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We generalize the classical junction conditions for constructing impulsive gravitational waves by the
Penrose “cut and paste” method. Specifically, we study nonexpanding impulses which propagate in spaces
of constant curvature with any value of the cosmological constant (that is, Minkowski, de Sitter, or anti–de
Sitter universes) when additional off-diagonal metric components are present. Such components encode a
possible angular momentum of the ultrarelativistic source of the impulsive wave—the so-called gyraton.
We explicitly derive and analyze a specific transformation that relates the distributional form of the metric
to a new form which is (Lipschitz) continuous. Such a transformation automatically implies an extended
version of the Penrose junction conditions. It turns out that the conditions for identifying points of the
background spacetime across the impulse are the same as in the original Penrose cut and paste construction,
but their derivatives now directly represent the influence of the gyraton on the axial motion of test particles.
Our results apply both for vacuum and nonvacuum solutions of Einstein’s field equations and can also be
extended to other theories of gravity.
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I. INTRODUCTION

An impulsive gravitational wave can most intuitively
be understood as a limit of a suitable family of sandwich
waves with their profiles approaching the Dirac delta.
Formally, if dεðUÞ denotes the sandwich wave profile
where U is the retarded time coordinate, it is assumed
that the supports of the sequence dεðUÞ shrink to zero as
ε → 0 (the sandwich waves have “ever shorter duration” ε)
but simultaneously their amplitudes become bigger (the
waves are “ever stronger” as ε−1). Such a distributional
limit dεðUÞ → δðUÞ gives a solution, which (at least
formally) represents an impulsive wave localized on a
single wave front U ¼ 0.
In the simplest yet important context of vacuum pp

waves propagating in Minkowski space, this procedure was
first explicitly considered in [1–4] and later elsewhere (see,
e.g., [5]). Employing the well-known Brinkmann form of
pp waves [6,7], one directly obtains the metric

ds2 ¼ 2dηdη̄ − 2dUdV þ 2Hðη; η̄ÞδðUÞdU2: ð1Þ

Analogously, more general nonexpanding planar impulsive
waves of the Kundt type and expanding spherical impulsive
waves of the Robinson-Trautman type can be constructed.
A nonvanishing cosmological constant Λ can also be
considered, so that the impulsive waves may propagate

in any space of constant curvature—that is, Minkowski,
de Sitter, or anti–de Sitter universe. Detailed accounts of
these spacetimes, various methods of their construction,
their mutual relations, the most important examples, and a
number of references can be found in [7–9] and in the
review parts of the recent works [10,11].
However, although the classical metric (1) has been

employed and investigated in many works, it is not the
most general form of impulsive pp waves. As considered
already in the original paper by Brinkmann [12], additional
off-diagonal terms can be added,1 leading to the metric

ds2 ¼ 2dηdη̄ − 2dUdV þ 2Hðη; η̄ÞδðUÞdU2

þ 2Jðη; η̄;UÞdηdU þ 2J̄ðη; η̄;UÞdη̄dU: ð2Þ

In vacuum regions, it is a standard and common approach
to completely remove these additional metric terms by a
suitable coordinate transformation. However, such a gauge
freedom is only local and ignores the global (topological)
properties of the spacetimes. By neglecting the metric
function J in (2), an important physical property of the
spacetime is eliminated, namely the possible rotational
character of the source of the gravitational wave (its internal
spin/helicity).
This remarkable fact was first noticed by Bonnor [19,20]

(see [7]), who studied both the interior and the exterior field
of a “spinning null fluid” in the class of axially symmetric
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1In fact, the most general Brinkmann geometry also admits
higher dimensions and the possibility that the transverse
Riemannian space is not flat; see [13–18].
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pp waves. Spacetimes with such a localized spinning source
moving at the speed of light, whose angular momentum is
encoded in the function J, were independently rediscovered
in 2005 [21–25], their physical application as a model of
relativistic particles was emphasized, and they were called
“gyratons.” These pp-wave-type gyratons were then inves-
tigated in greater detail and also generalized to higher
dimensions and various nonflat backgrounds in a wider
Kundt class which may also include a cosmological constant
or an additional electromagnetic field; see [26–29] for more
details and further references.
It is well known that there exist several distinct methods

of constructing impulsive pp waves represented by the
metric (1), namely the “cut and paste”method with Penrose
junction conditions, explicit construction of continuous
coordinates, distributional limits of sandwich waves, boosts
of specific initially static sources, and embedding from
higher dimensions. These were recently reviewed, e.g., in
[7–10]. Surprisingly, apart from the straightforward dis-
tributional limit of sandwich waves, the other construction
methods have not yet been given for the more general
impulsive metric (2) with gyratonic terms given by
nonzero J. It is now our goal in this paper to derive such
a generalization, that is, to find generalized Penrose
junction conditions in his cut and paste method, and to
discover the corresponding continuous metric form of
impulsive pp waves with gyratons. We will also find its
relation to the distributional metric form (2).
First, however, it is necessary to briefly summarize the

main construction methods for the classical (nongyratonic)
impulsive pp waves (1).

