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The near horizon geometry of general black holes in equilibrium can be conveniently characterized in the
formalism of weakly isolated horizons in the form of the Bondi-like expansions (Krishnan B, Classical
Quantum Gravity 29, 205006, 2012). While the intrinsic geometry of the Kerr-Newman black hole has
been extensively investigated in the weakly isolated horizon framework, the off-horizon description in the
Bondi-like system employed by Krishnan has not been studied. We extend Krishnan’s work by explicit,
nonperturbative construction of the Bondi-like tetrad in the full Kerr-Newman spacetime. Namely, we
construct the Bondi-like tetrad which is parallelly propagated along a nontwisting null geodesic congruence
transversal to the horizon and provide all Newman-Penrose scalars associated with this tetrad. This work
completes the description of the Kerr-Newman spacetime in the formalism of weakly isolated horizons and
is a starting point for the investigation of deformed black holes.
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I. INTRODUCTION

The formalism of weakly isolated horizons (WIHs)
provides a powerful framework for the analysis of black
holes in equilibrium which are a final state of gravitational
collapse [1–4]. One of the earliest applications of the new
formalism was the calculation of statistical mechanical
entropy of a black hole in the framework of loop quantum
gravity [5]. But WIHs have a plethora of applications also
in classical general relativity (see [6] for a review) and they
exhibit a number of properties which make them more
realistic in astrophysical settings as compared to standard
stationary axisymmetric black holes. For example, WIHs
can be embedded in otherwise dynamical spacetimes, they
admit the presence of radiation or matter in the neighbor-
hood of the black hole, and they do not require asymptotic
flatness. Despite this more general context, WIHs satisfy
the usual laws of thermodynamics [7]. Moreover, there is a
well defined notion of multipole moments for axially
symmetric WIHs [8]. These moments are intrinsic to the
horizon and therefore allow to define the mass or angular
momentum of a black hole quasilocally without the
reference to spatial infinity, which is necessary for the
definition of Geroch-Hansen multipole moments [9,10].
However, for the higher moments both definitions do not
agree in general [11,12] and not even in the case of a Kerr
black hole [8].

WIHs represent a class of black holes much wider than
the standard Kerr-Newman family of solutions [13]
describing isolated axially symmetric and stationary
charged black holes. Nonetheless, the Kerr-Newman metric
is the prototypical example of a WIH with well-understood
geometry and physical interpretation. One also expects that
the geometry of isolated black holes distorted by, e.g.,
accreting matter or electromagnetic fields outside the black
hole, will deviate only slightly from the Kerr solution; even
such small deviations might be measurable in the future
experiments [14,15]. From the mathematical point of view,
one can generate a large class of solutions representing
black holes whose intrinsic geometry coincides with the
geometry of Kerr-Newman black holes but is (even
strongly) distorted in a neighborhood of the horizon by
the appropriate choice of the initial data [16].
The near horizon geometry of a general WIH has been

investigated in [17] in the Newman-Penrose formalism. In
the neighborhood of the horizon it is possible to introduce
coordinates similar to those used by Bondi [18] in the
neighborhood of null infinity and to find a solution of the
field equations near the horizon in a form resembling
asymptotic expansions of Newman-Penrose and Newman-
Unti near null infinity [19,20]. An important feature of the
Newman-Penrose formalism is that the field equations
naturally split into constraint and evolution equations.
Thanks to the properties of WIHs, all constraints can be
solved explicitly. Using the evolution part of the equations
one can construct an expansion of the solution near the
horizon to arbitrary order. However, in this approach, it is
not evident how to choose the initial data in order to
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reproduce the standard Kerr-Newman solution, nor what
the explicit form of the Bondi-like tetrad used in [17] is and
what the corresponding Newman-Penrose scalars are.
The formalism of [17] has been recently employed in

[21] where we discussed the Meissner effect, i.e., the
expulsion of electromagnetic fields from extremal horizons,
in the language of WIHs. We have shown that the Meissner
effect is an inherent property of extremal, stationary and
axisymmetric horizon and takes place also in the strong
field regime and independently of the deformations of the
black hole. In order to judge, if specific instances of the
deformations are physically viable, a description of the full
Kerr-Newman spacetime in the formalism of WIHs explicit
expressions for Newman-Penrose quantities in the Bondi-
like tetrad is essential.
Whether a given WIH coincides with the horizon of the

Kerr metric can be decided using the conditions found in
[22]. This result however includes only the intrinsic
geometry of the horizon or the near horizon geometry
up to the first order. Bondi-like coordinates in the Kerr
spacetime adapted to the null infinity have been introduced
in [23], but the corresponding tetrad has not been discussed.
In [21] we considered near horizon geometry of the Kerr
spacetime up to the first order in Bondi-like coordinates
and the Bondi-like tetrad of [17].
In this paper we complete the description of the

Kerr-Newman black hole in the formalism of WIHs. We
perform the construction of [17] explicitly for the Kerr-
Newman spacetime. In particular, we construct a null
tetrad adapted to the horizon which is covariantly constant
along the nontwisting null congruence transversal to the
horizon. We compute all Newman-Penrose scalars with
respect to this tetrad and infer the initial data which has to
be given on the horizon and on the transversal null
hypersurface in order to reproduce the Kerr-Newman
spacetime. As explained above, this is a starting point
for the analysis of physically reasonable deformations of
the Kerr black hole.
In Sec. II, we summarize the description of the

Kerr-Newman spacetime in standard horizon-penetrating
coordinates and Kinnersley null tetrad. The definition of a

WIH and the basic properties of the Bondi-like tetrad
employed in [17] are reviewed in Sec. III. The explicit
construction is carried out in Sec. IV. First, we find the
parametrization of nontwisting null geodesic congruences
transversal to the horizon. Then, we find the desired tetrad
by a sequence of Lorentz transformations of the Kinnersley
one. In order to obtain an explicit solution up to integration,
we employ the coordinate transformation of [23] but
adapted to the horizon rather than to null infinity. In
Sec. V, we summarize the results and extract the initial
data reproducing the Kerr-Newman spacetime. Definitions
of the Newman-Penrose formalism and, in particular, the
transformation properties of the Newman-Penrose scalars
are summarized in Appendix A. Finally, we visualize and
compare the geodesic congruences induced by the
Kinnersley tetrad and by the Bondi-like tetrad in
Appendix B.

