ffiffiffi
3

p
, as seen from (75).

However, the expression (82) becomes

∂
2V
∂r2

����
r¼M

¼ l
4a3

; ð93Þ

so the second derivative of V at r ¼ M will be positive
for all those particles. Thus, for the bounded particles
close to l=M ¼ 2=

ffiffiffi
3

p
, their motion will be allowed for

only a short range of radii.

Let us yet note that the parameters l=M ¼ 2=
ffiffiffi
3

p
,

ε ¼ 1=
ffiffiffi
3

p
mentioned above are those of the marginally

stable circular orbit in the extremal Kerr limit, as
given in [3]. Furthermore, the other special circular
orbits considered in [3], i.e., the marginally bound
orbit and the photon orbit (with ε → ∞, l → 2Mε),
also correspond to critical particles in the extremal
Kerr limit.

2. The 60° black hole

Turning again to (78), we find that condition (47)
(case 1c) can be satisfied if and only if 3a2 ¼ Q2.
This corresponds to a=M ¼ 1=2 and jQj=M ¼ ffiffiffi

3
p

=2,
respectively.9 The special alignment of the hyperbola
branch (76) and the critical energy lines in the admissible
region in this case can be seen in Fig. 2.
In order to explore the significance of the sign of

∂
2V=∂r2jr0 , we plotted V for several particles on the
“border” (with ∂V=∂rjr0) in Fig. 1. With ∂

2V=∂r2jr0 < 0,
even the bounded particle shown (with ~q ¼ 0.5) has a
reasonable allowed band.

FIG. 2. Case 1c2a: Kinematic restrictions for critical particles in the case of the extremal Kerr-Newman black hole with a=M ¼ 1=2.
The hyperbola branch forms a border between the critical particles that can approach r ¼ M and those that cannot. In the admissible
region the lines of constant critical energy are plotted. We considered Q > 0; the figure for Q < 0 can be obtained by the inversion
~q → − ~q. Note that one of the asymptotes coincides with the l axis.

9If we express the parameters of the extremal Kerr-Newman
black hole by a “mixing angle” defined by a ¼ M cos γKN,
Q ¼ M sin γKN, as we did in [33], a=M ¼ 1=2 corresponds to
its value of 60°, hence the name for this case.
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3. “Golden” black hole

Apart from the degenerate Kerr case, condition (50)
(case 2c) will be also satisfied if Q4 −Q2a2 − a4 ¼ 0, as
follows from (78). This equation has one positive root,
which corresponds to Q2=a2 ¼ ð ffiffiffi

5
p þ 1Þ=2. This is the

“golden ratio” number.10 Since the golden ratio plus 1
equals the golden ratio squared, we getM=a¼ð ffiffiffi

5
p þ1Þ=2

and M2=Q2 ¼ ð ffiffiffi
5

p þ 1Þ=2. And, by definition, 1 over the
golden ratio is the golden ratio minus 1, so it holds that,
e.g., a=M ¼ ð ffiffiffi

5
p

− 1Þ=2. The plot of the hyperbola
branch (76) in this case can be seen in Fig. 3.
Curiously enough, the condition (67) also corresponds

to Q4 −Q2a2 − a4 ¼ 0, as seen from (86). Thus, for
a=M > ð ffiffiffi

5
p

− 1Þ=2 there will be two branches of the
curve (84), (85). However, it turns out that only one of
the branches will intersect the admissible region. This
follows from the fact that one of the intersections with its
border, curve (76), lies at λ ¼ 0 and the position in λ
[cf. (91)] of the other has always the opposite sign
compared to λ0 [see (86)], where the branch cut occurs.
We have exhausted all cases when conditions (47) and

