
Exact solutions to quadratic gravity

V. Pravda,1,* A. Pravdová,1,† J. Podolský,2,‡ and R. Švarc2,§
1Institute of Mathematics of the Czech Academy of Sciences,

Žitná 25, 115 67 Prague 1, Czech Republic
2Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague,

V Holešovičkách 2, 180 00 Praha 8, Czech Republic
(Received 16 December 2016; published 13 April 2017)

Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper
we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of
traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be
constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution
to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is
necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions.
Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of
Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of
conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such
solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on
any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we
show that all geometries conformal to Kundt are either Kundt or Robinson–Trautman, and we provide some
explicit Kundt and Robinson–Trautman solutions to quadratic gravity by solving the above mentioned
equation on certain Kundt backgrounds.
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I. INTRODUCTION AND SUMMARY

An extension of the Einstein–Hilbert action by adding
higher-order terms in curvature is a natural generalization
of Einstein’s gravity theory. In the first approximation,
these corrections give quadratic terms, and in four dimen-
sions, they admit a general form1

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
γ0ðR−2ΛÞ−α0CabcdCabcdþβ0R2

�
: ð1Þ

Various four and higher-dimensional theories with such
quadratic terms in the action and their exact solutions were
studied in the literature (see e.g., [1–6]), with first particular
theories proposed already shortly after the introduction of
Einstein’s general relativity [7,8].
The vacuum field equations of quadratic gravity follow-

ing from the action (1) read

γ0
�
Rab −

1

2
Rgab þ Λgab

�
− 4α0Bab

þ 2β0
�
Rab −

1

4
Rgab þ gab□ −∇b∇a

�
R ¼ 0; ð2Þ

where □≡ gab∇a∇b, and Bab is the Bach tensor

Bab ≡
�
∇c∇d þ 1

2
Rcd

�
Cacbd; ð3Þ

which is traceless, symmetric, and conserved (i.e.,
Bab

;b ¼ 0). It can be also equivalently written as

Bab ¼
1

2
□Rab −

1

6

�
∇a∇b þ

1

2
gab□

�
R −

1

3
RRab

þ RacbdRcd þ 1

4

�1
3
R2 − RcdRcd

�
gab: ð4Þ

From this expression, it can be seen that the Bach tensor
vanishes for all Einstein spacetimes.2 The last term in the
field equations (2) vanishes for Einstein spacetimes as well.
This leads to the well-known observation that in four
dimensions, all vacuum solutions to the Einstein theory
(including possibly a cosmological constant Λ) solve also
vacuum equations of the quadratic gravity (2). Note that
this result does not extend to dimensions n > 4. In this
sense, Einstein spacetimes are trivial vacuum solutions to
the four-dimensional quadratic gravity. The main objective
of this paper is to study general properties of nontrivial
solutions to quadratic gravity, i.e., non-Einstein spacetimes
obeying the vacuum field equations (2).*pravda@math.cas.cz
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1The constant γ0 is often denoted by 1=κ.

2Einstein spacetimes in four dimensions are defined by
Rab ¼ 1

4
Rgab, where the Ricci scalar R is necessarily constant.

PHYSICAL REVIEW D 95, 084025 (2017)

2470-0010=2017=95(8)=084025(9) 084025-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.084025
https://doi.org/10.1103/PhysRevD.95.084025
https://doi.org/10.1103/PhysRevD.95.084025
https://doi.org/10.1103/PhysRevD.95.084025


Due to the complexity of these fourth-order nonlinear
field equations, only few non-Einstein exact solutions are
known. In 1990, non-Einstein plane wave vacuum solutions
to quadratic gravity were found [9]. Recently, AdS waves
admitting a cosmological constant have been constructed
using the Kerr–Schild ansatz [1]. Note that such AdS
waves, which are in fact conformal to pp-waves, solve
quadratic gravity in any dimension. Additional non-
Einstein Kundt solutions to quadratic gravity have been
found in [2], see Sec. II A for the definition of Kundt
spacetimes.
In fact, all these explicit solutions to quadratic gravity are

Kundt (i.e., spacetimes admitting a nonexpanding, shear-
free, twistfree, geodetic null congruence, see Sec. II A).
Moreover, their Ricci scalar is constant, which leads to a
simplification of the field equations. In this paper, we also
focus on solutions with R ¼ const. Then the trace of (2),
which is