A. Penrose junction conditions and the cut
and paste method

Penrose in [1,2] and in a seminal work [3] presented a
geometrical cut and paste method for constructing a class of
impulsive waves in a flat background, represented by the
metric (1). It is based on cutting Minkowski spaceM along
a plane null hypersurfaceN and then “reattaching” the two
“halves”M− andMþ by identification of boundary points
with a specific “warp”; see Fig. 1.
More explicitly, the Penrose method first removes (by a

“cut”) the plane null hypersurface N given by U ¼ 0 from
flat spacetime in the form

ds20 ¼ 2dηdη̄ − 2dUdV ð3Þ

and then reattaches (by a “paste”) the halves M−ðU < 0Þ
and MþðU > 0Þ by making the identification of boundary
points with a warp in the coordinate V such that

½η; η̄;V;U ¼ 0−�M− ≡ ½η; η̄;V −Hðη; η̄Þ;U ¼ 0þ�Mþ ; ð4Þ

where Hðη; η̄Þ is any real-valued function of η and η̄. It was
shown in [3] that these Penrose junction conditions (4)

automatically guarantee that the Einstein field equations
are satisfied everywhere including on U ¼ 0. Thus gravi-
tational (plus possibly null-matter) impulsive waves are
obtained.

B. Continuous coordinates for impulsive pp waves

The Penrose cut and paste approach is an elegant and
general method because, by prescribing the junction con-
ditions (4) in (3), all nonexpanding impulsive gravitational
waves of the form (1) in Minkowski space can be con-
structed. However, the formal identification of points on
both sides of the impulsive hypersurface does not directly
yield explicit metric forms of the entire spacetimes.
It is thus crucial to know a suitable coordinate system for

these solutions in which the metric is explicitly continuous
everywhere, including on the impulse. Such a metric reads

ds2 ¼ 2jdZ þ UþðH;Z̄ZdZ þH;Z̄ Z̄dZ̄Þj2 − 2dUdV; ð5Þ

where HðZ; Z̄Þ is an arbitrary real-valued function while

Uþ ≡ UþðUÞ ¼
�
0 if U ≤ 0;

U if U ≥ 0
ð6Þ

is the kink function. Notice that formally Uþ ¼ UΘ, where
Θ ¼ ΘðUÞ is the Heaviside step function. Since the kink
function is Lipschitz continuous, the metric (5) is locally
Lipschitz in the variable U even across the null hypersur-
faceU ¼ 0.2 This implies that the curvature is a distribution
(we are within the “maximal” distributional curvature
framework as identified by Geroch and Traschen [30]).
Indeed, the discontinuity in the derivatives of the metric
introduces impulsive components in the Weyl and curva-
ture tensors proportional to the Dirac distribution, namely

FIG. 1. Minkowski space is cut into two parts M− and Mþ

along a plane null hypersurface N . These parts are then
reattached with an arbitrary warp in which points are shunted
along the null generators of the cut and then identified. This
generates an impulsive gravitational wave in flat space.

2But H as a function of Z, Z̄ may have singularities.
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Ψ4 ¼ H;ZZδðUÞ andΦ22 ¼ H;ZZ̄δðUÞ; see [31]. The metric
(5) thus explicitly describes impulsive waves in a
Minkowski background: it is of the general Rosen form
of impulsive pp waves [3,32,33]. Let us note that the
continuous coordinate system for the particular Aichelburg-
Sexl solution [34] was found in [35].
In fact, the continuous form of the impulsive metric (5)

can be obtained systematically by a suitable transformation
of the flat Minkowski metric (3). For U > 0 (in Mþ)
the transformation U ¼ U, V ¼ V þH þ UH;ZH;Z̄, η ¼
Z þ UH;Z̄ yields ds20 ¼ 2jdZ þ UðH;Z̄ZdZ þH;Z̄ Z̄dZ̄Þj2 −
2dUdV. This can now be combined with the metric (3) for
U < 0 (inM−) in which the identity U ¼ U, V ¼ V, η ¼ Z
is applied. The combined transformation relating both parts
of (3) to (5) is thus

U ¼ U;

V ¼ V þ ΘH þUþH;ZH;Z̄;

η ¼ Z þ UþH;Z̄: ð7Þ

It is clearly discontinuous in the coordinate V on U ¼ 0.
Now, using the fact that the global coordinates U, V, Z
give rise to the continuous form of the metric (5), we obtain
from (7) exactly the Penrose junction conditions (4) for
reattaching the two halves of the spacetime M− and Mþ
with the warp V → V −H. This procedure is thus an
explicit Penrose cut and paste construction of impulsive
gravitational pp waves.

C. Distributional form of impulsive pp waves

Interestingly, the distributional form of the impulsive
pp-wave spacetimes is obtained from the continuous form
of the metric (5) by applying the combined transformation
(7), if we consider also the terms which arise from the
derivatives of ΘðUÞ and UþðUÞ. Indeed, (7) relates (5)
formally to

ds2 ¼ 2dηdη̄ − 2dUdV þ 2Hðη; η̄ÞδðUÞdU2; ð8Þ

which explicitly includes the impulse located on the wave
front U ¼ 0. This is a gravitational wave (or an impulse
of null matter) in flat spacetime, depending on the specific
form of the function H. It is just the Brinkmann form of a
general impulsive pp wave (1).
Of course, the discontinuity in the complete transforma-

tion (7) which formally relates the continuous and distri-
butional forms of impulsive solutions causes some subtle
mathematical problems. In fact, to obtain (8) one is forced
to use the distributional identities Θ0 ¼ δ and Uþ0 ¼ Θ,
together with the multiplication rules Θ2 ¼ Θ and ΘUþ ¼
Uþ. It is well known that in general this leads to incon-
sistencies; see, e.g., Ex. 1.1.1(iv) in [36]. However, it was