II. KERR-NEWMAN METRIC

The main purpose of this section is to set up the
notation and conventions used in this paper and to
provide equations for later references. Typically, we
employ the abstract index notation [24] and denote the
abstract indices by Latin letters from the beginning of
the alphabet, a; b;…. Greek indices will take values
from 0 to 3 and they will denote components of a tensor
with respect to particular coordinates. Indices I; J;…
will take values 2,3. We use the signature ðþ − −−Þ so
that the Newman-Penrose (NP) null tetrad [19,25] is
normalized by the conditions lana ¼ 1; mam̄a ¼ −1. For
a review of the relevant definitions and relations of the
NP formalism, see Appendix A. The Riemann tensor is
defined by 2∇½c∇d�Xa ¼ −Ra

bcdX
b, where square brack-

ets denote the total antisymmetrization. In the NP
formalism, Einstein’s equations for electro-vacuum read
Φmn ¼ ϕmϕ̄n, Λ ¼ 0.
We start with the Kerr-Newman metric describing a

black hole of mass M, spin a, and charge Q in the ingoing
null coordinates xμ ¼ ðv; r; θ;φÞ, in which the line element
takes the form [13,26]

ds2 ¼
�
1 −

2Mr −Q2

jρj2
�
dv2 − 2dv drþ 2a

jρj2 ð2Mr −Q2Þsin2θdv dφ

þ 2asin2θdr dφ − jρj2dθ2 þ sin2θ
jρj2 ð ~Δa2sin2θ − ða2 þ r2Þ2Þdφ2; ð1Þ

where the functions ρ and ~Δ are given by relations

ρ ¼ rþ ia cos θ; ~Δ ¼ a2 þ r2 − 2MrþQ2: ð2Þ
The outer and inner horizons are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
ð3Þ

respectively. We will write X _¼Y when the two quantities
are equal on the outer horizon rþ, for example, ~Δ _¼ 0.
In order to analyze the Kerr-Newman metric in the NP

formalism, we first introduce the standard Kinnersley null
tetrad [26,27] adapted to the principal null directions of the
Kerr-Newman metric,
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lK ¼ ∂v þ
~Δ

2ða2 þ r2Þ ∂r þ
a

a2 þ r2
∂φ;

nK ¼ −
a2 þ r2

jρj2 ∂r;

mK ¼ 1ffiffiffi
2

p
ρ

�
ia sin θ∂v þ ∂θ þ

i
sin θ

∂φ

�
; ð4Þ

where the fourth vector of the tetrad m̄a
K is the complex

conjugate of ma
K . Notice also that the triad ðla

K;m
a
K; m̄

a
KÞ is

tangent to the horizon. The spin coefficients associated with
the tetrad (4) are

κK ¼ σK ¼ νK ¼ λK ¼ 0; γK ¼ −
aðaþ ir cos θÞ

ρρ̄2
;

ϱK ¼ −
~Δ

2ρ̄ða2 þ r2Þ ; τK ¼ −
ia sin θffiffiffi
2

p jρj2 ;

εK ¼ −
Ma2 þ rQ2 −Mr2

2ða2 þ r2Þ2 ; μK ¼ −
a2 þ r2

ρρ̄2
;

πK ¼ ia sin θffiffiffi
2

p
ρ̄2

; aK ¼ ia − r cos θffiffiffi
2

p
ρ̄2 sin θ

; ð5Þ

where we have denoted aK ¼ αK − β̄K; in addition,
πK ¼ αK þ β̄K . These relations can be geometrically inter-
preted as follows, cf. Appendixes A and B. The vector la

K is
tangent to a congruence of null curves, which are geodesics
(κK ¼ 0) and shear-free (σK ¼ 0). The expansion and twist
of la

K vanish on the horizon (ϱK _¼0). Similarly, naK is
tangent to null geodesics (νK ¼ 0), which are shear-free
(λK ¼ 0), but have nonvanishing expansion (ReμK) and
twist (ImμK). Thus, the vector field naK is not hypersurface
orthogonal. In fact, vectors la

K and naK are, at each point, the
principal null directions of the Weyl tensor, so that the only
nonvanishing Weyl scalar is

ΨK
2 ¼ −

M
ρ̄3

þ Q2

ρ̄3ρ
: ð6Þ

In the presence of charge, the nonvanishing component of
the trace-free part of the Ricci tensor is

ΦK
11 ¼

Q2

2jρj4 ; ð7Þ

while the scalar curvature Λ vanishes. Comparing the NP
form of Einstein’s equation ΦK

11 ¼ jϕK
1 j2 and (7), and using

the Maxwell equations, we find

ϕK
1 ¼ Qffiffiffi

2
p

ρ̄2
; ð8Þ

while ϕK
0 and ϕK

2 vanish. Hence, the principal null
directions of Fab are aligned with la

K and naK . The four-
potential of the electromagnetic field turns out to be

Aμdxμ ¼
ffiffiffi
2

p
Qr

jρj2 ðdv − asin2θdφÞ: ð9Þ

Finally, the Kerr-Newman metric admits a Killing-Yano
form [28,29] which, in the Kinnersley tetrad (4), reads

Yab ¼ −2a cos θl½a
Kn

b�
K þ 2irm½a

Km̄
b�
K ; ð10Þ

or, in coordinates,

Y ¼ dφ ∧ ½a2 cos θsin2θdr − rða2 þ r2Þ sin θdθ�
þ dv ∧ ½−a cos θdrþ ar sin θdθ�: ð11Þ

For any geodesic vector Xa, the one-form ka ¼ YabXb is
covariantly constant along Xa.

III. WEAKLY ISOLATED HORIZONS

A spacetime M is said to admit a nonexpanding horizon
[4], if it contains a null hypersurface H ⊂ M with the
topology R × S2 on which Einstein’s equations hold and
the energy-momentum tensor Tab satisfies the energy
condition that Tablb is causal (i.e., timelike or null) and
future pointing for any future null vector la normal to H.
Moreover, any such normal is nonexpanding. It turns out
that the spacetime connection ∇a induces a preferred
connection Da on H and gives rise to a rotational 1-form
ωa defined by

Dalb _¼ωalb: ð12Þ

Since the choice of the null normal la is not unique, it is
natural to fix it by the requirement [3]

½£l;Da�lb _¼ 0 ð13Þ

which is equivalent to £lωa _¼0; here £l is the Lie derivative
along la. This leads to a definition of a weakly isolated
horizon (WIH) as a nonexpanding horizon H equipped
with an equivalence class of null normals ½la�, where
elements of ½la� differ just by constant rescaling, satisfying
the condition (13). This condition guarantees that the zeroth
law of black hole thermodynamics is satisfied on H and
that the pull-back of la is a Killing vector of the induced
degenerate metric on H.
Using the geometrical properties of the WIHs it is

possible to construct Bondi-like coordinates and a null,
Bondi-like, tetrad adapted to these coordinates. Details of
this construction and perturbative solutions of the Einstein-
Maxwell equations near a WIH were given in [17]. Here,
we briefly review the main steps of the construction.
By definition, a given WIH ðH; ½la�Þ has a preferred

foliation by topological spheres. A coordinate v on H is
defined by the requirement that it is constant on each
sphere Sv of the foliation and, in addition, Dv _¼1, where
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D ¼ la∇a. Next, arbitrary coordinates xI , I ¼ 2, 3, are
introduced on the sphere S0 along with two arbitrary
complex null vectors ma and m̄a tangent to S0. To get a
basis of the space tangent toH, the vectorma is propagated
along la by the condition [30]