(50) can be satisfied. Now let us look at the signs of the
coefficients multiplying l2 and ~q2 terms in (78) on the

intervals delimited by these special cases. For a=M >
ð ffiffiffi

5
p

− 1Þ=2 ≐ 0.618, the coefficient of l2 is positive and
the coefficient of ~q2 is negative (case 1a2b). Thus, the
critical particles need to be corotating in order to
approach r ¼ M, but they can have both signs of charge
(or be uncharged). The “centrifugal mechanism” prevails
in this interval. On the other hand, for a=M < 1=2 the
coefficient of l2 is negative and the coefficient of ~q2 is
positive (case 1b2a). Therefore, critical particles can be
radially moving, counterrotating, or corotating, but they
must have the same sign of charge as the black hole. In
particular, they cannot be uncharged (cf. [27]). Thus, in
this interval the “electrostatic mechanism” prevails.
However, for ð ffiffiffi

5
p

− 1Þ=2 > a=M > 1=2, both coeffi-
cients are positive [case 1a2a, so inequalities (45) and
(48) hold simultaneously]. In this interval one can choose
between the mechanisms; the critical particles need to
either be corotating or have the same sign of charge as
the black hole in order to approach r ¼ M.

4. Extremal Reissner-Nordström solution

Again, in addition to the Kerr case, condition (51)
(case 3) can also be satisfied for a ¼ 0, as we see from
(78). As this case of the extremal Reissner-Nordström black
hole is nonrotating, particle kinematics cannot depend on
the change l → −l. This is reflected in the symmetry of the
hyperbola branch (76) with respect to ~q axis, see Fig. 4.

FIG. 3. Case 1a2c: Kinematic restrictions for critical particles in the case of the extremal Kerr-Newman black hole with a=M ¼
ð ffiffiffi

5
p

− 1Þ=2 (golden black hole). The hyperbola branch forms a border between the critical particles that can approach r ¼ M and those
that cannot. In the admissible region the lines of constant critical energy are plotted. We considered Q > 0; the figure for Q < 0 can be
obtained by the inversion ~q → − ~q. Note that one of the asymptotes coincides with the ~q axis.

10F. H. thanks Miguel Coelho Ferreira for kindly pointing
this out.
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Since Aφ ≡ 0 for a ¼ 0, one has to use solution (57) for
the hyperbola branch (76), which reads

~q ¼ 1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ l2

p
; ð94Þ

and the solution (63) for (59), which becomes

~q ¼ 2l2 þQ2

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ l2

p : ð95Þ

These curves touch at l ¼ 0, ~q ¼ sgnQ. Let us note that
radial critical particles were previously studied by
Zaslavskii in [30].

D. Energy considerations

As mentioned above, it is also of interest to study the
intersections of the hyperbola branch (76) with critical
energy lines. Since the Kerr-Newman solution is asymp-
totically flat, we focus on energy line with εcr ¼ 1, which
corresponds to critical particles coming from rest at
infinity. Solving for intersections of (75) for εcr ¼ 1 with
(76), we find that one is at the point (74), where V ≡ 1 (all
radial derivatives vanish for these parameters), and the
other one occurs for

l ¼ a
3Q2 þ 2a2

Q2
; ~q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q3

ðQ2 − 2a2Þ: ð96Þ

Both intersections coincide for a ¼ 0, when they reduce
to l ¼ 0, ~q ¼ sgnQ and lie on the ~q axis. Apart from this
case, both intersections occur for positive l, so critical
particles with εcr ≤ 1 must be always corotating for
a ≠ 0. Only the second intersection can lie on the l
axis, which happens for Q2 ¼ 2a2. This condition cor-
responds to a=M ¼ 1=

ffiffiffi
3

p
, jQj=M ¼ ffiffiffiffiffiffiffiffi

2=3
p

. Thus, we
reproduced the result of [29] that uncharged critical
particles with εcr ¼ 1 cannot approach r ¼ M for an
extremal Kerr-Newman black hole with a=M < 1=

ffiffiffi
3

p
.