shown in [33] that (7) is in fact a rigorous example of a
generalized coordinate transformation in the sense of
Colombeau’s generalized functions. Moreover, it is pos-
sible to interpret this change of coordinates as the
distributional limit of a family of smooth transformations
which is obtained by a general regularization procedure,
i.e., by considering the impulse as a limiting case of
sandwich waves with an arbitrarily regularized wave
profile. These results put the formal (“physical”) equiv-
alence of both continuous and distributional forms of
impulsive spacetimes on a solid ground. Therefore, the
full family of impulsive limits (1) of sandwich pp waves
is indeed equivalent to the distributional form of the
solutions (8) and consequently to the continuous metric
(5) obtained by the explicit cut and paste method (4) in
flat background (3).
Now we will present generalizations of these main

methods of construction of impulsive waves to include
gyratons. In Sec. II we will concentrate on the family of
impulsive pp waves in Minkowski space. In Sec. III we
then further generalize our results to all nonexpanding
impulsive waves in (anti–)de Sitter space with Λ ≠ 0.

II. GENERALIZATION TO INCLUDE GYRATONS

In order to find a continuous metric form for impulsive
pp waves with additional gyratonic terms, as represented
by the distributional metric (2), it is necessary to generalize
the transformation (7). We found the following ansatz
which leads to such a generalization:

U ¼ U;

V ¼ V þ ΘH þ UþH;ZH;Z̄ þW;

η ¼ ðZ þ UþH;Z̄Þ expðiFÞ; ð9Þ

where H ¼ HðZ; Z̄Þ. The additional functions W ¼
WðZ; Z̄; UÞ and F ¼ FðZ; Z̄; UÞ in our ansatz are
assumed to be real valued and are taken to satisfy
the conditions

F;U ¼ iJ̄
Z þUþH;Z̄

expð−iFÞ; ð10Þ

W;U ¼ −JJ̄; ð11Þ

where J is the metric function introduced in (2). Let us
remark that, in fact, the right-hand side of Eq. (10) is
always real for the standard gyratonic metric of the
form (37) which does not involve the off-diagonal term
dρdU. Indeed, as has been shown in [29], this is the
most reasonable choice to represent the physically
relevant quantities in the metric functions.
By substituting these relations into the metric (2), a

straightforward calculation leads to
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ds2 ≡ 2jdζ þ iζdFj2 þ 2½ðδ − Θ0ÞH þ ððUþ0Þ2 −Uþ0Þ
×H;ZH;Z̄�dU2 þ 2½ðUþ0 − ΘÞdH þ ðUþUþ0 −UþÞ
× ðH;ZdH;Z̄ −H;Z̄dH;ZÞ þ iUþ0ðζH;Z − ζ̄H;Z̄ÞdF
− dW�dU − 2dUdV; ð12Þ

where we have used the convenient shorthand

ζ ≡ Z þUþH;Z̄; ð13Þ
and the symbol d stands for the spatial differentials of the
functions ζ and H, F, W, that is,

dζ ≡ dZ þUþðH;Z̄ZdZ þH;Z̄ Z̄dZ̄Þ ð14Þ
and

dH ≡H;ZdZ þH;Z̄dZ̄; ð15Þ

dF≡ F;ZdZ þ F;Z̄dZ̄; ð16Þ

dW ≡W;ZdZ þW;Z̄dZ̄: ð17Þ

Finally, employing the standard distributional identities

Θ0 ¼ δ; Uþ0 ¼ Θ; ð18Þ

and the multiplication rules

Θ2 ¼ Θ; ΘUþ ¼ Uþ; ð19Þ

the metric (12) simplifies considerably to

ds2 ¼ 2jdζ þ iζdFj2 þ 2½iΘðζH;Z − ζ̄H;Z̄ÞdF − dW�dU − 2dUdV: ð20Þ

We immediately observe that the new metric (20)
reduces to the continuous metric form (5) without the
gyratonic terms: indeed J ¼ 0 allows for the solutions
F ¼ 0 ¼ W. Moreover, (20) is continuous provided the
spatial differentials dF and dW are continuous functions
of U, and dF is vanishing at U ¼ 0. Then (20) is locally
Lipschitz, and the transformation (9) is formal precisely in
the same way as (7). Indeed, the distributional identities
(18) and the multiplication rules (19) which have to be
employed to cancel the terms proportional to dU2, dHdU
and dH;ZdU are precisely the same as when going from (8)
to (5), as can explicitly be seen from the metric (12). The
additional terms generated from F andW cancel purely due
to the differential conditions (10) and (11), and we will
comment on regularity issues in the special cases consid-
ered below. In particular, in the fundamental case when J is
proportional to a step function Θ, it is expected that F and
W involve the kink function Uþ, and they are vanishing for
U ≤ 0 (so that U ¼ U, V ¼ V, η ¼ Z for U ≤ 0).
Thus, we have reached our aim to generalize (7) in a

natural way to impulsive ppwaves with gyratons, provided
we find appropriate functions F andW satisfying Eqs. (10)
and (11) with J ≠ 0. For this, of course, the specific gyraton
function Jðη; η̄;UÞ must be reexpressed as a function
JðZ; Z̄; UÞ using (9).
In the next subsection we will explicitly show that the

key example has exactly these properties, and thus the
metric (20) will be a continuous metric representation of
the gyratonic impulsive waves in that case.