£lma _¼ 0: ð14Þ

Similarly, coordinates xI are propagated off the sphere S0

along la by the condition DxI _¼0 so that we have a
coordinate system ðv; x2; x3Þ for the entire horizon H.
The triad ðla; ma; m̄aÞ can now be completed to a full NP
tetrad ðla; na; ma; m̄aÞ on the horizon. In order to obtain
the tetrad in the neighborhood of the horizon, the vector
field na on H is extended geodesically off the horizon and
the remaining vectors are parallely transported along
the resulting geodesic congruence, i.e., all vectors are
propagated off the horizon by the conditions

Δna ¼ Δla ¼ Δma ¼ 0; ð15Þ

where Δ ¼ na∇a. The coordinate r is defined as an affine
parameter along the geodesics na and the coordinates v and
xI are extended off the horizon by the conditions
Δv ¼ ΔxI ¼ 0. In this way, the NP tetrad and the coor-
dinates xμ ¼ ðv; r; x2; x3Þ are introduced on the horizon and
in its neighborhood. In these coordinates, the vectors of the
null tetrad read

l ¼ ∂v þ U∂r þ XI∂I; n ¼ −∂r;

m ¼ Ω∂r þ ξI∂I: ð16Þ

By construction, the following functions vanish on H:

U _¼XI _¼Ω _¼ 0: ð17Þ

Throughout the paper, we reserve the symbol xμ for the
coordinates introduced in this section. Adopting the termi-
nology of [23], we will refer to the coordinates xμ and the
tetrad (16) as the “Bondi-like coordinates” and the “Bondi-
like tetrad,” respectively.
By construction of the tetrad,

γ ¼ ν ¼ τ ¼ 0; π ¼ αþ β̄; ð18Þ

everywhere, and κ _¼0 on the horizon. Moreover,

μ ¼ μ̄; ð19Þ

which means that na is twist-free and, hence, orthogonal to
hypersurfaces N v of constant v, which are transversal to
the horizon and intersect it in the spherical cuts Sv. Since
the normal to the horizon la is by assumption nonexpand-
ing and orthogonal to H, we have

ϱ _¼ 0; ð20Þ

which, together with the energy condition imposed on the
energy-momentum tensor and the Ricci identities in the NP
formalism, implies

σ _¼ 0; Ψ0 _¼Ψ1 _¼ 0; ϕ0 _¼ 0; ð21Þ

i.e., the horizon is also shear-free and there is no gravita-
tional or electromagnetic radiation crossing the horizon.
Having established the null tetrad and the coordinate

system, it is possible to solve the Einstein equations
perturbatively in the neighborhood of H. More precisely,
we regard the spacetime as a solution to a characteristic
initial value problem with the initial data given on the
horizon H and any null hypersurface, say N 0, intersecting
the horizon (see [31,32] for the precise formulation and
existence results).
Adopting the notation of [4,17], the initial data on S0

consists of the following NP scalars:

S0∶ πð0Þ; ϕð0Þ
1 ; μð0Þ; λð0Þ; ξIjS0

; κðlÞ; ð22Þ

where the ξIjSi
are the components of ma on the sphere S0

which, in turn, define the two-dimensional metric on S0.
By the properties of WIHs, the surface gravity of the
normal la,

κðlÞ _¼ εð0Þ þ ε̄ð0Þ; ð23Þ

is constant over the horizon—the zeroth law of thermo-

dynamics. The quantity ϕð0Þ
1 is the NP component of the

electromagnetic field and its real and imaginary parts
describe the electric as well as magnetic flux density
through S0, respectively. From the Ricci identities in the
NP formalism one can then calculate the quantities

að0Þ ¼ αð0Þ − β̄ð0Þ; Ψð0Þ
2 and Ψð0Þ

3 ð24Þ

on S0. In the case of axisymmetric, stationary WIHs, the

Weyl scalar Ψð0Þ
2 encodes the horizon multipole moments

[8]. The quantity að0Þ defines the connection on S0. In
addition, the Ricci identities determine the evolution of all
these quantities along the horizon and, as it turns out, only
the spin coefficients μ and λ and the Weyl scalar Ψ3 depend
on the coordinate v on H.
The two remaining NP quantities, the Weyl scalarΨ4 and

the component of the electromagnetic field ϕ2 can be
specified freely on the transversal null hypersurface N 0.
The Ricci and Bianchi identities as well as the Maxwell
equations in the NP formalism then determine the solution
of the full Einstein-Maxwell equations in the neighborhood
of H. The geometrical setup is schematically sketched
in Fig. 1.
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With this formulation of the initial value problem, one
can expand all geometrical quantities into a series in the
coordinate r and find a perturbative solution of the Einstein-
Maxwell equations in a neighborhood ofH. This was done
in [17]. The question now arises, how to choose the initial
data on H and N 0 in order to reproduce any particular
spacetime. For a Schwarzschild spacetime, this is a trivial
task because the principal null directions of the Weyl tensor
are already nontwisting and, therefore, the Kinnersley
tetrad reduces to the desired Bondi-like one for a ¼ 0.
We will show that the physically more interesting solution,
the Kerr-Newman spacetime, also allows the analytic
construction of the Bondi-like tetrad.

IV. BONDI-LIKE TETRAD FOR
KERR-NEWMAN SPACETIME

A. Nontwisting null geodesics

Let ðv; r; θ;φÞ be the standard ingoing null coordinates
introduced in Sec. II. In order to construct a null tetrad
which meets the criteria imposed in [17] for the Kerr-
Newman spacetime, we first construct a nontwisting null
geodesic congruence with the tangent vector naB which will
later be identified with the vector of the Bondi-like null
tetrad. Using the well-known separability of the geodesic
equation on the Kerr-Newman background [33], a generic
null geodesic can be characterized by three constants E, L,
and K, in terms of which the components of naB read

nvB ¼ −
1

jρj2
�
a2Esin2θ þ aLþ a2 þ r2

~Δ
ð

ffiffiffiffi
R

p
− PÞ

�
;

nrB ¼ −
1

jρj2
ffiffiffiffi
R

p
;

nθB ¼ −
1

jρj2
ffiffiffiffi
Θ

p
;

nφB ¼ −
1

jρj2
�
aEþ Lsin−2θ þ a

~Δ
ð

ffiffiffiffi
R

p
− PÞ

�
; ð25Þ

where functions Θ, P, and R are defined by

Θ ¼ K − ðLþ aEÞ2 þ ða2E2 − L2sin−2θÞcos2θ;
P ¼ aLþ Eða2 þ r2Þ; R ¼ P2 −K ~Δ: ð26Þ

The constants of motion E and L represent the energy and
the angular momentum of the geodesic and K is the Carter
constant which arises from the separation of the Hamilton-
Jacobi equation or from the projection of the Killing tensor
of the Kerr-Newman spacetime [34].
In the next step, we promote (25) to a geodesic

congruence, where each geodesic of the congruence is
parametrized by possibly different values of E, L, andK. In
this way, these parameters become functions of the posi-
tion, assigning the corresponding values to a geodesic
passing through a given point. We wish to choose the
functions E, L, and K in such a way that the resulting
congruence is nontwisting. In order to accomplish that, we
require that the covariant vector ðnBÞa be a gradient, i.e.,