γ0ð4Λ − RÞ þ 6β0□R ¼ 0; ð5Þ

implies (for γ0 ≠ 0)3 that

R ¼ 4Λ; ð6Þ

and the field equations (2) reduce considerably to

ðγ0 þ 8β0ΛÞðRab − ΛgabÞ ¼ 4α0Bab: ð7Þ

A. Kundt solutions to quadratic gravity

Since for all the above mentioned solutions to quadratic
gravity their Weyl and traceless Ricci tensors are of type N
in the algebraic classification [10,11], we begin with
vacuum solutions to quadratic gravity with traceless
Ricci tensor of type N. In Sec. II, we will prove
Proposition 1.1. A vacuum solution to quadratic

gravity (2) with the Ricci tensor of the form

Rab ¼ Λgab þ ω0lalb; ω0 ≠ 0; lala ¼ 0;

and aligned Weyl tensor of any Petrov type is necessarily
Kundt.
For traceless Ricci type N and aligned Weyl type N, this

result has been already obtained in [2]. Note that in
contrast, for ω0 ¼ 0 (Einstein spacetimes), expansion and
twist (and for Petrov type I also shear) can be nonvanishing.

Then, we will proceed with a generalization of this result
to the case of traceless Ricci type III:
Proposition 1.2. A vacuum solution to quadratic grav-

ity (2) with the Ricci tensor of the form

Rab ¼ Λgab þ ψ 0
iðlam

ðiÞ
b þmðiÞ

a lbÞ þω0lalb; ψ 0
iψ

0
i ≠ 0;

and aligned Weyl tensor of Petrov type II, or more special,
is necessarily Kundt.
Note that the Ricci tensor is expressed using a null frame

introduced in Sec. II.
Since the Kundt spacetimes have been extensively

studied (see [12,13]), propositions 1.1 and 1.2 will allow
for a systematic search of vacuum solutions of quadratic
gravity (2) of the above Ricci types. Particular examples of
such Kundt solutions [1,2,9] were mentioned above.

B. Conformally Kundt solutions to quadratic gravity

Non-Kundt (and non-Einstein) solutions to quadratic
gravity also exist. Remarkably, a non-Schwarzschild static
spherically symmetric black hole solution in Einstein–Weyl
gravity (with Λ ¼ 0) has been found very recently in [6],
where its two metric functions are given in terms of two
ordinary differential equations (ODE). We will point out
that this solution belongs to the Robinson–Trautman (RT)
class and in fact due to (the part of) proposition 3.1 of
Sec. III it is necessarily conformal to Kundt:
Proposition 1.3. All Robinson–Trautman spacetimes

are conformal to Kundt.
Under the conformal transformation

~gab ¼ Ω2gab; ð8Þ
the Bach tensor transforms as

~Bab ¼ Ω−2Bab: ð9Þ
Thus obviously, the Bach tensor vanishes not only for all
Einstein spacetimes but also for all spacetimes conformal
to Einstein spacetimes. However, vanishing of the Bach
tensor is not a sufficient condition for a spacetime to be
conformally related to an Einstein spacetime [14]. Indeed,
explicit examples of spacetimes with vanishing Bach tensor
which are not conformal to Einstein spacetimes are
known [15,16].
One can employ (9) to construct new exact solutions to

quadratic gravity with arbitrary nonzero parameters α0, β0,
γ0 but a special value of the cosmological constant

Λ ¼ −
γ0

8β0
ð10Þ

with (6). The case Λ ≠ − γ0
8β0 will be discussed elsewhere.

Under the assumption (10), the equations of quadratic
gravity (7) reduce to

3Note that for certain values of the parameters α0, β0, γ0, the
quadratic gravity reduces to more special theories. In particular,
quadratic gravity with β0 ¼ 0 is Einstein–Weyl gravity. As
follows from (5), for this theory the Ricci scalar is constant
by default. Another important subcase of the quadratic gravity is
conformal gravity given by β0 ¼ 0 ¼ γ0, for which the field
equations (2) reduce to Bab ¼ 0.
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Bab ¼ 0: ð11Þ

Specifically, we will use “seed” geometries gab with
vanishing Bach tensor to generate solutions ~gab to quad-
ratic gravity using the conformal transformation (8),
implying ~Bab ¼ 0 due to (9).4 It remains to satisfy

~R ¼ 4Λ; ð12Þ

where ~R is the Ricci scalar of the conformally transformed
metric ~gab. It is well known that the Ricci scalars of
conformally related metrics obey

~R ¼ RΩ−2 − 6Ω−3
□Ω: ð13Þ

Thus we can satisfy (12) by choosing the conformal factor
Ω that solves the equation

6□Ω − RΩþ 4ΛΩ3 ¼ 0; ð14Þ

where Λ is constrained by (10). Thus, in this approach, the
problem of constructing new solutions to quadratic gravity
reduces to solving one nonlinear partial differential equa-
tion (PDE) (14) with a cubic nonlinearity for one unknown
function Ω on a curved background spacetime with
vanishing Bach tensor.
In Sec. IV, we will use this generating technique to derive

several explicit new solutions to quadratic gravity.
To conclude, let us note that there are solutions to

quadratic gravity that are neither Kundt nor Robinson–
Trautman. One such Petrov type N twisting solution will
be briefly discussed in Sec. IV. For this solution, the
Ricci tensor is more general than the form given in
proposition 1.2.