A. The key example

As an illustration, let us now consider the gyratonic
extension of standard impulsive ppwaves described by the
distributional metric (2) with the dU2 term

2Hðη; η̄ÞδðUÞ; and Jðη;UÞ ¼ χ

2iη
ΘðUÞ; ð21Þ

where χ is a constant, as shown in Fig. 2. The importance
of this particular form of J was discussed in previous
works [21,25,29].
In such a case, the explicit integration of Eqs. (10)

and (11) with HðZ; Z̄Þ gives the functions3

F ¼ χ

2ðZH;Z − Z̄H;Z̄Þ
log

ZZ̄ þ UþZ̄H;Z̄

ZZ̄ þ UþZH;Z
; ð22Þ

W ¼ χ2

4ðZH;Z − Z̄H;Z̄Þ
log

ZZ̄ þ UþZ̄H;Z̄

ZZ̄ þ UþZH;Z
: ð23Þ

Interestingly, W ¼ ðχ=2ÞF. It can be seen that both F and
W are now indeed real locally Lipschitz continuous
functions of U, even on the impulsive surface U ¼ 0.
The resulting metric (20) becomes

ds2¼2jdZþUþdðH;Z̄Þþ iðZþUþH;Z̄ÞdFj2
þ2½iðZH;Z− Z̄H;Z̄ÞΘdF−dW�dU−2dUdV; ð24Þ

where we explicitly have

dF ¼ −
χ

2
log

ZZ̄þUþZ̄H;Z̄

ZZ̄þUþZH;Z
×
dðZH;ZÞ− dðZ̄H;Z̄Þ
ðZH;Z − Z̄H;Z̄Þ2

þ χ

2

UþH1 þU2þH2

ðZH;Z − Z̄H;Z̄ÞðZZ̄þUþZH;ZÞðZZ̄þUþZ̄H;Z̄Þ
;

ð25Þ

3To preserve the relation η ¼ Z for U ≤ 0 in (9), we have to
take the principal branch of the generally multivalued complex
logarithm. Only this branch gives F ¼ 0 for U ≤ 0.
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dW ¼ χ

2
dF; ð26Þ

with

H1 ¼ ðZH;Z − Z̄H;Z̄ÞðZ̄dZ − ZdZ̄Þ
þ ZZ̄ðdðZ̄H;Z̄Þ − dðZH;ZÞÞ; ð27Þ

H2 ¼ ZH;ZdðZ̄H;Z̄Þ − Z̄H;Z̄dðZH;ZÞ: ð28Þ

Moreover, F ¼ 0 ¼ W for all U ≤ 0 since the log term
in (22) and (23) vanishes for U ≤ 0. Hence the metric (24)
is locally Lipschitz continuous (even acrossU ¼ 0) and can
be written as

ds2 ¼ 2jdZþUþðH;Z̄ZdZþH;Z̄ Z̄dZ̄Þ þ iðZþUþH;Z̄ÞdFj2 þ ½2iðZH;Z − Z̄H;Z̄Þ− χ�dFdU − 2dUdV: ð29Þ

In the absence of the gyraton, χ ¼ 0 implying dF ¼ 0,
the metric (29) simplifies to the standard metric (5).

B. Gyratonic Aichelburg-Sexl metric

The expressions (22) and (23) are valid for (21) and any
metric function H except the case when

ZH;Z − Z̄H;Z̄ ¼ 0 ⇔ log
ZZ̄ þUþZ̄H;Z̄

ZZ̄ þUþZH;Z
¼ 0: ð30Þ

Since, using Z ¼ 1ffiffi
2

p ϱ expðiϕÞ, the differential operator

Z∂Z − Z̄∂Z̄ ¼ −i∂ϕ is the generator of rotations around
the axis, this special case involves all axially symmetric
geometries with H depending only on ϱ2 ¼ 2ZZ̄. In
particular, this exceptional situation includes the
Aichelburg-Sexl case H ¼ −μ logð2ηη̄Þ, which is a famous
solution to vacuum Einstein’s equations. Since ηη̄ ¼ ZZ̄ at
U ¼ U ¼ 0 [see (9)], this is equivalent to

H ¼ −μ logð2ZZ̄Þ ¼ −2μ log ϱ: ð31Þ
Instead of (22) and (23), a suitable choice of the functions F
and W corresponding to (31) is

F ¼ −
χ

2

Uþ
ZZ̄ − μUþ

; W ¼ −
χ2

4

Uþ
ZZ̄ − μUþ

; ð32Þ

and the metric is

ds2 ¼ 2

����dZ þ Uþ

�
μ
dZ̄
Z̄2

þ i
χ

2

Z̄dZ þ ZdZ̄
Z̄ðZZ̄ − μUþÞ

�����
2

−
χ2

2
Uþ

Z̄dZdU þ ZdZ̄dU
ðZZ̄ − μUþÞ2

− 2dUdV: ð33Þ

This is the new continuous metric form of the class of
Frolov-Fursaev gyratons considered in [21], which re-
present gyratonic extensions of the classic Aichelburg-Sexl
solution [34]. It describes the impulsive gravitational wave

generated by a relativistic monopole point source (located
at the spatial origin η ¼ 0 on the impulse U ¼ 0) in which
the constant μ is related to the mass energy of the source,
while χΘðUÞ determines the angular momentum density of
the gyraton; see [29]. It is convenient to introduce polar
coordinates by setting Z ¼ 1ffiffi

