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Black holes are important astrophysical objects describing an end state of stellar evolution, which are
observed frequently. There are theoretical predictions that Kerr black holes with high spins expel magnetic
fields. However, Kerr black holes are pure vacuum solutions, which do not include accretion disks, and
additionally previous investigations are mainly limited to weak magnetic fields. We prove for the first time
in full general relativity that generic rapidly spinning black holes including those deformed by accretion
disks still expel even strong magnetic fields. Analogously to a similar property of superconductors, this is
called the Meissner effect.
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I. INTRODUCTION

Black holes, as a final state of stellar evolution, are
nowadays considered standard astronomical objects. Their
existence is predicted by general relativity, supported both
by strong theoretical arguments [1] and observational
evidence, most directly in the recent detection of gravita-
tional waves [2]. If they are not surrounded by matter, they
are treated as Kerr-Newman black holes characterized
by their mass, spin and charge alone. This fundamental
prediction of general relativity is known as the no-hair
theorem for black holes [3], although three-hair theorem
would be a better name. Additionally, the charge is usually
neglected in astrophysical environments.
The black hole’s spin is successfully measured using the

continuum fitting and the iron line method [4–6] possibly
augmented by gravitational lensing. These methods require
the presence of an accretion disk, which does not comply
with the aforementioned assumptions of the no-hair theo-
rem. The masses of the accretion disk, which are small
compared to the black hole’s mass, are typically assumed
to yield negligible perturbations. Yet, if tests of the no-hair
theoremare carried out, as suggested for future observatories
like the Event Horizon Telescope [7,8], the admittedly small
effects by the disk may become non-negligible. To estimate
such effects, it is prudent to treat black holes in a more
general setting, allowing for deviations from the Kerr
geometry caused by additional matter in general relativity,
as it was recently started for the no-hair theorem in [9].
Naturally, this raises the question of which other properties
of Kerr black holes are universally holding for any black
hole and which are sensitive to a possible accretion disk.

We will show for one important property—the so-called
Meissner effect—that it is universal. The Meissner effect
describes the property of black holes to expel any magnetic
field if they become extremal, i.e., if they have a maximal
spin. This is especially interesting, since observations
suggest that many supermassive black holes are almost
extremal [6,10]. If the spin would exceed this threshold,
the singularity inside the black hole would become naked
and visible to distant observers, which is believed to be
unphysical and, thus, prohibited as summarized in the
cosmic censorship conjecture [11].
On the theoretical side, an analogy between black holes

and thermodynamics emerged quite early in the works of
Bekenstein and Hawking [12,13]. In particular, they found
that the surface gravity κ of a black hole plays the role of its
temperature T via T ¼ κ=2π, where we choose geometrical
units in which G ¼ ℏ ¼ c ¼ 1. The spin a and the massM
of a Kerr black hole in turn determine its surface gravity
κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð2MðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ÞÞ. For extremal Kerr

black holes, where a ¼ M, the surface gravity and, hence,
the temperature vanish.
The analogy with thermodynamics can be carried further.

In particular, extremal black holes, for which the temper-
ature vanishes, expel external magnetic test fields much
like superconductors [14–17]. In light of these similarities,
the effect was dubbed the “Meissner effect.” It has been
investigated for electromagnetic fields coupled to the
gravitational field around Kerr-Newman black holes
[18], for special exact models containing magnetic fields
[19–23], and in string and Kaluza-Klein theory [24]. A
relation between the Meissner effect and entanglement was
also discussed [25].
From this theoretical treatment, one might be led to

believe that the Meissner effect has consequences on the
production efficiency η of jets via the Blandford-Znajek
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process [26]: η ∝ a2Φ2
BH, where a is the spin of the black

hole and ΦBH is the time-averaged magnetic flux [27–29].
Faster rotating black holes are expected to produce jets
more efficiently. However, a simultaneous decrease of the
magnetic flux, as predicted by the Meissner effect, might
counterbalance this behavior. This conclusion rests, how-
ever, on the assumption that there is no matter in the
vicinity of the horizon. In contrast the authors in [30] did
not assume vacuum electrodynamics but rather force-free
electrodynamics as it is suitable for accreting black holes.
In that case, the Meissner effect was found to have no effect
on the jet creation; for other models allowing matter
crossing the horizon, see [31,32]. Based on the aforemen-
tioned results it is generally believed that the presence of
matter suppresses the Meissner effect. Indeed, this con-
clusion is corroborated by the observation of the black hole
GRS 1915þ 105, which has a spin of a ¼ 0.98� 0.01 and
still creates jets efficiently [33,34].
In contrast to these approaches, we assume vacuum in an

arbitrarily small vicinity of the horizon to show analytically
that the Meissner effect is a general property of isolated
black holes in general relativity.