II. KUNDT SPACETIMES
IN QUADRATIC GRAVITY

In this section, we study spacetimes with certain alge-
braically special forms of the Ricci tensor and aligned
Weyl tensor. We show that the vacuum field equations of
quadratic gravity imply that these spacetimes are neces-
sarily Kundt.
In the case of constant Ricci scalar, the Bach tensor (4)

can be expressed as

Bab¼
1

2
□Rab−

1

3
RRabþRacbdRcdþ1

4

�
1

3
R2−RcdRcd

�
gab

¼BR
abþBC

ab; ð15Þ

where

BR
ab ¼

1

2
□Rabþ

1

3
RRab −RacRc

bþ
1

4

�
RcdRcd−

1

3
R2

�
gab;

ð16Þ

BC
ab ¼ CacbdRcd ð17Þ

are parts of the Bach tensor depending only on the Ricci
tensor and also on the Weyl tensor, respectively. Let us
employ a real null frame with two null vectors l and n and
two spacelike vectors mðiÞ (i, j ¼ 2, 3) obeying

lala ¼ nana ¼ 0; lana ¼ 1; mðiÞamðjÞ
a ¼ δij: ð18Þ

For the algebraic classification of tensors, the crucial
concept is a boost weight (b.w.). A quantity q has the
boost weight b if it transforms as

q̂ ¼ λbq ð19Þ

under a boost

l̂ ¼ λl; n̂ ¼ λ−1n; m̂ðiÞ ¼ mðiÞ: ð20Þ

Various frame components of a tensor will have in
general different integer boost weights and we define boost
order of a tensor T with respect to a given frame as the
maximum b.w. of its frame components. It can be shown
that the boost order of T in fact depends only on the frame
vector l and thus we will denote it as blðTÞ (see, e.g.,
[11]). Obviously blðT1 ⊗ T2Þ ¼ blðT1Þ þ blðT2Þ. Note
also that boost order of a tensor does not increase under a
contraction of indices.
Let us study spacetimes with the Ricci tensor of the form

Rab ¼ Λgab þ ψ 0
iðlam

ðiÞ
b þmðiÞ

a lbÞ þ ω0lalb; ð21Þ

which clearly obeys (6). Boost order of the traceless Ricci
tensor is thus −1 (for ψ 0

iψ
0
i ≠ 0) or −2 (for ψ 0

iψ
0
i ¼ 0,

ω0 ≠ 0) and thus the Ricci tensor is of type III or N,
respectively (see [11]). From (16), we obtain

BR
ab ¼

1

2
□Rab −

2

3
Λψ 0

iðlam
ðiÞ
b þmðiÞ

a lbÞ

−
�
2

3
Λω0 þ ψ 0

iψ
0
i

�
lalb: ð22Þ

A. Traceless Ricci type N

First, let us focus on the traceless Ricci type N for which

Rab ¼ Λgab þ ω0lalb; ω0 ≠ 0: ð23Þ

From the contracted Bianchi equations ∇bRab¼ 1
2
∇aR¼ 0

and (23), it follows that l is geodetic and without loss of
4Note that the seed metrics themselves need not to solve the

field equations (2) of quadratic gravity.
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generality, one can choose l to be affinely parametrized
and a frame to be parallelly transported along l. Then, the
covariant derivatives of the frame vectors in terms of spin
coefficients read [11]

la;b ¼ L11lalb þ L1ilam
ðiÞ
b þ τim

ðiÞ
a lb þ ρijm

ðiÞ
a mðjÞ

b ;

ð24Þ

na;b ¼ − L11nalb − L1inam
ðiÞ
b þ κ0im

ðiÞ
a lb þ ρ0ijm

ðiÞ
a mðjÞ

b ;

ð25Þ

mðiÞ
a;b ¼ −κ0ilalb − τinalb − ρ0ijlam

ðjÞ
b þM

i

j1m
ðjÞ
a lb

− ρijnam
ðjÞ
b þM

i

klm
ðkÞ
a mðlÞ

b : ð26Þ

Here, the optical matrix

ρij ≡ la;bma
ðiÞm

b
ðjÞ ð27Þ

can be decomposed into its trace θ (expansion),
trace-free symmetric part σij and antisymmetric part Aij,
namely