2
p ϱ expðiϕÞ, in which the

continuous metric (33) becomes

ds2 ¼
�
1þ 2μ

Uþ
ϱ2

�
2

dϱ2

þ
��

1− 2μ
Uþ
ϱ2

�
ϱdϕþ 2χ

Uþ
ϱ2

�
1− 2μ

Uþ
ϱ2

�
−1
dϱ

�
2

− 2χ2
Uþ
ϱ3

�
1− 2μ

Uþ
ϱ2

�
−2
dϱdU − 2dUdV: ð34Þ

Notice that forU≤0 this is just ds2¼dϱ2þϱ2dϕ2−2dUdV,
which is Minkowski space in standard polar coordinates.
Without the gyratonic terms (when the source has no

spin, i.e., χ ¼ 0), the metric (33) reduces to the much
simpler form

ds2 ¼ 2

����dZ þ μUþ
dZ̄
Z̄2

����
2

− 2dUdV; ð35Þ

and (34) becomes

ds2 ¼
�
1þ 2μ

Uþ
ϱ2

�
2

dϱ2 þ
�
1 − 2μ

Uþ
ϱ2

�
2

ϱ2dϕ2

− 2dUdV; ð36Þ

which is identical to the forms found previously in [32,35].

C. Alternative distributional and continuous
forms of the gyratonic impulses

Alternatively, instead of (2), it is also possible to start
from the distributional form of the pp-wave metric with
gyratons expressed in real coordinates

FIG. 2. Left: An example of the impulsive wave for which
the gyratonic profile J is proportional to the Heaviside step
function Θ. Right: Plot of the Heaviside step function Θ and of
the kink function Uþ (bold).
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ds2 ¼ dρ2 þ ρ2dφ2 − 2dUdV þ 2Hðρ;φÞδðUÞdU2

þ 2χðUÞdφdU; ð37Þ

which is more common in the literature. This is obtained
from (2) by the transformation

η ¼ 1ffiffiffi
2

p ρ expðiφÞ; with J ¼ χðUÞ
2iη

; ð38Þ

where χðUÞ is any real function. In the Einstein theory in
vacuum, Hðρ;φÞ is a solution of the Laplace equation
△H ¼ 0 [see Eq. (79) in Sec. VII of [29], and the
discussion of more general solutions therein]. The simplest
explicit solution of this type is the Aichelburg-Sexl axially
symmetric spacetime with HðρÞ ¼ −2μ log ρ, which for
χðUÞ ≠ 0 describes the Frolov-Fursaev gyraton.
The corresponding continuous form (20) of the metric

(37) is obtained by the transformation analogous to (9),
namely

U ¼ U;

V ¼ V þ ΘH þ UþH;ZH;Z̄ þW;

ρ ¼
ffiffiffi
2

p
jZ þUþH;Z̄j;

φ ¼ F þ 1

2i
log

Z þ UþH;Z̄

Z̄ þ UþH;Z
; ð39Þ

in which againHðZ; Z̄Þ is an arbitrary real-valued function.
Indeed, if the functions WðZ; Z̄; UÞ, FðZ; Z̄; UÞ satisfy the
equations

F;U ¼ −
χðUÞ
2ζζ̄

; W;U ¼ −
χ2ðUÞ
4ζζ̄

; ð40Þ

where ζζ̄ ¼ ηη̄ with ζ ≡ Z þ UþH;Z̄ defined by (13), the
resulting metric is exactly the continuous metric (20).
For the particular gyraton given by the Heaviside step
function,

χðUÞ ¼ χΘðUÞ; χ ¼ const ð41Þ

(as in the example depicted in Fig. 2), the real functions
F and W take the form (22) and (23), respectively. They
are zero for all U ≤ 0 and continuous across U ¼ 0. The
corresponding continuous metric is (29).
The real form of the transformation (39) will be

convenient for the discussion of particle motion; see
expressions (51) and (52).

D. Penrose junction conditions with gyratons

Using our explicit transformation (9), or alternatively
(39), we can now investigate the Penrose junction con-
ditions (4) in order to also include gyratons.

These Penrose conditions identify the corresponding
points across the null hypersurface N located at
U ¼ U ¼ 0, which separates the two halves M−ðU < 0Þ
and MþðU > 0Þ of the background Minkowski space (3);
see Fig. 1. The complete transformation relating both parts
of (3) to the continuous metric form (20) is (9). Performing
its limits U → 0− and U → 0þ, and using continuity of the
coordinates fU;V; Z; Z̄g, as well as the properties of the
functions F and W, we immediately obtain

Vþ
i ¼ V−

i þHi; ð42Þ

ηþi ¼ η−i ; ð43Þ

where the subscript i indicates the value of the correspond-
ing quantity at U ¼ U ¼ 0. The only discontinuity across
the impulse is thus in the coordinate V, in full agreement
with the standard Penrose warp V → V −H across the
impulsive surface prescribed by (4). The presence of a
gyraton thus makes no difference at all in the Penrose
junction conditions (4).
Nevertheless, from the physical point of view the two

distinct situations—without a gyraton and with a gyraton—
must have some measurable effect. It is not contained in the
Penrose identification of points, but it manifests itself in the
related identification of velocities (tangent vectors to any
geodesic) on both sides of the impulse. Such relations are
not part of the Penrose junction conditions (4) but are
contained in our generalized explicit transformation (9).
Indeed, by differentiating the Eq. (9) with respect to

the parameter τ of any (timelike, null, or spacelike)
geodesic fUðτÞ; VðτÞ; ZðτÞ; Z̄ðτÞg crossing U ¼ 0, for
the key example of J given by (21) and illustrated in
Fig. 2, we obtain4