The hyperbola branch (76) for this case is plotted in
Fig. 5. For Q → 0, the expressions (74) and (96) break
down, because for the Q ¼ 0 (Kerr) case there is no
dependence of the particle kinematics on ~q. In that case,
both (76) and (75) reduce just to (nonintersecting) lines
of constant l.
Another interesting question is to find the “energy

vertex” of the hyperbola branch, i.e., what is the minimal
value of the critical energy on curve (76). One finds that it
lies at the point (90), with the corresponding critical energy
being

εcr ¼
jQjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ a2
p : ð97Þ

This vertex energy will always be smaller than 1, except
for the a ¼ 0 (Reissner-Nordström) case, when the vertex
coincides with the intersections with the εcr ¼ 1 line

FIG. 4. Case 1b2a3: Kinematic restrictions for critical particles in the case of the extremal Reissner-Nordström black hole (a ¼ 0).
The hyperbola branch forms a border between the critical particles that can approach r ¼ M and those that cannot. In the admissible
region the lines of constant critical energy are plotted. We considered Q > 0; the figure for Q < 0 can be obtained by the inversion
~q → − ~q. Note the symmetry with respect to the ~q axis.
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[(74) and (96)] and lies on the ~q axis. The vertex can
cross the l axis, which occurs if Q2 ¼ a2. That corre-
sponds to a=M ¼ jQj=M ¼ 1=

ffiffiffi
2

p
(see Fig. 6).

Let us note that although the expressions (90) break
down for Q → 0, the corresponding critical energy (97)
is regular. However, it does not have the correct limit
for Q → 0, since it goes to zero, whereas the lowest
energy required for critical particles in the extremal
Kerr solution in order to approach r ¼ M is 1=

ffiffiffi
3

p
, as

noted above. This is an example of a “discontinuous”
behavior of the kinematic restrictions in the limit
Q → 0; it has further manifestations that we discuss
below.

E. The mega-BSW phenomena

If Q is small but nonzero, however tiny it may be, one
can still maintain the magnitude of electrostatic force
carried to a particular test particle if it has accordingly
high ~q. This can be related to the divergent behavior that
we noticed in the expressions for positions of special points
(all of them corresponding to εcr ≤ 1) (74), (90), and (96) in
the l ~q plane. These features still occur regardless of how
small the charge Q is, but at higher and higher values
of ~q. We can see that in all these cases it holds that
jlj ≐ jQ ~qj for very small Q. However, the divergences in

the expressions are of different orders, which has interest-
ing consequences.
Though the position of the intersection (74) in l

approaches a constant for Q → 0 and just the position
in ~q diverges, for the other two points even the position
in l diverges for Q → 0. Thus, for very small Q, we can
have charged critical particles that have εcr ≤ 1, yet
posses enormous values of angular momentum, and
which still can approach r ¼ M (hence the mega-BSW
effect). Such a thing is not possible in either the Q ≈ a or
Q ¼ 0 regimes.
To examine this effect in more detail, let us assume

that there is some value ~qmax ≫ 1 that acts as an upper
bound for specific charge of the particles, j ~qj ≤ ~qmax.
Then, we can find a value Qmin of black hole’s charge
such that for jQj ≥ Qmin some of the special points
[(74), (90), or (96)] will fit in the interval ½− ~qmax; ~qmax�.
The Q → 0 behavior will be parametrized by ~qmax → ∞
asymptotics. Furthermore, we can define lmax such that
the position of a selected special point [(74), (90), or
(96)] will be jlj ≐ lmax for jQj ¼ Qmin. Since Qmin will
be small, we can use approximations and then observe
the asymptotics for the three special points, which are
summarized in Table I.
These asymptotics tell us how small is the value of Q,

for which we can still fit one of the special points into

FIG. 5. Case 1a2a: Kinematic restrictions for critical particles in the case of the extremal Kerr-Newman black hole with a=M ¼
1=

ffiffiffi
3

p
. The hyperbola branch forms a border between the critical particles that can approach r ¼ M and those that cannot. In the

admissible region the lines of constant critical energy are plotted. We considered Q > 0; the figure for Q < 0 can be obtained by the
inversion ~q → − ~q. Note that the εcr ¼ 1 intersects with the border at the l axis.
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the bounded range of values of charge ~q, and how large
angular momentum l the particles corresponding to this
point can have for that value of Q.
This effect can also be relevant for considering