ρij ¼ σij þ θδij þ Aij;

σij ≡ ρðijÞ −
1

2
ρkkδij; θ≡ 1

2
ρkk; Aij ≡ ρ½ij�: ð28Þ

Optical scalars shear and twist of l are traces σ2 ≡ σ2ii ¼
σijσji and ω2 ≡ −A2

ii ¼ −AijAji, respectively. Kundt
spacetimes are defined as spacetimes with vanishing ρij.
Using (23) and (24), we express ∇cRab

∇cRab ¼ Dω0lalbnc þ ω0ρijðmðiÞ
a lb þ lam

ðiÞ
b ÞmðjÞ

c

þ terms of b:w: ≤ −2; ð29Þ

where D≡ la∇a. Employing (24)–(26), a further differ-
entiation of (29) leads to

□Rab ¼ ½−ω0ρijρijðlanb þ nalbÞ þ 2ω0ρikρjkm
ðiÞ
a mðjÞ

b �
þ terms of b:w: ≤ −1; ð30Þ

i.e., from (22) and (30)

BR
ab ¼

1

2
½−ω0ρijρijðlanb þ nalbÞ þ 2ω0ρikρjkm

ðiÞ
a mðjÞ

b �
þ terms of b:w: ≤ −1: ð31Þ

For the Ricci tensor of the form (23), the left-hand side of
the field equations of quadratic gravity (7) contains b.w. −2
terms only, while in general, the right-hand side contains
terms of b.w. 0 due to the presence of the term□Rab. Recall

that we assume that the Weyl tensor is aligned with the
Ricci tensor (i.e., blðCabcdÞ ≤ 1)5 and thus blðBC

abÞ ¼
blðCabcdÞ þ blðRab − ΛgabÞ ≤ −1. Consequently, the
leading term in (31) has to vanish, i.e.,

ρijρij ¼ 0: ð32Þ

Thus the optical matrix vanishes, ρij ¼ 0, obviously
implying also ρikρjk ¼ 0 for all i, j, which concludes
the proof of proposition 1.1.

B. Traceless Ricci type III

Let us proceed with a more general form of the Ricci
tensor (21) with ψ 0

iψ
0
i ≠ 0. First, we prove that l is geodetic

using the standard four-dimensional Newman–Penrose
(NP) formalism. For the Ricci tensor of the form (21),
the relevant NP components are Φ22 and Φ12 ¼ Φ̄21 ≠ 0.
For the Petrov types III/N/O, the Bianchi equation (7.32b)
of [12] reduces to

κΦ12 ¼ 0; ð33Þ
which implies that l is geodetic. Similarly, for the Petrov
type II, Eq. (7.32a) of [12] gives κΨ2 ¼ 0 and thus l is also
geodetic.
The first derivative of the Ricci tensor (21) reads

∇cRab ¼ mðiÞ
a mðjÞ

b mðkÞ
c ðψ 0

jρik þ ψ 0
iρjkÞ

þ ðmðiÞ
a lb þ lam

ðiÞ
b ÞncDψ 0

i

þ ðnalb þ lanbÞmðiÞ
c ð−ψ 0

sρsiÞ
þ b:w: ≤ −1 terms: ð34Þ

Further differentiation gives

□Rab ¼ −ðmðiÞ
a nb þ nam

ðiÞ
b Þð2ψ 0

sρskρik þ ψ 0
iρskρskÞ

þ terms of b:w: ≤ 0; ð35Þ
i.e., from (22) and (35)

BR
ab ¼ −

1

2
ðmðiÞ

a nb þ nam
ðiÞ
b Þð2ψ 0

sρskρik þ ψ 0
iρskρskÞ

þ terms of b:w: ≤ 0: ð36Þ

If the Weyl tensor of any Petrov type and the Ricci
tensor (21) are aligned then blðBC

abÞ ≤ 0. Thus the b.w.
þ1 terms in (36) are the only b.w. > 0 terms in (7) and
therefore they have to vanish. By multiplying (36)
by ψ 0

i, we get

5Note that for the Weyl types III and N this is not an
assumption since from the Bianchi equations it follows that
Weyl type III/N traceless Ricci type N spacetimes are aligned
(see [17]).
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ðψ 0
iψ

0
iÞðρskρskÞ þ 2ðψ 0

sρskÞðψ 0
iρikÞ ¼ 0: ð37Þ

For ψ 0
iψ

0
i ≠ 0, the expression (37) clearly vanishes iff

ρij ¼ 0 which concludes the proof of proposition 1.2.
Note that proposition 1.2 is valid also for aligned Petrov

type I spacetimes with the Ricci tensor of the form (21) and
a geodetic l, however, in this case we did not prove
geodecity of l.