ðnBÞμdxμ ≡ Edv −
a2

Pþ ffiffiffiffi
R

p drþ
ffiffiffiffi
Θ

p
dθ þ Ldφ ¼ dv

ð27Þ

for some function v. Since ∂v and ∂φ are the Killing vectors
of the Kerr-Newman metric, we assume E ¼ Eðr; θÞ and
similarly for L and K. An inspection of the integrability
condition for the existence of a function v in Eq. (27)

ðdnBÞμ ∧ dxμ ¼ 0; ð28Þ

then shows that E and L must be constant everywhere,
while K must satisfy the condition

ffiffiffiffi
Θ

p ∂K
∂θ ¼ −

ffiffiffiffi
R

p ∂K
∂r ; ð29Þ

which is equivalent to naB∇aK ¼ 0 and does not impose a
new condition, since K is the constant of motion.
Because L must be a constant, the components of the

geodesic (25) become singular on the axis θ ¼ 0. In fact,
this is a singularity of a congruence rather than coordinate
singularity, since, for example, the expansion ∇anaB
diverges there. In order to avoid the singular behavior,
we set L ¼ 0. Notice that although it is natural to expect
that nontwisting congruence has zero angular momentum,
vanishing of the twist alone is compatible with any value
of L.
Then, imposing that the congruence be symmetric under

reflection across the equatorial plane [35], we have to
chooseK ¼ a2E2. Finally, similarly to [23], we also choose
E ¼ 1 for convenience. Hence, we set

L ¼ 0; K ¼ a2; ð30Þ

so that the congruence (25) simplifies to

FIG. 1. Characteristic initial value problem for WIH.
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nvB ¼ −
a2

jρj2
�
sin2θ −

P

Pþ ffiffiffiffi
R

p
�
; ð31aÞ

nrB ¼ −
1

jρj2
ffiffiffiffi
R

p
; ð31bÞ

nθB ¼ −
a cos θ
jρj2 ; ð31cÞ

nφB ¼ −
a
jρj2

�
1 −

a2

Pþ ffiffiffiffi
R

p
�
; ð31dÞ

where functions P and R now read

P ¼ a2 þ r2; R ¼ r4 þ a2r2 þ 2a2Mr − a2Q2: ð32Þ

B. Lorentz transformations

Having found an appropriate null congruence (31), we
wish to complete naB to a Bondi-like null tetrad, i.e. find
vectors la

B andma
B which are covariantly constant along naB.

The standard technique to parallely propagate a frame
along null geodesics using the Killing-Yano form (11)
was developed in [36] and recently generalized to
n-dimensional spacetimes admitting a conformal Killing-
Yano form in [37]. The vector ka ¼ YabnbB, where nbB is
given by (31) is parallelly propagated along naB and it is
spacelike rather than null. Still, one can find another
parallelly propagated spacelike vector ~ka and take the
complex linear combination of ka and ~ka in order to form
the null vector ma

B which is covariantly constant along naB,
and finally complete the tetrad with vector la

B, which is
then automatically covariantly constant too. Unfortunately,
the frame obtained in this way does not satisfy the
conditions imposed on the Bondi-like tetrad, i.e. the vector
ma

B is not tangent to the horizon and la
B is not a normal to

the horizon. Thus, one has to rotate the frame on the
horizon to a desired Bondi-like tetrad with an appropriate
matrix R and then require the matrix to be constant along
naB. However, the outlined procedure requires explicit
solution of the geodesic equation at two stages: finding
vector ~ka and propagating the matrix R off the horizon.
Such explicit solution can be found in terms of the elliptic
integrals of the first kind but one has to solve the
polynomial equation of the fourth order.
Because of these complications with the standard meth-

ods, we adopt a different approach in which we do not need
the Killing-Yano form at all. In our approach we also get
integrals which either cannot be calculated explicitly or the
resulting formulas are too complex to be included in the
paper. However, we present the tetrad in the form suitable
both for symbolic manipulations and numerical calcula-
tions. We perform a sequence of Lorentz transformations
which rotate the initial Kinnersley tetrad (4) to a Bondi-like

tetrad. Using the boost and null rotation about la
K , we rotate

the vector naK to the direction (31), then by a spin and null
rotation about naB we eliminate the spin coefficients γ and τ,
which yields the triad ðlB;mB; m̄BÞ tangent to the horizon
and parallelly propagated along naB. By this method we get
not only the tetrad, but also the spin coefficients and the
Weyl and Maxwell scalars, because it is easy to transform
the spin coefficients step by step but very difficult to
calculate them directly from the resulting tetrad, even with
the help of computer algebra systems.

1. Boost

In the first step, we perform a boost (A8) in the plane
spanned by la

K and naK of the Kinnersley tetrad (4) with the
parameter

A2 ¼ 2P

Pþ ffiffiffiffi
R

p ; ð33Þ

obtaining a new tetrad ðl1; n1; m1; m̄1Þ and corresponding
spin coefficients.

2. Null rotation about la

Next, we rotate the tetrad about la
1 to a new tetrad

ðl2; n2; m2; m̄2Þ such that the vector field na2 coincides with
the nontwisting vector field (31). We choose the parameter
c of the null rotation (A16) to be

c ¼ −
ae−iθffiffiffi
2

p
ρ̄
: ð34Þ

Then, n2 is given by (31).

3. Spin

At this stage, the vector na2 is tangent to the desired
nontwisting, affinely parametrized congruence of geode-
sics, i.e. Δ2na2 ¼ 0 with the respective radial derivative
Δ2 ¼ na2∇a. Moreover, the triad ðla

2; m
a
2; m̄

a
2Þ is tangent to

the horizon, where la
2 is a generator of the horizon

satisfying (13). However, this triad is not covariantly
constant along na2 , since we have [cf. the transport
equations (A4c)]

Δ2la
2 ¼ −τ̄2ma

2 − τ2m̄a
2; ð35aÞ

Δ2ma
2 ¼ −τ2na2 þ ðγ2 − γ̄2Þma

2: ð35bÞ
The coefficient γ2 which is now purely imaginary (na2 is
affinely parametrized) can be eliminated completely
by the spin (A11) with the parameter χ ¼ −θ=2, i.e.,
ma