II. THE MEISSNER EFFECT FOR
ASTROPHYSICAL BLACK HOLES

Since we wish to discuss the Meissner effect for more
general black holes than those described by the Kerr metric,
we use the quasilocal definition of a weakly isolated horizon
(WIH). It was described as horizons in equilibrium, i.e.,
currently no matter or radiation falls, in [35]. However, the
WIH can be penetrated by electric and magnetic fields. The
WIHs play also a role in loop quantum gravity [36]. Note
also that the thermodynamics of WIHs was developed in
[37]. In what follows, we assume a stationary and axially
symmetric spacetime in the neighborhood of an uncharged
WIH, which corresponds to a generic black hole in equi-
librium. Moreover, we assume that sufficiently close to the
WIHwe have nomatter; i.e., we have electrovacuum. Let us
stress that we neither assume the symmetries globally nor
do we make any assumption whatsoever about the matter
further out, in particular, about a possible accretion disk.
We assume that the space-time contains a WIH [37], i.e. a

nonexpanding null hypersurface H on which the Einstein-
Maxwell equations are satisfied, equippedwith the normalla;
by definition, there is no flux ofmatter or radiation through the
horizon. For the description of the space-time, we employ the
Newman-Penrose (NP) formalism [38] in which the main
geometrical quantities are the spin coefficients and the Weyl
scalars and the matter is described by the scalar projections
of the energy-momentum tensor of an electromagnetic field.
The null normal la is necessarily tangent to the geodesics
generating the horizon and satisfies Dlb ¼ κðlÞlb, where
D ¼ la∇a and the constant κðlÞ is the surface gravity of the
WIH. κðlÞ vanishes for extremal horizons.

We take the notation, the coordinate system and the
metric of such an arbitrary black hole as in [39].
Additionally, we use standard spherical coordinates θ
and φ on the topological 2-spheres foliating the horizon.
In these coordinates, the intrinsic geometry of the 2-spheres
is given by the metric conformal to a unit Euclidean sphere
with the conformal factor R ¼ Rðθ;φÞ,

ds2 ¼ R2ðdθ2 þ sin2θ dφ2Þ: ð1Þ

At any point of such a 2-sphere there are exactly two null
future-pointing directions: la is tangent to the horizon
and we denote the other one by na and fix its scaling by
lana ¼ 1. We complete these vectors to a full NP null
tetrad by introducing two complex null vectors ma and m̄a

satisfying mam̄a ¼ −1 which span the tangent space of
the sphere. The intrinsic connection compatible with the
metric (1) is encoded in the complex spin coefficient

að0Þ ¼ αð0Þ − β̄ð0Þ ¼ maδ̄m̄a; ð2Þ

where δ ¼ ma∇a on H is given by

δ ¼ 1ffiffiffi
2

p
R

�
∂θ þ

i
sin θ

∂φ

�
: ð3Þ

The transformation

ma ↦ eiχma ð4Þ

is called “spin,” where χ is an arbitrary real parameter. It
corresponds to a rotation in the tangent space of a 2-sphere.
A quantity η is said to have the “spin weight” s if it
transforms as

η ↦ eisχη ð5Þ

under the spin (4). For a spin s quantity η one defines the
spin raising and lowering operators ð and ð̄ by

ðη ¼ δηþ sāð0Þη; ð̄η ¼ δ̄η − sað0Þη: ð6Þ

Following [39], we extend vectors comprising the null
tetrad off the horizon by conditions

Δna ¼ Δla ¼ Δma ¼ 0; ð7Þ

where Δ ¼ na∇a. In terms of the spin coefficients, con-
ditions (7) imply

γ ¼ ν ¼ τ ¼ 0 ð8Þ

everywhere in the neighborhood of the horizon.
The full space-time geometry on the horizon and in its

neighborhood is a solution of a characteristic initial value
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problem with the initial data given on two intersecting null
hypersurfaces. The first one is the horizonH, the other one
is an arbitrarily chosen null hypersurface N transversal to
H and intersectingH in a 2-sphere S0. The free data on the
sphere S0 consist of the aforementioned function R, the
values of the spin coefficients πð0Þ, að0Þ ¼ αð0Þ − β̄ð0Þ, λð0Þ

and μð0Þ; the Weyl scalars Ψð0Þ
2 and Ψð0Þ

3 ; and the electro-

magnetic scalar ϕð0Þ
1 , where we use the notation of [38,39].