BSW-type effects as an edge case for possible astro-
physical particle collision processes. There are calcu-
lations, first using Wald’s approximate (test-field)
solution [46] and later an exact Ernst-Wild solution
[47], showing that a black hole can maintain a small,
nonzero charge in the presence of an external magnetic
field. Furthermore, considering elementary particles, an
electron gives us ~qmax > 1020. However, the practical
viability of the generalized BSW effect is in any case
hindered by the unlikely existence of extremal black
holes, the validity of the test-particle approximation,
and complications with energy extraction (cf. the
Introduction).

VI. SUMMARY AND CONCLUSION

We have studied the kinematics of critical particles
moving around axially symmetric stationary extremal
black holes, focusing on the case when both rotation
and electromagnetic interaction are present. In the dis-
cussion, we used the minimum energy V [Eq. (15)], which
is an analogy of a classical potential. Whether a critical
particle can approach the position of the degenerate
horizon or not depends heavily on properties of the black
hole as well as on the parameters of the particle. If we treat
the black hole as fixed, we can visualize the restrictions in
the space of the parameters l and ~q (specific axial angular
momentum and charge) of the particle.
To do so, we derived expressions for curves ∂V=∂rjr0¼0,

see (55) and (56), and ∂
2V=∂r2jr0 ¼ 0, cf. (61) and (62), in

this parameter space. The first is just a branch of a
hyperbola, whereas the second is technically complicated
and can split into two branches. These curves divide the
parameter space into different regions. Critical particles
with parameters in the ∂V=∂rjr0 < 0 part (the admissible
region) can approach r0. However, the interval of r for
which the motion is allowed may be short, if they fall into
the part, where ∂

2V=∂r2jr0 > 0.
We then studied the dependence of the restrictions on

the properties of the black hole. The relevant question is

TABLE I. Themega-BSWeffect illustrated (see text for details).

Point Qmin=M lmax=M

(74) ð ~qmaxÞ−1 1
(90) ð ~qmaxÞ−1

2 ð ~qmaxÞ12
(96) 2

1
3ð ~qmaxÞ−1

3 2
1
3ð ~qmaxÞ23

FIG. 6. Case 1a2b: Kinematic restrictions for critical particles in the case of the extremal Kerr-Newman black hole with a=M ¼ 1=
ffiffiffi
2

p
.

The hyperbola branch forms a border between the critical particles that can approach r ¼ M and those that cannot. In the admissible
region the lines of constant critical energy are plotted. We considered Q > 0; the figure for Q < 0 can be obtained by the inversion
~q → − ~q.
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how many quadrants of the l ~q plane are intersected by the
hyperbola branch (forming the border of the admissible
region). As the admissible region is outside the hyperbola
branch, it lies in the same quadrants as its border. In general
cases it passes through two quadrants. In the case that we
denoted as 1a2b, critical particles must have a specific sign
of angular momentum in order to approach r ¼ r0, but can
have either sign of charge. Specially, they can be
uncharged, but cannot move purely radially. This means
the dominance of the centrifugal type of generalized BSW
effect. On the other hand, in case 1b2a the particles must
have a specific sign of charge to approach r ¼ r0, but they
can have either sign of angular momentum. This corre-
sponds to the electrostatic type of generalized BSWeffect.
Furthermore, we found that two mixed cases are also