3 ¼ e−iθma
2 . The nonvanishing spin coefficients now are

τ3 ¼
affiffiffi
2

p jρj2
�

~Δ
Pþ ffiffiffiffi

R
p − ie−iθ sin θ

�
; ð36aÞ
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ϱ3 ¼ −
~Δ

ρ̄ðPþ ffiffiffiffi
R

p Þ ; ð36bÞ

ε3 ¼
r
a2

−
1

2
ffiffiffiffi
R

p
�
2r3

a2
þM þ r

�
; ð36cÞ

π3 ¼
P −

ffiffiffiffi
R

p
ffiffiffi
2

p
aρ̄2

−
ffiffiffi
2

p
a

ρ̄

�
r
a2

−
M þ rþ 2r3=a2

2
ffiffiffiffi
R

p
�

þ
�
2ia − ρ cos θ

2
ffiffiffi
2

p
ρ̄2 sin θ

þ cot θ

2
ffiffiffi
2

p
ρ̄

�
eiθ; ð36dÞ

α3 ¼ −
affiffiffi
2

p
ρ̄

�
r
a2

−
M þ rþ 2r3=a2

2
ffiffiffiffi
R

p −
P −

ffiffiffiffi
R

p

a2ρ̄

�

þ eiθ

2
ffiffiffi
2

p
ρ̄

�
2ia − ρ cos θ

ρ̄ sin θ
− i

�
: ð36eÞ

β3 ¼
1

2
ffiffiffi
2

p
ρ

�
e−iθðcot θ − iÞ

− 2a

�
r
a2

−
M þ rþ 2r3=a2

2
ffiffiffiffi
R

p
��

; ð36fÞ

μ3 ¼
1

2
ffiffiffiffi
R

p jρj2 ð−2r
3 − a2ðM þ rÞ

− a
ffiffiffiffi
R

p
cos 2θ csc θÞ; ð36gÞ

λ3 ¼
a

2
ffiffiffiffi
R

p
ρ̄3

ð−2aQ2 þ arð3M þ rÞ

þ ið2r3 þ a2ðM þ rÞÞ cos θ
þ

ffiffiffiffi
R

p
ðr cos 2θ − ia cos θÞ csc θÞ: ð36hÞ

By now, the only freedom in the choice of the tetrad is the
null rotation about na. In order to preserve the property
that the triad ðla

3; m
a
3; m̄

a
3Þ be tangent to the horizon, the

parameter d of null rotation (A19) must vanish on the
horizon. The spin coefficient τ transforms, according to
(A20), by τ4 ¼ τ3 − Δ3d, whereΔ3 ¼ na3∇a. Thus, in order
to eliminate τ3 we have to solve the equation

Δ3d ¼ τ3; d _¼0: ð37Þ

It is exactly the initial condition d _¼0 which makes the
problem difficult, otherwise the equation could be easily
solved with the ansatz d ¼ fðrÞ þ gðθÞ. In order to imple-
ment the initial condition, we have to employ a coordinate

transformation which will eliminate the nonradial compo-
nents of na3.

4. Bondi-like coordinates

Having satisfied the integrability conditions (28) for
Eq. (27), we can employ v as a new coordinate, eliminating
the v-component of na3 . The angular coordinates which are
constant along na3 can be conveniently introduced following
the procedure of [23]. Hence, we define the new coor-
dinates v, ϑ, and ~ϕ by

v ¼ v −
Z

r

rþ

a2dr

Pþ ffiffiffiffi
R

p þ a sin θ; ð38aÞ

sin θ ¼ tanhX; ð38bÞ
~ϕ ¼ φþ JðrÞ; ð38cÞ

where

X ¼ αðrÞ þ arth sinϑ; ð39aÞ

αðrÞ ¼
Z

r

rþ

aduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 þ a2u2 þ 2a2Mu − a2Q2

p ; ð39bÞ

JðrÞ ¼ −
Z

r

rþ

a

PðuÞ þ ffiffiffiffiffiffiffiffiffiffi
RðuÞp

�
1þ u2ffiffiffiffiffiffiffiffiffiffi

RðuÞp
�
du: ð39cÞ

With these choices of α and J, coordinates ðϑ; ~ϕÞ coincide
with the coordinates ðθ;φÞ on the horizon (in [23] they
coincide at infinity), and equatorial plane is given every-
where by θ ¼ ϑ ¼ π=2. Moreover, ϑ and ~ϕ are constant
along na3 . Using the relations

dv ¼ dvþ
�

1

Pþ ffiffiffiffi
R

p −
1ffiffiffiffi

R
p

cosh2X

�
a2dr

−
adϑ

cosh2X cosϑ
; ð40aÞ

dθ ¼ 1

coshX

�
adrffiffiffiffi
R

p þ dϑ
cosϑ

�
; ð40bÞ

dφ ¼ affiffiffiffi
R

p
�
1 −

a2

Pþ ffiffiffiffi
R

p
�
drþ d ~ϕ; ð40cÞ

one can deduce the form of the metric tensor in these
coordinates:

ds2 ¼
�
1þQ2 − 2Mr

jρj2
��

dv −
2a

cosh2X cosϑ
dϑ

�
dv −

2jρj2ffiffiffiffi
R

p dvdr −
2a
jρj2 ðQ

2 − 2MrÞtanh2Xdvdφ

þ 2a2ðQ2 − 2MrÞtanh2X
jρj2cosh2X cos ϑ

dϑd ~ϕ −
r4 þ a2ð2Mrþ r2 −Q2Þcosh−2X

jρj2cosh2Xcos2ϑ dϑ2 −
tanh2X
jρj2 ða2 ~Δsech2Xþ RÞd ~ϕ2: ð41Þ
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This is the metric given in [23], except for that we used the horizon-penetrating Kerr coordinates instead of Boyer-
Lindquist coordinates. The vector field na3 given by (31) has, in these coordinates, the simple form

n3 ¼ −
ffiffiffiffi
R

p

jρj2 ∂r; ð42Þ

where ρ is now

ρ ¼ rþ iasechX: ð43Þ
The remaining tetrad vectors read in these coordinates

l3 ¼ ∂v þ
~Δ

Pþ ffiffiffiffi
R

p ∂r −
a ~Δ cosϑffiffiffiffi
R

p ðPþ ffiffiffiffi
R

p Þ ∂ϑ þ a−1
�
1 −

r2ffiffiffiffi
R

p
�
∂ ~ϕ; ð44aÞ

m3 ¼
1ffiffiffi
2

p
ρ

�
−

a ~Δ
Pþ ffiffiffiffi

R
p ∂r þ cos ϑ

�
Pffiffiffiffi
R

p − i sinhX
�
∂ϑ þ

�
r2ffiffiffiffi
R

p þ i
sinhX

�
∂ ~ϕ

�
: ð44bÞ

The spin coefficient τ3 has now the form

τ3 ¼
affiffiffi
2

p jρj2
�

~Δ
Pþ ffiffiffiffi

R
p − 1þ 1

1þ i sinhX

�
: ð45Þ

5. Null rotation about na

Now we can integrate Eq. (37) to get

dðr; ϑÞ ¼ −
Z

r

rþ

jρðu; ϑÞj2ffiffiffiffiffiffiffiffiffiffi
RðuÞp τ3ðu; ϑÞdu; ð46Þ

where τ3 is given by (45), and perform null rotation
about na3, Eq. (A19), with the parameter d. This yields
the desired Bondi-like tetrad ðlB; nB;mB; m̄BÞ. By con-
struction d vanishes on the horizon and hence the triad
ðlB;mB; m̄BÞ is tangent to the horizon and parallelly
propagated along naB ¼ na3 .
Since d cannot be evaluated explicitly, we cannot give

more explicit expressions for the spin coefficients than (36).
In terms of those, the spin coefficients for the rotated tetrad
are given by, cf. (A20),