III. CONFORMAL RELATIONS OF KUNDT
AND ROBINSON–TRAUTMAN SPACETIMES

To our knowledge, all exact solutions to quadratic
gravity discussed in the literature so far are either
Kundt, or conformal to it. It is thus important to identify
the class of all spacetimes that are conformal to Kundt
geometries, which admit a null geodetic congruence lwith
vanishing shear, twist, and expansion.6 It has a canonical
metric form [18–22]

ds2Kundt ¼ 2Hðu; r; xÞdu2 − 2dudrþ 2Wiðu; r; xÞdudxi
þ gijðu; xÞdxidxj; ð38Þ

where l ¼ ∂r (with a dual −du). A generic Kundt metric is
of the Riemann type I or more special [22,23], and of the
Weyl subtype I(b) in n > 4 [24], with l being both
principal null direction (PND) and an aligned null direction
of the Ricci tensor (since Rrr vanishes identically).
Now, a conformally transformed metric

d~s2 ¼ Ω2ðu; r; xÞ ds2Kundt ð39Þ

is obviously of the same Weyl type, while the Ricci type is
in general distinct from the Ricci type of (38). The vector l
is also a null geodetic PND of the new metric (39) with
vanishing shear and twist, while its nontrivial expansion
reads

~θ ¼ 1

n − 2
ð~gablbÞ;a ¼

Ω;r

Ω3
: ð40Þ

Under the conformal transformation (39), the Ricci tensor
and scalar transform as [25]

~Rab ¼ Rab −Ω−1½ðn − 2Þδcaδdb þ gabgcd�∇c∇dΩ

þ Ω−2½2ðn − 2Þδcaδdb − ðn − 3Þgabgcd�ð∇cΩÞð∇dΩÞ;
ð41Þ

~R ¼ RΩ−2 − 2ðn − 1ÞΩ−3
□Ω

− ðn − 1Þðn − 4ÞΩ−4ð∇aΩÞð∇aΩÞ: ð42Þ

Thus, in contrast with the Kundt metric (38), for the new
metric (39), the highest boost weight component of the
Ricci tensor is in general nonvanishing7:

~Rab
~la ~lb ¼ ~gac ~gbd ~Rablcld ¼ Ω−4 ~Rrr

¼ −ðn − 2ÞΩ−6ðΩΩ;rr − 2Ω2
;rÞ: ð43Þ

Since l ¼ ∂r is geodetic, shearfree and twistfree null
direction in the conformally related metric (39), this new
metric is a Robinson–Trautman metric (as long as Ω;r ≠ 0)
or Kundt for Ω;r ¼ 0 ⇔ ~θ ¼ 0, see (40). This can be
explicitly seen by transforming (39) into the canonical
Robinson–Trautman form [21,26,27]

d~s2RT ¼ 2 ~Hðu; ~r; xÞdu2 − 2dud~rþ 2 ~Wiðu; ~r; xÞdudxi
þR2ðu; ~r; xÞgijðu; xÞdxidxj; ð44Þ

where

~r ¼ ρðu; r; xÞ; such that ρ;r ¼ Ω2ðu; r; xÞ;
d~r ¼ Ω2drþ ρ;uduþ ρ;idxi;

~H ¼ Ω2H þ ρ;u;

~Wi ¼ Ω2Wi þ ρ;i;

R ¼ Ω: ð45Þ
In fact, by comparing the expansion, θ ¼ 1

n−2l
a
;a, shear

σ2 ¼ lða;bÞlða;bÞ − 1
n−2 ðla

;aÞ2, and twist ω2 ¼ l½a;b�la;b of
the geodetic affinely parametrized null vector la expressed
in the original and conformally transformed metrics, we
arrive at (see also [28] for conformal properties of flows in
arbitrary dimension)

~θ ¼ θ

Ω2
þ lðΩÞ

Ω3
; ~σ2 ¼ σ2

Ω4
; ~ω2 ¼ ω2

Ω4
; ð46Þ

where lðΩÞ≡Ω;r. Together with the above results, this
leads to
Proposition 3.1. Spacetimes conformal to shearfree

or twistfree spacetimes are shearfree or twistfree, respec-
tively. In particular:
(1) All spacetimes conformal to Robinson–Trautman

are Robinson–Trautman or Kundt.
(2) All Robinson–Trautman spacetimes are conformal

to Kundt.
(3) All spacetimes conformal to Kundt are Robinson–

Trautman (when lðΩÞ≡Ω;r ≠ 0) or Kundt (when
lðΩÞ≡Ω;r ¼ 0).8

6Since the results of this section are dimension-independent,
here we work in a general dimension n.