_Uþ
i ¼ _U−

i ; ð44Þ

_Vþ
i ¼ _V−

i þHi;Z _η
−
i þHi;Z̄ _̄η

−
i þ

�
Hi;ZHi;Z̄ −

χ2

4η−i η̄
−
i

�
_U−
i ;

ð45Þ

_ηþi ¼ _η−i þ
�
Hi;Z̄ −

iχ
2η̄−i

�
_U−
i : ð46Þ

Here we have employed that the geodesics of (20) are C1

curves and are unique, given initial data off the impulse.
This fact can be established using the Fillipov solution
concept for geodesics in locally Lipschitz continuous
spacetimes [37], along the lines of Remark 4.1(2) in [10].
For χ ¼ 0 (implying F ¼ 0 ¼ W) we recover the con-

ditions given by Eq. (4.4) in [10] and also in [38]. The

4Due to the continuity, η ¼ Z on the impulse, and thus
Hi;Z ¼ Hi;η ≡ ∂

∂ηHðη; η̄Þ, and Hi;Z̄ ¼ Hi;η̄ ≡ ∂
∂η̄Hðη; η̄Þ.
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formulas (44)–(46) extend these results by involving the
gyratonic terms with χ. Clearly, there is an additional jump
in the longitudinal and transverse velocities _V i and _ηi
across the impulsive wave surface, namely

Δ _V i ¼ −
χ2

4η−i η̄
−
i

_U−
i and Δ_ηi ¼ −

iχ
2η̄−i

_U−
i : ð47Þ

These specific jumps become unbounded as η−i → 0, which
is physically understandable because the singular gyratonic
source is located at the spatial origin η ¼ 0 of the impulsive
surface. It is also interesting to observe that

jΔ_ηij2 ¼ − _U−
i Δ _V i: ð48Þ

This identity is related to the conservation of normalization
of the four-velocity, which is guaranteed by the C1

regularity of geodesics and the continuity of the metric.
The effect of the gyraton on test particles moving along

geodesics is even more nicely seen if we employ real
polar coordinates and the explicit transformation (39). This
yields

Vþ
i ¼ V−

i þHi; ρþi ¼ ρ−i ; φþ
i ¼ φ−

i ; ð49Þ

so that both the radial position ρi and the polar position φi
are continuous (unaffected by the presence of a gyraton),
but there is a discontinuity in the corresponding velocities

_Vþ
i ¼ _V −

i þ 1ffiffiffi
2

p ðeiφ−
i Hi;Z þ e−iφ

−
i Hi;Z̄Þ_ρ−i

þ iffiffiffi
2

p ðeiφ−
i Hi;Z − e−iφ

−
i Hi;Z̄Þρ−i _φ−

i

þ
�
Hi;ZHi;Z̄ −

χ2

2ðρ−i Þ2
�
_U−
i ; ð50Þ

_ρþi ¼ _ρ−i þ 1

ρ−i
ðHi;Z þHi;Z̄Þ _U−

i ; ð51Þ

_φþ
i ¼ _φ−

i þ
�

iffiffiffi
2

p
ρ−i

ðeiφ−
i Hi;Z − e−iφ

−
i Hi;Z̄Þ −

χ

ðρ−i Þ2
�
_U−
i :

ð52Þ

In particular, the gyraton has no effect on the radial velocity
_ρi, but it causes a specific jump of the axial velocity _φi

given by the term χ=ðρ−i Þ2. This is consistent with the
physical interpretation of the gyratonic term: it encodes the
additional rotational (spin) character of the source of
the impulsive gravitational wave. The gyraton also affects
the longitudinal velocity _V i via the term χ2=2ðρ−i Þ2 in the
expression (50). It agrees with the studies presented in
[18,21,25].

III. EXTENSION TO ANY COSMOLOGICAL
CONSTANT Λ

These results on impulsive pp waves with gyratons
can be generalized to any background of constant curva-
ture, i.e., to gyratonic impulses propagating in de Sitter or
anti–de Sitter spacetimes.
Indeed, it was already shown in [31] that the original

Penrose cut and paste construction method in Minkowski
space (summarized here in Sec. I A) can be extended to any
Λ by applying exactly the same junction conditions (4) to a
more general background metric generalizing (3), namely

ds20 ¼
2dηdη̄ − 2dUdV

½1þ 1
6
Λðηη̄ − UVÞ�2 : ð53Þ

This introduces impulsive waves in the de Sitter (Λ > 0) or
anti–de Sitter (Λ < 0) universes.
Of course, the geometry of such impulses depends on Λ

since the null hypersurface N , given by U ¼ 0, along
which the spacetime is cut into the two halvesM− andMþ
and reattached with a specific warp (4), has the induced
2-metric dσ2 ¼ 2ð1þ 1