κB ¼ dð2ε3 þ ϱ3Þ þ d2ðπ3 þ 2α3Þ þ d3λ3

þ ðτ3 þ 2β3Þjdj2 þ μ3d2d̄ − jdj2Δ3d

−D3d − dδ̄3d − d̄δ3d; ð47aÞ

σB ¼ dðτ3 þ 2β3Þ þ μ3d2 − dΔ3d − δ3d; ð47bÞ

ϱB ¼ ϱ3 þ 2dα3 þ d̄τ3 þ d2λ3 − d̄Δ3d − δ̄3d; ð47cÞ

εB ¼ ε3 þ dðα3 þ π3Þ þ β3d̄þ λ3d2 þ μ3jdj2; ð47dÞ

βB ¼ β3 þ dμ3; ð47eÞ

αB ¼ α3 þ dλ3; ð47fÞ

πB ¼ π3 þ dλ3 þ d̄μ3; ð47gÞ

μB ¼ μ3; ð47hÞ

λB ¼ λ3; ð47iÞ
τB ¼ γB ¼ νB ¼ 0; ð47jÞ

where the spin coefficients with subscript 3 are given by
(36), the operators D3¼ la3∇a;Δ3¼ na3∇a, and δ3 ¼ ma

3∇a

are given by (42) and (44), and the derivatives of d are

∂d
∂r ¼ −

jρj2ffiffiffiffi
R

p τ3; ð47kÞ

∂d
∂ϑ ¼

Z
r

rþ

affiffiffiffiffiffiffiffiffiffiffiffi
2RðuÞp

cosϑ

i coshXðu; ϑÞ
ð1þ i sinhXðu; ϑÞÞ2 du: ð47lÞ

In the last step we perform two remaining coordinate
transformations. First we define a new radial coordinate by
rescaling r,

r ¼
Z

r

rþ

jρðu; ϑÞj2ffiffiffiffiffiffiffiffiffiffi
RðuÞp du; ð48Þ

so that r is an affine parameter along na

nB ¼ −∂r; ð49Þ
and vanishes on the horizon. In the rest of the paper, the
variable r ¼ rðrÞ will always be understood as the function
of this new coordinate r. Next, in order to eliminate the ϕ-
component of la on the horizon, we perform the last
coordinate transformation
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ϕ ¼ ~ϕ −
av

a2 þ r2þ
; ð50Þ

which brings the tetrad into the form (16).

V. RESULTS

A. NP-quantities

Now we can summarize the obtained results. We have
found the Bondi-like coordinates xμ ¼ ðv; r; ϑ;ϕÞ in which,

following the notation of [17], the Bondi-like null tetrad is
of the form

lB ¼ ∂v þ U∂r þ XI∂I;

nB ¼ −∂r;

mB ¼ Ω∂r þ ξI∂I; ð51Þ

where I ¼ 2, 3 and the components of the tetrad read

U ¼
~Δffiffiffi

2
p ffiffiffiffi

R
p ðPþ ffiffiffiffi

R
p Þ

� ffiffiffi
2

p
jρj2 − aðρdþ ρ̄ d̄Þ

�
1þ a cosϑ

jρj2
∂r
∂ϑ

�
−

ffiffiffi
2

p ∂r
∂ϑ a cosϑ

�
− jdj2

þ
ffiffiffi
2

p ∂r
∂ϑRe

d
ρ̄
ð1þ i sinhXÞ; ð52aÞ

X2 ¼ a ~Δ cosϑffiffiffi
2

p ffiffiffiffi
R

p ðPþ ffiffiffiffi
R

p Þ

�
−

ffiffiffi
2

p
þ ad̄

ρ
þ ad

ρ̄

�
þ cos ϑffiffiffi

2
p

�
d̄
ρ
ð1 − i sinhXÞ þ d

ρ̄
ð1þ i sinhXÞ

�
; ð52bÞ

X3 ¼ −
a

a2 þ r2þ
þ a−1

�
1 −

r2ffiffiffiffi
R

p
�
þ d̄ffiffiffi

2
p

ρ

�
r2ffiffiffiffi
R

p þ i
sinhX

�
þ dffiffiffi

2
p

ρ̄

�
r2ffiffiffiffi
R

p −
i

sinhX

�
; ð52cÞ

Ω ¼ −d −
a ~Δ ρ̄ffiffiffi

2
p ffiffiffiffi

R
p ðPþ ffiffiffiffi

R
p Þ þ

cos ϑffiffiffi
2

p
ρ

∂r
∂ϑ

�
Pffiffiffiffi
R

p − i sinhX
�
; ð52dÞ

ξ2 ¼ cos ϑffiffiffi
2

p
ρ

�
Pffiffiffiffi
R

p − i sinhX
�
; ð52eÞ

ξ3 ¼ 1ffiffiffi
2

p
ρ

�
r2ffiffiffiffi
R

p þ i
sinhX

�
; ð52fÞ

and where X is given by (39a). Coordinates v; r; ϑ, and ϕ
are related to the standard ingoing null coordinates v, r, θ,
and φ by (38a), (48), (38b), (38c), and (50), respectively;
the functions α and d are given by (39b) and (46),
respectively. Functions ρ; ~Δ; P, and R are given by Eqs. (2)
and (32), and the variable r is related to the coordinate r by
(48). Finally,

∂r
∂ϑ ¼ −

Z
r

rþ

2a2ffiffiffiffiffiffiffiffiffiffi
RðuÞp sinhXðu; ϑÞ

cosh3Xðu; ϑÞ cosϑ du: ð53Þ

In the tetrad (51), the following spin coefficients
vanish:

γB ¼ νB ¼ τB ¼ 0; ð54Þ

these equalities imply that naB is an affinely parametrized
geodesic, and both la

B and ma
B are covariantly constant

along naB. The remaining spin coefficients are given by (47).