7We set ~la ¼ la. Note that this choice preserves geodeticity
and the affine parametrization.

8Since Kundt and Robinson–Trautman spacetimes are defined
by the existence of a geodetic shear-free and twist-free null
congruence with θ ¼ 0 and θ ≠ 0, respectively, interestingly
there are exceptional spacetimes that belong to both of these
classes admitting two distinct congruences with these properties,
see, e.g., the metric (71), (73).
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Note that in the case of four dimensions, an extension
of the Goldberg–Sachs theorem to conformally Einstein
spacetimes immediately follows [12] and thus algebrai-
cally special solutions to quadratic gravity obtained by a
conformal transformation of Einstein spacetimes are
shearfree.
It has been shown [27,29] that in contrast to the four-

dimensional case, for n > 4 Einstein Robinson–Trautman
spacetimes of types III and N do not exist. From the above
results, it follows that non-Einstein Robinson–Trautman
geometries of types N and III can be clearly constructed by
a conformal transformation from their Kundt counterparts
in any dimension. Furthermore, starting with universal
Kundt metrics of types N and III [30], one obtains type
N and III Robinson–Trautman vacuum solutions to n > 4
conformal gravities (theories of gravity invariant under
conformal transformations). The strong constraints on the
optical matrix of higher-dimensional type N and III space-
times, implying the nonexistence of Einstein Robinson–
Trautman solutions within these classes, is thus connected
to the Einstein field equations rather than to the geometric
properties of Robinson–Trautman spacetimes in higher
dimensions.

A. Static spherically symmetric spacetimes

As an important illustration, let us investigate static
spherically symmetric spacetimes

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2dω2
n−2;

dω2
n−2 ¼

�
1þ 1

4
δklxkxl

�
−2
δijdxidxj: ð47Þ

These spacetimes are of the Weyl type D in any dimension
[31] and include many black hole solutions of various
theories. They belong to the Robinson–Trautman class.
Indeed, by performing a coordinate transformation

dt ¼ duþ dr̄ffiffiffiffiffiffi
hf

p ; d~r ¼
ffiffiffiffiffiffiffiffi
h=f

p
dr̄ ð48Þ

we arrive at the canonical Robinson–Trautman form (44)
with ~Wi ¼ 0

d~s2RT ¼ −hðr̄ð~rÞÞdu2 − 2dud~rþ r̄2ð~rÞdω2
n−2: ð49Þ

A further coordinate transformation (45) for ~r ¼ ρðrÞ such
that d~r ¼ Ω2ðrÞdr brings the metric (49) to the form
manifestly conformal to Kundt

d~s2RT ¼ Ω2ðrÞds2Kundt
¼ Ω2ðrÞ

�
HðrÞdu2 − 2dudrþ dω2

n−2

�
; ð50Þ

cf. (38) with H ¼ 2H and Wi ¼ 0, where

Ω2H ¼ −h;

ΩðrÞ ¼ r̄ð~rðrÞÞ;ffiffiffi
f
h

r
¼ dr̄

d~r
¼ dΩ

d~r
¼ Ω;r

dr
d~r

¼ Ω;r

Ω2
: ð51Þ

Note that the “seed” Kundt metric appearing in (50) is a
direct-product geometry, containing as special cases, e.g.,
Bertotti–Robinson or Nariai space [13,32].
For the Schwarzschild–Tangherlini solution,

fðr̄Þ ¼ hðr̄Þ ¼ 1 − μr̄3−n ð52Þ

in (47), and thus

Ω ¼ r̄ ¼ ~r ¼ −1=r;

H ¼ ð−1þ μr̄3−nÞ=r̄2 ¼ −r2 þ ð−1Þn−1μrn−1: ð53Þ

IV. EXACT SOLUTIONS TO
QUADRATIC GRAVITY

Now let us discuss solutions to quadratic gravity (11)
obtained via solving Eq. (14) on an appropriate seed
spacetime. In principle, one can solve this nonlinear
equation numerically on any background Einstein space-
time or, more generally, on any spacetime with vanishing
Bach tensor. Here we will focus on cases where solutions
can be obtained explicitly.
First, let us note that [16] gives a list of several metrics

with vanishing Bach tensor that are not conformally
Einstein. Many of them have constant Ricci scalar.
Thus, one can obtain exact solutions of quadratic gravity
(11) from these seeds by appropriate constant rescaling
of these metrics to set ~R ¼ 4Λ ¼ − γ0