6
Ληη̄Þ−2dηdη̄ with the Gaussian

curvature K ¼ 1
3
Λ. Thus, for Λ ¼ 0 the impulsive wave

surface is a plane, for Λ > 0 it is a sphere, while for Λ < 0
it is a hyperboloid. The geometry of these nonexpanding
impulsive spherical and hyperboloidal waves was described
in detail in [39] using various coordinate representations.
It was also shown in [31] that applying the same

transformation (7) to the metric (53), the explicit continu-
ous form of the impulsive metric is obtained, namely

ds2 ¼ 2jdZ þ UþðH;Z̄ZdZ þH;Z̄ Z̄dZ̄Þj2 − 2dUdV

½1þ 1
6
ΛðZZ̄ −UV −UþGÞ�2

; ð54Þ

where GðZ; Z̄Þ≡H − ZH;Z − Z̄H;Z̄.
Notice that this metric is conformal to the continuous

form of impulsive pp waves (5), to which it reduces in the
case Λ ¼ 0. Although it is continuous across the null
hypersurface U ¼ 0, the discontinuity in the derivatives
of the metric introduces impulsive components in the
Weyl and curvature tensors proportional to the Dirac
distribution [31]. The metric (54) thus explicitly describes
impulsive waves in de Sitter, anti–de Sitter or Minkowski
backgrounds.
Moreover, for anyΛ the transformation (7) automatically

incorporates the Penrose junction conditions (4) for reat-
taching the two halves of the spacetime M− and Mþ with
the warp V → V −H.
The corresponding distributional form of these impul-

sive solutions reads

ds2 ¼ 2dηdη̄ − 2dUdV þ 2Hðη; η̄ÞδðUÞdU2

½1þ 1
6
Λðηη̄ − UVÞ�2 : ð55Þ
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It is obtained from the continuous form of the impulsive-
wave metric (54) by applying the transformation (7) if the
distributional terms arising from the derivatives of ΘðUÞ
and UþðUÞ are also kept (see [31,40] for more details).
The impulse, located on the wave front U ¼ 0, propagates
in a background spacetime of constant curvature (53). For
Λ ¼ 0 this is the Brinkmann form of an impulsive ppwave
(8) in Minkowski space, while for Λ ≠ 0 it represents an
impulse propagating in curved (anti–)de Sitter universe [the
metric (55) is conformal to the Brinkmann metric].
In fact, the family of impulsive spacetimes (55) contains

all nonexpanding impulses in Minkowski, de Sitter or anti–
de Sitter universes that can be constructed from the whole
Kundt class of type N solutions with a cosmological
constant Λ [6,7,41–43]. A systematic analysis of such
distributional limits of Kundt sandwich waves was per-
formed in [44]; for a review and explicit transformations
see [10]. This recent review also summarizes the most

important explicit impulses of this type, namely the axially
symmetric Hotta-Tanaka solution [45], which was obtained
by boosting the Schwarzschild–de Sitter or Schwarzschild–
anti–de Sitter black hole to the speed of light (the analogue
of the Aichelburg-Sexl solution [34] for Λ ≠ 0), and more
general nonexpanding impulsive waves generated by null
multipole particles [46]. Such solutions are more clearly
expressed and analyzed by employing the five-dimensional
representation of the (anti–)de Sitter spacetime [39,47–50].

A. Continuous form of impulsive waves
with gyratons and Λ

Interestingly, an explicitly continuous metric form of
gyratonic impulsive waves in de Sitter and anti–de Sitter
spacetimes is obtained by applying the discontinuous
transformation (9)–(11) on the background metric (53),
which yields

ds2 ¼ 2jdζ þ iζdFj2 þ 2½iΘðζH;Z − ζ̄H;Z̄ÞdF − dW�dU − 2dUdV

½1þ 1
6
ΛðZZ̄ − UV −UþGÞ�2

; ð56Þ

where

GðZ; Z̄; UÞ≡H − ZH;Z − Z̄H;Z̄ þW; ð57Þ

provided W ¼ 0 for all U ≤ 0 (as is generally assumed
throughout this paper). It is obvious that for Λ ¼ 0
this reduces to (20), while in the absence of gyratons
(W ¼ 0 ¼ F implying J ¼ 0) one recovers the metric form
(54). If both Λ ¼ 0 and J ¼ 0, the classical metric form (5)
is obtained.
Indeed, to establish this, note that the numerator of (56)

is identical to (20). As demonstrated in Sec. II, this is
equivalent to the distributional metric (2) via the trans-
formations (9)–(11), i.e., to the background (3) for
U ≡U ≠ 0. The (anti–)de Sitter background (53) involves
the additional conformal factor, namely the square of
1þ 1

6
Λðηη̄ − UVÞ in the denominator. Performing the

transformation (9) and using the multiplication rules
Uþ ¼ UΘ and Θ2 ¼ Θ, this expression becomes

1þ 1
6
Λ½ZZ̄ −UV − UþðH − ZH;Z − Z̄H;Z̄Þ −UW�:

ð58Þ

Now, the key observation is that UW ≡UþW whenever
W ¼ 0 for all U ≤ 0, as is the case in the explicit
examples (23) and (32). Consequently, 1þ 1

6
Λðηη̄−UVÞ¼

1þ 1
6
ΛðZZ̄−UV−UþGÞ, where G is defined by (57).

This gives the denominator in (56), completing the
argument.