In particular, the spin coefficient μB is real which means
that the congruence naB is nontwisting. The spin coefficients
σB and λB which describe the shear of la

B and naB,
respectively, do not vanish; another difference from the
Kinnersley tetrad.
In type D spacetimes and in the tetrad adapted to the

principal null directions, the sole nonvanishing Weyl scalar
is Ψ2. The Bondi-like tetrad is not adapted to these null
directions anymore so that the full set of Weyl scalars is
given by

ΨB
0 ¼ 6d2

�
1 −

adffiffiffi
2

p
ρ̄

�
2

ΨK
2 ; ð55aÞ

ΨB
1 ¼ 3d

�
a2d2

ρ̄2
−

3adffiffiffi
2

p
ρ̄
þ 1

�
ΨK

2 ; ð55bÞ

ΨB
2 ¼

�
3a2d2

ρ̄2
−
3

ffiffiffi
2

p
ad

ρ̄
þ 1

�
ΨK

2 ; ð55cÞ
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ΨB
3 ¼ 3a

ρ̄

�
ad
ρ̄

−
1ffiffiffi
2

p
�
ΨK

2 ; ð55dÞ

ΨB
4 ¼ 3a2

ρ̄2
ΨK

2 ; ð55eÞ

where ΨK
2 is given by (6). Similarly, for the components of

the electromagnetic field we have

ϕB
0 ¼ d

�
2 −

ffiffiffi
2

p
ad
ρ̄

�
ϕK
1 ; ð56aÞ

ϕB
1 ¼

�
1 −

ffiffiffi
2

p
ad
ρ̄

�
ϕK
1 ; ð56bÞ

ϕB
2 ¼ −

ffiffiffi
2

p
a

ρ̄
ϕK
1 ð56cÞ

where ϕK
1 is given by (8).

In nonrotating limit, a ¼ 0, the tetrad (51) reduces to the
corresponding Kinnersley tetrad, since in this case all
Lorentz transformations we applied are identities (except
for the spin, whose purpose was to eliminate the coefficient
γ, which vanishes for a ¼ 0 and, hence, it is not necessary
to perform the spin). In other words, for the Reissner-
Nordström spacetime, the Kinnersley tetrad is already
Bondi-like and ΨB

3 ;ΨB
4 ;ϕ

B
0 , and ϕB

2 vanish.

B. Initial data

Although the tetrad and the corresponding spin coef-
ficients we found are quite lengthy and containing the
function d which cannot be integrated explicitly, we have
provided all relations which are necessary to perform
calculations in this tetrad. They can be done, for example,
symbolically in Mathematica or similar software. The
formulas are also suitable for numerical calculations, since
the calculation of the tetrad components and the spin
coefficients involves only numerical integration. In this
section we use the Bondi-like tetrad to extract appropriate
initial data given on the horizon and transversal null
hypersurface which reproduce the Kerr-Newman solution,
see Sec. III.
In order to formulate the initial value problem whose

solution is the full Kerr-Newman spacetime, we start with
the initial data on the initial sphere S0. The only nontrivial
components of the Bondi-like tetrad on the horizon are

ξ2 _¼ e−iϑffiffiffi
2

p
ρð0Þ

; ð57aÞ

ξ3 _¼ 1ffiffiffi
2

p
ρð0Þ

�
r2þ
Pð0Þ þ i cotϑ

�
; ð57bÞ

which determine the metric on S0,

ds2jS0
¼ −

�
jρð0Þj2 þ a4sin2ϑcos2ϑ

jρð0Þj2
�
dϑ2

−
2a2ðPð0ÞÞ2
jρð0Þj2 cosϑsin2ϑdϑdϕ −

ðPð0ÞÞ2sin2ϑ
jρð0Þj2 dϕ2;

ð58Þ

where the superscript (0) denotes the value of correspond-
ing quantity on S0. The area element acquires the standard
form

dS ¼ ðr2þ þ a2Þ sinϑdϑ ∧ dϕ: ð59Þ

For the spin coefficients we have

εð0Þ ¼ rþ −M

2Pð0Þ ; ð60aÞ

að0Þ ≡ αð0Þ − β̄ð0Þ ¼ −
rþ cos ϑ − iaffiffiffi
2

p ðρ̄ð0ÞÞ2 sinϑ ; ð60bÞ

μð0Þ ¼ 1

2Pð0Þjρð0Þj2 ð−2r
3þ − a2ðM þ rþÞ

− aPð0Þ cos 2ϑ csc ϑÞ; ð60cÞ

λð0Þ ¼ a

2Pð0Þðρ̄ð0ÞÞ3 ð−2aQ
2 þ arþð3M þ rþÞ

þ Pð0Þðrþ cos 2ϑ − ia cosϑÞ csc ϑ
þ ið2r3þ þ a2ðM þ rþÞÞ cos ϑÞ: ð60dÞ

The surface gravity of the horizon is κðlÞ _¼2εð0Þ. To
complete the formulation of the initial value problem,
one has to specify the values of Ψ4 and ϕ2 on the null
hypersurface N 0 which intersects the horizon at the initial
sphere S0:

Ψ4 ¼
3a2

ρ̄5

�
−M þQ2

ρ

�
; ϕ2 ¼ −

aQ
ρ̄3

on N 0: ð61Þ

For a general WIH, one has to provide also the values of

πð0Þ and ϕð0Þ
1 on S0, which in our case are

πð0Þ ¼ affiffiffi
2

p
ρ̄ð0Þ

�
M − rþ
Pð0Þ e−iϑ þ i

ρ̄ð0Þ
sinϑ

�
; ð62aÞ

ϕð0Þ
1 ¼ Qffiffiffi

2
p ðρ̄ð0ÞÞ2 : ð62bÞ

However, for a stationary, axially symmetric horizon, these
quantities are solutions to the constraints (cf. [38])
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ð̄πð0Þ þ ðπð0ÞÞ2 ¼ κðlÞλð0Þ; ð63aÞ

δð0Þϕð0Þ
1 þ 2πð0Þϕð0Þ

1 ¼ κðlÞϕ
ð0Þ
2 ; ð63bÞ

where δð0Þ _¼ ξI∂I , the operator ð is defined by (A15) and

ϕð0Þ
2 is the value of ϕ2 at S0. These constraints were the

main ingredients for the proof of the Meissner effect for

WIHs in [21]. The Eqs. (60) determineΨð0Þ
2 andΨð0Þ

3 via the
Ricci identities (see also [17])

ReΨð0Þ
2 ¼ jað0Þj2 − 1

2
ðδð0Það0Þ þ δ̄ð0Þāð0ÞÞ þ jϕð0Þ

1 j2; ð64aÞ

ImΨð0Þ
2 ¼ −Imðπð0Þ; ð64bÞ

Ψð0Þ
3 ¼ ððþ π̄ð0ÞÞλð0Þ − ðð̄þ πð0ÞÞμð0Þ: ð64cÞ

The evolution of the components of the tetrad (51) is given
by the NP commutators, the evolution of the spin coef-
ficients is governed by the Ricci identities, the evolution of
the Weyl scalars is determined by the Bianchi identities and
the evolution of NP components of electromagnetic field is
given by the NP form of Maxwell’s equations. We do not
list these equations here (see, e.g. [25]), because we know
already that the solution is the Kerr-Newman spacetime in
Bondi-like coordinates equipped with the Bondi-like null
tetrad constructed in this paper.
It is worth noting that for a general WIH, Ψ4 and ϕ2 are

functions given on N 0 and they are independent from the
data given on S0. This is not the case for the Kerr-Newman

spacetime, since these quantities are directly given by Ψð0Þ
2

and ϕð0Þ
1 and their transformation properties under the

Lorentz transformations. However, as pointed out already
in [16], one can vary the data on N 0 while keeping the
initial data on S0 to produce a wide class of Kerr-like
solutions in which the intrinsic geometries of the horizon
coincide with the geometry of Kerr but differ off the
horizon.