The real and imaginary parts of ϕð0Þ
1 are the flux densities of

the electric and magnetic field through the sphere S0,

respectively. The Weyl scalar Ψð0Þ
2 determines the multipole

moments of the horizon [40]; namely, its real part is related
to the mass and its imaginary part is related to the angular

momentum of the horizon. The functions Ψð0Þ
2 ; að0Þ; πð0Þ

and ϕð0Þ
1 are not independent but they are constrained by the

equations

ℜΨð0Þ
2 ¼ jað0Þj2 − 1

2
ðδað0Þ þ δ̄āð0ÞÞ þ jϕð0Þ

1 j2; ð9Þ

ℑΨð0Þ
2 ¼ −ℑðπð0Þ; ð10Þ

the spin weight of πð0Þ is −1. Finally, the spin coefficients
λð0Þ and μð0Þ describe the extrinsic curvature of the horizon.
In order to have a fully determined initial value problem,
the Weyl scalar Ψ4 and the electromagnetic scalar ϕ2 must
be specified on the null hypersurface N .
Next, imposing the aforementioned symmetries, we

require that, in the neighborhood of H, there exist a
timelike Killing vector Ka which equals la on the horizon.
A necessary condition for the existence of such a Killing
vector field is given by [41]

∇c∇aKb ¼ RabcdKd: ð11Þ
In addition, we introduce the axial Killing vector ηa

which acquires the form ηa ¼ ð∂φÞa [42]. The Killing
equation (A3f) (with K replaced with η) then implies

að0Þ ¼ −
1ffiffiffi
2

p
R2

ðR0 þ R cot θÞ: ð12Þ

The electromagnetic field Fab is assumed to possess the
same symmetries; i.e. we impose

£ηFab ¼ 0; £KFab ¼ 0; ð13Þ
so that the electromagnetic NP quantities do not depend
on the coordinates v and φ. In the electrovacuum case, the
anti-self-dual part of Fab

F ab ¼
1

2
ðFab þ i⋆FabÞ ð14Þ

is a closed form which, together with (13), implies that the
1-form

J a ¼ F abη
b ð15Þ

is also closed:

∇½aJ b� ¼ 0: ð16Þ
Writing the conditions (11) and (16) in the NP formalism

and restricting them to the horizon we arrive at the
constraints

κðlÞλð0Þ ¼ ð̄πð0Þ þ ðπð0ÞÞ2; ð17aÞ

κðlÞϕ
ð0Þ
2 ¼ ð̄ϕð0Þ

1 þ 2πð0Þϕð0Þ
1 ; ð17bÞ

where πð0Þ and ϕð0Þ
1 have spin weights −1 and 0, respec-

tively. Additionally, Eq. (17a) implies that the spin coef-
ficient λð0Þ is time independent, as can also be inferred from
substituting (17) into the expression for λ in [39]. The
instructive but tedious calculations showing the validity of
Eqs. (17) for Kerr black holes will be presented elsewhere.
Subsequently, we prove the Meissner effect for

uncharged black holes; i.e., we show that the magnetic
flux across extremal, axially symmetric and stationary
horizons vanishes. This is done by determining ϕ1 explic-
itly. For extremal horizons [43], where we have κðlÞ ¼ 0,
Eq. (17a) can be solved in terms of the free function R:

πð0ÞðθÞ ¼ RðθÞ sin θ
cπ þ

ffiffiffi
2

p R
θ
0 R

2ð~θÞ sin ~θd~θ
; ð18Þ

where cπ is a complex integration constant. Now, the
solution of Eq. (17b) reads

ϕð0Þ
1 ¼ cϕ

ðcπ þ
ffiffiffi
2

p R
θ
0 R

2ð~θÞ sin ~θd~θÞ2 ; ð19Þ

where cϕ is another complex integration constant. The total
electric chargeQ and magnetic chargeQ⋆ of the black hole,
which are not restricted at this stage, are then given by