2β0. Interestingly,
apart from Kundt metrics (solutions 2–5 of [16]), this
rescaling leads also to solutions of quadratic gravity
outside the Kundt and Robinson–Trautman classes. For
example for a type N twisting, shearfree, expansion-free
metric 6 of [16]9

ds2 ¼ dr2

r2
þ 10du

�
dv
r2

−
2dx
r

�
þ 2rdxdv

þ 10du2

r4
þ r2dx2; ð54Þ

9The multiple PND, l ¼ ∂v, of the metric (54) is twisting and
thus it is not Kundt, nor RT. Since for Petrov type N the PND is
unique this metric also does not admit a Kundt or RT congruence
distinct from l (it follows from purely geometric considerations
that Kundt or RT congruences always coincide with PNDs
[11,22,33]).
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the Ricci tensor is constant, R ¼ −3, and thus an appro-
priate constant rescaling leads to a type N twisting solution
of quadratic gravity with γ0=β0 > 0.
In the following, we focus on solving Eq. (14) on the

Kundt backgrounds (38). This approach leads to Kundt
and Robinson–Trautman solutions of quadratic gravity, cf.
proposition 3.1. The d’Alembert operator applied to a
function Ωðu; r; xiÞ then reads explicitly

□Ω≡ gabΩ;ab

¼ ð−2H þWiWiÞΩ;rr − 2Ω;ru þ 2WiΩ;ri þ gijΩjjij
þ ½−2H;r þ 2WiWi;r þ gijðWðijjjÞ − 1

2
gij;uÞ�Ω;r

þ gijWi;rΩ;j ; ð55Þ

where jj denotes the covariant derivative associated with
the spatial metric gij. In case of Kundt metrics without
off-diagonal terms (gui ¼ Wi ¼ 0), this simplifies consid-
erably to

□Ω ¼ −2HΩ;rr − 2Ω;ru − 2H;rΩ;r

þ gijðΩjjij − 1
2
gij;uΩ;rÞ: ð56Þ

A. Solutions generated by a pp-wave seed

On a pp-wave background,

ds2seed ¼ 2Hðu; x; yÞdu2 − 2dudrþ dx2 þ dy2; ð57Þ

Eq. (14) with (56), assuming Ω to be function of z, where

z≡paxa ¼prrþpuuþpxxþpyy; pa ¼ const: ð58Þ

and using the fact that R ¼ 0, reduces to

Ω00 þ
~R

6papa Ω
3 ¼ 0; ð59Þ

where prime denotes the derivative with respect to z and the
contravariant vector pa is obtained using the metric (57). If
either pr ¼ 0 or H ¼ const:, this is a constant-coefficients
ODE for ΩðzÞ, with the first integral

Ω02 ¼ −LΩ4 þ K;

K ¼ const:; L ¼
~R

12papa ¼
Λ

3papa : ð60Þ

Equation (60) can be integrated:
(i) for the case with a vanishing integration constant

K ¼ 0 and L < 0,

ΩðzÞ ¼ �
ffiffiffiffiffiffiffiffi
−
1

L

r
1

z − c
; c ¼ const:; ð61Þ

(ii) while for a nonvanishing K it can be solved in terms
of elliptic Jacobi function10

ΩðzÞ ¼ K
1
4L−1

4 sn ðK1
4L

1
4ðz − cÞ;−1Þ;

c ¼ const:; K > 0; L ≠ 0: ð62Þ

In the L → 0 limit, this reduces to

ΩðzÞ¼
ffiffiffiffi
K

p
ðz−cÞ; c¼ const:; K > 0; ð63Þ

which solves (59) with ~R ¼ 0. However, note that
(63) corresponds to a solution of a special subcase of
quadratic gravity with γ0 ¼ 0 only.

In general, the Weyl, Ricci, and Bach tensors of (57)
possess only boost weight −2 components. In particular

Ruu ¼ −ΔH ¼ −ðH;xx þH;yy Þ; ð64Þ

Buu ¼ −
1

2
ΔΔH ¼ −

1

2
ðH;xxxx þ2H;xxyy þH;yyyy Þ; ð65Þ

so that Ruu and Buu vanish if, and only if,

Ruu ¼ 0 ⇔ H ¼ FðζÞ þ F̄ðζ̄Þ; ð66Þ

Buu ¼ 0 ⇔ H ¼ FðζÞ þ F̄ðζ̄Þ þ ζ̄GðζÞ þ ζḠðζ̄Þ; ð67Þ

respectively, where F and G are arbitrary holomorphic
functions of ζ≡ xþ iy. Note that for G ≠ 0, the Bach
tensor vanishes, while the Ricci tensor does not.
(1) Case pr ¼ 0: All the seed metrics (57) with (67) thus

generate explicit solutions to quadratic gravity (2)
with (10), using the conformal transformations (61)
and (62) with pr ¼ 0, i.e., z ¼ puuþ pxxþ pyy ¼
puuþ pζζ þ pζ̄ ζ̄:
(a) The solutions corresponding to (61) are of the