possible. In case 1a2a, the hyperbola branch passes through
three quadrants, so that the signs of the charge and angular
momentum of the critical particles are not restricted in
order to approach r ¼ r0. Just one combination of the signs
is forbidden. In contrast, in case 1b2b, the signs of both
charge and angular momentum of the critical particle
approaching r ¼ r0 are restricted. We denoted the special
limiting cases between a and b as c (see also Table II).
Another special situation is case 3, when the border (and
therefore the whole admissible region) has the symmetry
with respect to one of the inversions l → −l or ~q → − ~q.
The hyperbola branch may also degenerate into a straight
line. We noted that this naturally happens for a vacuum
black hole, together with conditions 2c3.
We applied and illustrated the general discussion

summarized above on the one-parameter class of extremal

Kerr-Newman solutions. From themixed cases, only 1a2a is
realized in this class. Apart from general kinematic restric-
tions (embodied in the position of the hyperbola branch
enclosing thewhole admissible region), we also investigated
a subset of critical particles with energies corresponding to
coming from rest at infinity or lower, εcr ≤ 1, i.e., marginally
bound and bound particles. We found that for a=M > 1=

ffiffiffi
3

p
these particles can have either sign of charge, but must be
corotating to approach r ¼ M, whereas for a=M < 1=

ffiffiffi
3

p
they must be both corotating and have the same sign of the
charge as the black hole in order to approach r ¼ M. The
restrictions for particles with εcr ≤ 1 are thusmore stringent.
The main results for restrictions on the parameters of critical
particles in order to approach r ¼ M for extremal Kerr-
Newman black holes are summarized in Table II.11

As a last point, we discussed unusual behaviour in the
Q → 0 limit, when one can maintain the magnitude of
electrostatic force by considering very large j ~qj. We found
that for very smallQ, critical particles with εcr ≤ 1 can have
enormous values not only of specific charge, but also of
angular momentum, and still be able to approach r ¼ M.
This is not possible for the cases Q ¼ 0 or Q ≈ a. We
discussed that this mega-BSW effect could have some
significance in astrophysics because black holes can
maintain a small charge due to interaction with external
fields (see [46,47]). However, as no black holes are
expected to be precisely extremal, one should look for

TABLE II. Restrictions on signs of l; ~q for critical particles that can approach r ¼ M in an extremal Kerr-Newman
spacetime. Special positions of special points in their parameter space are also indicated. (Note that (90) is the point
with smallest εcr in the admissible region, whereas (96) and (74) are special points on its border, curve ∂V=∂rjr0 ¼ 0,
with εcr ¼ 1. In the a ¼ 0 case, all three points coincide.)

Kerr-Newman black-hole parameters Restrictions

jγKNj a
M General case For εcr ≤ 1 Notes

0° 1 Vacuum
9>>>>>>>>>>>>=
>>>>>>>>>>>>;

0° < jγKNj < 45° 1 > a
M > 1ffiffi

2
p

9>>=
>>; 1a2b45° 1ffiffi

2
p

l > 0

(90) at ~q ¼ 0

45° < jγKNj < 51.8° 1ffiffi
2

p > a
M >

ffiffi
5

p
−1
2

jγKNj ≐ 51.8°
ffiffi
5

p
−1
2

1a2c

51.8° < jγKNj < 54.7°
ffiffi
5

p
−1
2

> a
M > 1ffiffi

3
p

9>>>>=
>>>>; 1a2ajγKNj ≐ 54.7° 1ffiffi

3
p l > 0, ~qQ ≥ 0 (96) at ~q ¼ 0

54.7° < jγKNj < 60° 1ffiffi
3

p > a
M > 1

2

9>>=
>>;60° 1

2
1c2a l > 0, ~qQ > 0

60° < jγKNj < 90° 1
2
> a

M > 0 1b2a
90° 0 1b2a3 l ¼ 0, ~qQ > 0 (96), (90), (74) at l ¼ 0

11For convenience, apart from the ratio a=M, we used also the
Kerr-Newman mixing angle (Q ¼ M sin γKN, a ¼ M cos γKN) to
parametrize the class.
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some analogues of this mega-BSW behavior for nearly
extremal black holes. This is left for future work.
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APPENDIX: AUXILIARY CALCULATIONS