Qþ iQ⋆ ¼ 2
ffiffiffi
2

p
πcϕ

cπ þ
ffiffiffi
2

p R
π
0 R2ð~θÞ sin ~θd~θ

: ð20Þ

Requiring that both charges vanish we get cϕ ¼ 0. This in
turn means that the magnetic and electric flux density

encoded in ϕð0Þ
1 vanish everywhere at the horizon, thereby

proving the Meissner effect.
It is worth mentioning that the symmetries were essential

for our derivation. For a general WIH, ϕð0Þ
1 is part of the

free, unconstrained data, showing that for the Meissner
effect some symmetry is necessary. Indeed, it was shown
that specific nonaxially symmetric magnetic test fields
penetrate the horizon of an extremal Kerr black hole; see
[16]. Thus, the Meissner effect does not hold in this case.
On the other hand, as those authors point out, the test field
they consider is, in fact, not the limit of a stationary
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electromagnetic field [44]. Hence, the stationarity might be
the more crucial of the two symmetries.
We also emphasize that the existence of the Killing

vectors was assumed only in the neighborhood of the
horizon, not in the entire space-time.

III. THE EXPULSION OF THE MAGNETIC
FIELD FROM THE HORIZON

The proof given above shows that the magnetic flux
across any part of the horizon vanishes for strictly extremal

black holes. For the understanding of the Meissner
effect, the transition from the nonextremal case to the
extremal one is important. We depict it in Fig. 1 for a
specific deformation of the Kerr black hole. We fix the

deviation by choosing ϕð0Þ
2 as the spin-weighted spherical

harmonic −1Y2;0 [45],

ϕð0Þ
2 ¼ C−1Y2;0; ð21Þ

with an arbitrary nonvanishing constantC, leaving the other
quantities, including themass, unchanged. For each value of

FIG. 1. Lines of equal magnetic flux density for a given value of a=M. Dashed lines represent vanishing flux density.

FIG. 2. Lines of equal electric flux density around the black hole for a given value of the spin parameter a=M. Dashed thick lines
represent the lines of zero flux density.
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κðlÞ, we solve Eq. (17b) numerically and calculate the
electromagnetic field in the neighborhood of the black hole
using the NP field equations [38]. Finally, we plot the level
sets of the magnetic and electric flux density, i.e., the

imaginary and real part ofϕð0Þ
1 rescaled byC−1, respectively.

We choose the contours of the constant rescaled dimension-
less magnetic flux density to be equidistant, with the
difference between two neighboring contours being 10−2.
Figures 1 and 2 clearly show that the lines of constant

nonvanishing flux density are penetrating the horizon for
a=M < 1 (underextremal case) and are expelled in the
transition a=M → 1 (extremal case). In Fig. 3 we plot the
magnetic field lines for different spins of the black hole.
For the visualization, we transform the spherical coor-

dinates r, θ to the Cartesian ones by the usual relations
x ¼ r sin θ; y ¼ r cos θ in all figures.

IV. JET CREATION EFFICIENCY

Although our analysis and Figs. 1–3 show that the
Meissner effect holds for generic black holes in equilibrium
in general relativity, the impact on the jet creation efficiency
has still to be assessed. As we explained in the Introduction,
the Meissner effect does not operate in the presence of
matter and the Blandford-Znajek process requires an influx
of accreting matter through the black hole horizon, while
we assumed the black hole to be isolated in our approach.
Nevertheless, since the Meissner effect plays a role only in
the limit of maximal spin, it will be interesting to see how
strongly it could affect the jet creation efficiency. In order
to do so, we assume here that the accretion influx, while
powering the jet via the Blandford-Znajek process, is
negligible for solving the field equations. The physically
more viable setting, force-free electrodynamics rather than
electrovacuum, would indeed probably increase the jet
creation efficiency; see [30]. Hence, the idealized situation
treated here yields a lower bound.
The efficiency of the Blandford-Znajek process is given

in geometrical units by [28,29]