B. Distributional form of impulsive waves
with gyratons and Λ

Combining the results and relations employed in the
previous subsection, we may also conclude that the class
of spacetimes studied here can be written in the follow-
ing form:

ds2 ¼ 2dηdη̄ − 2dUdV þ 2Hðη; η̄ÞδðUÞdU2 þ 2Jðη; η̄;UÞdηdU þ 2J̄ðη; η̄;UÞdη̄dU
½1þ 1

6
Λðηη̄ − UVÞ�2 : ð59Þ

This is a combination of the metric (2) for impulsive pp
waves with the gyratonic off-diagonal terms (generalized
Brinkmann metric [12]) in the numerator, with the con-
formal factor ½1þ 1

6
Λðηη̄ − UVÞ�−2. This distributional

form of the metric is a general expression for impulsive

gyratonic waves propagating in any spacetime of constant
curvature, that is, Minkowski, de Sitter or anti–de Sitter
universe, according to the sign of the cosmological
constant Λ. The metric (59) is clearly conformal to the
distributional metric (2) for impulsive gyratonic pp waves.
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C. Penrose junction conditions with gyratons and Λ
Similarly as in Sec. II D, we can now obtain and discuss

the extended Penrose junction conditions in the presence of
gyratons when Λ ≠ 0. They identify the corresponding
points across the impulsive null hypersurface N located at
U¼U¼0, which separates M−ðU < 0Þ and MþðU > 0Þ
of the background (anti–)de Sitter manifold (53).
The full transformation relating both partsM− andMþ

in the form (53) to the continuous metric form (56) is again
given by (9). Interestingly, the inclusion of the cosmologi-
cal constant Λ only occurs via the conformal factor
½1þ 1

6
Λðηη̄ − UVÞ�−2 ¼ ½1þ 1

6
ΛðZZ̄ − UV −UþGÞ�−2 in

(56), where G is defined by (57). Moreover, evaluated on
the impulse it takes the very simple form

�
1þ 1

6
Ληη̄

�
−2

¼
�
1þ 1

6
ΛZZ̄

�
−2
: ð60Þ

Performing the limits U → 0− and U → 0þ of the
transformation (9), employing the continuity of the coor-
dinates fU;V; Z; Z̄g, we obtain

Vþ
i ¼ V−

i þHi; ð61Þ

ηþi ¼ η−i : ð62Þ

Clearly, these are the same as the relations (42) and (43).
We have thus recovered the Penrose junction conditions (4)
for proper identification of points (positions) across the
impulse which are valid for any value of the cosmological
constant; see [8,10,31]. Of course, for Λ ≠ 0 the coordi-
nates fU;V; η; η̄g are not the usual Minkowski double null
coordinates, but the coordinates of the (anti–)de Sitter
conformally flat metric (53).
These gyratonic impulsive waves propagating in the

(anti–)de Sitter universe have a specific effect on the
velocities of free test particles. As in the case Λ ¼ 0,
the corresponding junction conditions are obtained by
differentiating the explicit transformation (9) with respect
to the parameter τ of any geodesic, and comparing its limits
U → 0− and U → 0þ. Due to (60), we obtain the same
relations (44)–(46) as in the Minkowski background case.

IV. CONCLUSIONS

Let us summarize the main results of our work:
(i) We have derived the new continuous metric form

(20) for impulsive pp waves with gyratons, which
naturally generalizes the classical metric (5) without
the gyratonic terms.

(ii) We have found the transformation (9)–(11) relating
the continuous metric form (20) to the distributional

metric form (2), which—compared to (1)—contains
the additional off-diagonal metric function J repre-
senting the gyraton. This is an extension of the
classical transformation (7).

(iii) We have explicitly presented the continuous form
(29) of the impulsive metric for the key example (21)
when J is proportional to the Heaviside step function
of retarded time, including also the exceptional case
(33), or (34), of the Frolov-Fursaev gyratons con-
structed from the axially symmetric Aichelburg-Sexl
vacuum solution.

(iv) We have proved that the Penrose junction conditions
(4) for identifying the corresponding points in the
cut and paste construction method remain valid even
in the presence of gyratons (because the additional
continuous functions W and F vanish on the
impulsive hypersurface).

(v) Nevertheless, the presence of a gyraton manifests
itself through the “derivatives” of the junction
conditions, as represented by the transformation
(9)–(11). This leads to a specific jump in the
velocities (45) and (46) of test particles crossing
the gyrating impulse. As clearly demonstrated by
(51) and (52), the gyraton affects only the axial
component of the transverse velocity.

(vi) Finally, we have generalized all these new results
(obtained for the case of impulsive pp waves
with gyratons, and thus necessarily when Λ ¼ 0)
to any value of the cosmological constant Λ. In
particular, starting from the unified, conformally
flat, form of the metric (53) representing the de
Sitter (Λ > 0), anti–de Sitter (Λ < 0) or flat
Minkowski (Λ ¼ 0) backgrounds, we demon-
strated that the transformation (9)–(11) can be
applied for any Λ, and it relates the new
continuous metric form (56) and (57) to the
corresponding distributional metric form (59)
of gyratonic impulsive waves propagating in de
Sitter or anti–de Sitter spacetimes.

There are also several possibilities for further extension
of the above results. For example, it would be interesting to
find the continuous metric form for gyratonic impulsive
waves with more general profiles of energy and angular
momentum. These are going to be topics of subsequent
studies.
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