Weyl and traceless Ricci type N and represent
AdS waves, cf. [1], which have the Siklos
geometry [13]

d~s2¼−
1

L
1

ðz−cÞ2 ½2ðFðζÞþ F̄ðζ̄Þþ ζ̄GðζÞ

þ ζḠðζ̄ÞÞdu2−2dudrþdx2þdy2�: ð68Þ

(b) The solutions corresponding to (62) are of the
Weyl type N and traceless Ricci type II

10Note that sometimes this elliptic function is denoted as
snð; iÞ.
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d~s2 ¼
ffiffiffiffi
K
L

r
sn2ðK1

4L
1
4ðz − cÞ;−1Þ

× ½2ðFðζÞ þ F̄ðζ̄Þ þ ζ̄GðζÞ þ ζḠðζ̄ÞÞdu2
− 2dudrþ dx2 þ dy2�: ð69Þ

They involve curvature singularities at zeroes of the
function sn (that is at z ¼ c and z ¼ cþ P where P
is the period) since

~Rab
~Rab¼ 1

12
~R2ð3þsn−8

�
K

1
4L

1
4ðz−cÞ;−1Þ

�
: ð70Þ

(2) Case pr ≠ 0: In the exceptional case of a flat
background (2H ¼ 1), it is possible to employ the
conformal transformation (62) with pr ≠ 0. The
resulting solution of quadratic gravity (2) with (10)

d~s2 ¼
ffiffiffiffi
K
L

r
sn2ðK1

4L
1
4ðz − cÞ;−1Þ

× ½du2 − 2dudrþ dx2 þ dy2� ð71Þ

is a conformally flat Robinson–Trautman metric.
The generic case is of general Ricci type. However,
in the frame

l ¼ −du; n ¼ ΩðzÞ2
�
dr −

1

2
du

�
;

mð2Þ ¼ ΩðzÞdx; mð3Þ ¼ ΩðzÞdy; ð72Þ

components of the Ricci tensor Rabnanb and
Rabnamb

ðiÞ vanish for

pr þ 2pu ¼ 0: ð73Þ

Thus, in this case the vector n is a multiply aligned
null direction of the Ricci tensor and the spacetime
is therefore of (traceless) Ricci type II. In fact, n is
geodetic, shearfree, twistfree, and nonexpanding and
thus this spacetime belongs to both the Kundt (with
respect to n) and Robinson–Trautman (with respect
to l) classes.

Obviously, a coordinate freedom can be used to simplify
the above metrics. This is left for future work, including
their physical and geometrical study.

B. Robinson–Trautman solution
of a general Ricci type

As another seed metric, let us consider direct-product
Kundt metrics of the form

ds2seed ¼ 2HðrÞdu2 − 2dudrþ dx2 þ dy2; ð74Þ

cf. (50). For a particular function

HðrÞ¼−
1

16
c3r3�1

4
c

ffiffiffiffiffiffiffiffi
3cd

p
r2−drþa; cd≥ 0; ð75Þ

the Bach tensor vanishes while the Ricci scalar is
R ¼ 2H;rr. One can show that for a ¼ 0 ¼ d, the metric
is conformal to a Ricci-flat spacetime (with Ω ¼ r−1),
i.e., the metric is conformally Einstein, and from now on we
study this case.
Equation (14) then reads

Ω00 þ 3

r
Ω0 þ 1

r2
Ωþ 4 ~R

3c3r3
Ω3 ¼ 0: ð76Þ

An exact solution of this equation of the form

Ω2ðrÞ ¼ 1

2
c1r with c1 ¼ −

27c3

8 ~R
> 0 ð77Þ

leads, introducing ~r ¼ c1ðr=2Þ2 and rescaling both x and y
by a constant factor ðc1=cÞ34, to a Robinson–Trautman
solution of quadratic gravity in the form

d~s2RT ¼ −b2 ~r2du2 − 2dud~rþ
ffiffiffiffiffi
b~r

p
ðd~x2 þ d~y2Þ; ð78Þ

where b2 ¼ c3=c1 > 0, i.e., ~R < 0. This metric was dis-
cussed in different coordinates in the context of conformal
gravity (i.e., for β0 ¼ 0 ¼ γ0) in [16], see Eq. (12) therein
with b ¼ z3 ¼ 4z1 ¼ 4z2). Note that this spacetime is of
Weyl type D while it is of the general Ricci type (with
respect to ladxa ¼ −du).
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