η ¼ ϰ

4π
x2hΦ2

BHð _MM2Þ−1=2ið1þ 1.38x2 − 9.2x4Þ; ð22Þ

where ϰ is a constant depending on the geometry of the
magnetic field and x is a variable given in terms of the
dimensionless spin parameter a=M:

x ¼ a=M

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p
Þ : ð23Þ

ΦBH is the flux of the magnetic field through a hemisphere
of the horizon, _M is the accretion rate, and h…i is a time
average.
In order to investigate the behavior of the jet production

efficiency independently of a particular model of accretion,
we vary the spin a, keeping all other parameters fixed. The
result is depicted in Fig. 4, where we chose the same
deformation as for Fig. 1. Other deformations give quali-
tatively the same result. From Fig. 4 any particular model
can be recovered by a simple rescaling.
As Fig. 4 shows, the efficiency is increasing up to

a=M ≈ 0.89. For higher spins, the efficiency drops.
However, it deviates from the maximum value only by
about 17% for a=M ¼ 0.95 and by 50% for a=M ¼ 0.98.
For even higher spins, it decays rapidly to zero. Estimates
of the maximal expected spin of a black hole with an
accretion disk depend on the particular model chosen and
range from a=M ≈ 0.9 to a=M ≈ 0.95 for magnetohydro-
dynamic simulations of thick disks [47,48], which would
still admit a high efficiency for the jet creation. For thin
disks with low viscosity [49] and for models taking only
radiation into account [50] the limits can be as high as
a=M ≈ 0.9994 and a=M ≈ 0.998, respectively.
Our result suggests that even if the Meissner effect would

not be suppressed by the presence of matter crossing the
horizon, it quenches the jet creation significantly only for
black holes with spins higher than a=M ≈ 0.98.

FIG. 3. Field lines of the magnetic field Ba measured by an observer with the four-velocity ua ¼ ðla þ naÞ= ffiffiffi
2

p
, i.e., Ba ¼ ⋆Fabub,

where ⋆Fab is the dual of the electromagnetic field tensor defined by ϕ0, ϕ1 and ϕ2 [46].
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APPENDIX: KILLING EQUATIONS

Let Ka be a Killing vector of a spacetime. We expand
it as

Ka ¼ K0na þ K1la − K2m̄a − K̄2ma; ðA1Þ
so that the spin weights of K0, K1, K2 and K̄2 are 0,0,1
and −1, respectively. Then, the projections of the Killing
equations

∇aKb þ∇bKa ¼ 0 ðA2Þ

onto the null tetrad read

DK0 ¼ ðεþ ε̄ÞK0 − κ̄K2 − κK̄2; ðA3aÞ

DK1 þ ΔK0 ¼ ðγ þ γ̄ÞK0 − ðεþ ε̄ÞK1

þ ðπ − τ̄ÞK2 þ ðπ̄ − τÞK̄2; ðA3bÞ

DK2 þ δK0 ¼ π̄ þ ᾱþ βÞK0 − κK1

þ ðε − ε̄ − ρ̄ÞK2 − σK̄2; ðA3cÞ

ΔK1 ¼ −ðγ þ γ̄ÞK1 þ νK2 þ ν̄K̄2; ðA3dÞ

ΔK2 þ δK1 ¼ ν̄K0 − ðβ þ τ þ ᾱÞK1

þ ðγ − γ̄ þ μÞK2 þ λ̄K̄2; ðA3eÞ

ðK2 ¼ λ̄K0 − σK1; ðA3fÞ

ðK̄2 þ ð̄K2 ¼ ðμþ μ̄ÞK0 − ðρþ ρ̄ÞK1: ðA3gÞ

In the paper we employ two Killing vectors. The sta-
tionary Killing vector Ka reduces to la on the horizon, i.e.

K0 ¼ 0; K1 ¼ 1; K2 ¼ 0; on H; ðA4Þ

and the Killing equation (A3d) together with Eq. (8)
implies K1 ¼ 1 everywhere in the neighborhood of the
horizon.
The axial Killing vector ηa satisfies the Killing

equations (A3) in which K has to be replaced by η
everywhere. On the horizon we have ηa ¼ ð∂φÞa and hence

η0 ¼ η1 ¼ 0 on H: ðA5Þ

For the choice (3) we have

η2 ¼ −
iR sin θffiffiffi

2
p on H : ðA6Þ
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