1. Derivatives of effective potentials

The turning point, which is also a stationary point of an
effective potential, corresponds to a circular orbit. The
effective potential in question may be either W [3,40] or
V [32] [see Eqs. (13)–(15)]. Let us examine the correspon-
dence between the conditions, which holds for r > rþ (or

N2 > 0, more precisely). Taking the radial derivative of (14),
we see

∂W
∂r

¼ −
∂Vþ
∂r

ðε − V−Þ − ðε − VþÞ
∂V−

∂r
: ðA1Þ

Indeed, all radial turning points indicated by W, which are
also radial stationary points ofW, are radial stationary points
of either Vþ or V− as well,

W ¼ 0 &
∂W
∂r

¼ 0 ⇔

�
ε ¼ Vþ &

∂Vþ
∂r

¼ 0

�
or�

ε ¼ V− &
∂V−

∂r
¼ 0

�
: ðA2Þ

Thus, under restriction to the motion forward in time (11),
W and V ≡ Vþ are interchangeable for finding orbits.
The circular orbit, which is also an inflection point of an

effective potential, is marginally stable. To see that W and
V are interchangeable in this regard as well (cf. [3,32,40]),
let us take another radial derivative of (14),

∂
2W
∂r2

¼ −
∂
2Vþ
∂r2

ðε − V−Þ þ 2
∂Vþ
∂r

∂V−

∂r
− ðε − VþÞ

∂
2V−

∂r2
;

ðA3Þ
which leads to the desired conclusion

W ¼ 0 &
∂W
∂r

¼ 0 &
∂
2W
∂r2

¼ 0 ⇔

�
ε ¼ Vþ &

∂Vþ
∂r

¼ 0 &
∂
2Vþ
∂r2

¼ 0

�
or

�
ε ¼ V− &

∂V−

∂r
¼ 0 &

∂
2V−

∂r2
¼ 0

�
: ðA4Þ

However, the most important result is an insight on how these results break down for r → rþ, where Vþ → V− and
derivatives of V� generally may not be finite (so W may seem favorable). Nonetheless, for critical particles in extremal
black hole spacetimes, a different form of correspondence emerges, and since (the radial derivative of) V still embodies
information about motion forward in time, it becomes preferable.

2. The decomposition (68)

Now let us present the general form of the contributions to (61) and (62) according to the decomposition (68). Introducing
the abbreviations

W ¼ ∂
2ω

∂r2
Aφ þ

∂
2ϕ

∂r2
; N ¼ 2

∂ ~N
∂r

−
~N

gφφ

∂gφφ
∂r

; ðA5Þ

the finite and the singular part of (62) can be written as

~qreg ¼ −



W ∂

2ω
∂r2 þ 2N ~N

gφφ

∂Aφ

∂r

�
λAφ −



WN þ 2 ~N ∂

2ω
∂r2

∂Aφ

∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ λ2A2

φ

gφφ

r
4 ~N2

gφφ



∂Aφ

∂r

�
2
− W2

��������
r¼r0;ϑ¼π

2

; ðA6Þ

and
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~qsing ¼ −
2W ~N ∂

2ω
∂r2

∂Aφ

∂r −W2 ~N
gφφ

∂gφφ
∂r þ 8 ~N2

gφφ
∂ ~N
∂r



∂Aφ

∂r

�
2

h
4 ~N2

gφφ



∂Aφ

∂r

�
2
−W2

i�
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2A2

φ

gφφ

r
þ 2 ~N λAφ

gφφ

∂Aφ

∂r

�
��������
r¼r0;ϑ¼π

2

: ðA7Þ

Then, the expressions for contributions to (61) are closely related to the above,

lreg ¼ ð ~qreg − λÞAφjr¼r0;ϑ¼π
2
; lsing ¼ ~qsingAφjr¼r0;ϑ¼π

2
: ðA8Þ
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