VI. CONCLUSIONS

The intrinsic properties of the Kerr-Newman black hole
are well understood and have been exhaustively investi-
gated in the formalism of (weakly) isolated horizons.
Despite the relatively high degree of symmetry, the
Kerr-Newman solution adequately describes isolated black
holes in equilibrium in the absence of matter outside the
black hole thanks to its uniqueness properties. As we
explained in the introduction, the formalism of WIHs
allows one to generate a large class of solutions represent-
ing black holes deformed by external matter or fields which
can be prescribed in an arbitrary way; in particular, the
external fields are not restricted to be weak. In order to
accomplish this program and analyze properties of

deformed black holes analytically, one first needs the
description of the full Kerr-Newman metric not only the
part intrinsic to the horizon in the WIH formalism.
In this paper, we explicitly constructed a Bondi-like

tetrad for the Kerr-Newman black hole satisfying the
properties imposed in [17] for a general WIH. In this
tetrad, we were able to find the initial data given on the
horizon and, more importantly, on the transversal null
hypersurface N 0. In this sense we completed the descrip-
tion of Kerr-Newman solution in the framework of WIHs.
Having the standard example of a WIH at hand, the next
step is to consider variations of the initial data and under-
stand their physical implications. This work is in progress.
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APPENDIX A: NEWMAN–PENROSE
FORMALISM

For the sake of completeness, in this section we list all
relevant definitions and relations of the Newman–Penrose
(NP) formalism. In this paper, we follow the conventions of
[19,24,25] adapted to the metric signature ðþ − −−Þ, while
also other conventions are common [39,40]. In particular,
our conventions differ from [17].
The “NP tetrad” is a four-tuple of null vectors

ðla; na; ma; m̄aÞ normalized by relations

lana ¼ −mam̄a ¼ 1; ðA1Þ

where all other possible contractions vanish. Covariant
derivatives in the directions of vectors forming the null
tetrad are denoted by

D ¼ la∇a; Δ ¼ na∇a; δ ¼ ma∇a; δ̄ ¼ m̄a∇a;

ðA2Þ

where bar denotes the complex conjugate. In the NP
formalism, the connection is encoded in twelve complex
spin coefficients defined by
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κ ¼ maDla; τ ¼ maΔla; ε ¼ 1

2
½naDla − m̄aDma�;

σ ¼ maδla; ϱ ¼ maδ̄la; β ¼ 1

2
½naδla − m̄aδma�;

π ¼ naDm̄a; ν ¼ naΔm̄a; γ ¼ 1

2
½naΔla − m̄aΔma�;

λ ¼ naδ̄m̄a; μ ¼ naδm̄a; α ¼ 1

2
½naδ̄la − m̄aδ̄ma�:

ðA3Þ

Some of the spin coefficients have direct geometrical
meaning [17]. Namely, real and imaginary parts of ϱ
determine the expansion and twist [41] of the congruence
la, respectively; similarly, real and imaginary parts of μ
describe the expansion and twist of na [26]; coefficients σ
and λ describe the shear of la and na. Definitions (A3)
imply “transport equations”

Dla ¼ ðεþ ε̄Þla − κ̄ma − κm̄a; ðA4aÞ

Δna ¼ −ðγ þ γ̄Þna þ νma þ ν̄m̄a; ðA4bÞ

Δla ¼ ðγ þ γ̄Þla − τ̄ma − τm̄a; ðA4cÞ

which show that κ and ν describe the deviation of la and na

from being geodesics, while εþ ε̄ and γ þ γ̄ measure the
failure of la and na being affinely parametrized. Covariant
derivative of ma along na is given by the transport equation

Δma ¼ ν̄la − τna þ ðγ − γ̄Þma: ðA5Þ

Components of the Weyl tensor with respect to the null
tetrad are provided by the Weyl scalars

Ψ0 ¼ Cabcdlamblcmd; Ψ1 ¼ Cabcdlanblcmd;

Ψ2 ¼ Cabcdlambm̄cnd; Ψ3 ¼ Cabcdlanbm̄cnd;

Ψ4 ¼ Cabcdm̄anbm̄cnd: ðA6Þ

In electrovacuum spacetimes, the components of the trace-
free part of the Ricci tensor are given by Φmn ¼ ϕmϕ̄n,
where

ϕ0 ¼ Fablamb; ϕ2 ¼ Fabm̄anb;

ϕ1 ¼
1

2
Fab½lanb −mam̄b�: ðA7Þ

are the components of the electromagnetic tensor Fab. The
scalar curvature is Λ ¼ 0.
The actual field equations are provided by the set of

Ricci identities, Bianchi identities and commutation rela-
tions. The full list of these equations as well as the Maxwell
equations in the NP formalism can be found, e.g., in
[24,25]. In the present paper, we need only few of those

equations and, hence, we show them in the appropriate
context only.
On the other hand, we employ all freedom available in

the choice of the tetrad and for that we need the complete
set of transformation equations for the NP quantities. A
“boost” in the plane spanned by la and na with real
parameter A is defined as the transformation

la ↦ A2la; na ↦ A−2na; ma ↦ ma: ðA8Þ

Under boost, the spin coefficients (A3) transform according
to the formulas

κ ↦ A4κ; τ ↦ τ; σ ↦ A2σ; ϱ ↦ A2ϱ;

π ↦ π; ν ↦ A−4ν; μ ↦ A−2μ; λ ↦ A−2λ:

ε ↦ A2εþ ADA; γ ↦ A−2γ þ A−3ΔA;

β ↦ β þ A−1δA; α ↦ αþ A−1δ̄A; ðA9Þ

while the Weyl scalars (A6) and electromagnetic scalars
(A7) transform as

Ψm ↦ A2ð2−mÞΨm; m ¼ 0; 1; 2; 3; 4; ðA10aÞ

ϕm ↦ A2ð1−mÞϕm; m ¼ 0; 1; 2: ðA10bÞ

Any quantity η which transforms as η ↦ A2wη is said to
have a “boost weight” w.
The next transformation is the spin in the spacelike plane

spanned by ma and m̄a with a real parameter χ defined by

l̂a ↦ la; n̂a ↦ na; m̂a ↦ e2iχma: ðA11Þ

Under spin, the spin coefficients (A3) transform as

κ ↦ e2iχκ; τ ↦ e2iχτ; σ ↦ e4iχσ; ϱ ↦ ϱ;

π ↦ e−2iχπ; ν ↦ e−2iχν; μ ↦ μ; λ ↦ e−4iχλ;

ε ↦ εþ iDχ; γ ↦ γ þ iΔχ;

β ↦ e2iχðβ þ iδχÞ; α ↦ e−2iχðαþ iδ̄χÞ: ðA12Þ

The Weyl scalars (A6) as well as the electromagnetic
scalars (A7) are then given by

Ψm ↦ e2ð2−mÞiχΨm; m ¼ 0; 1; 2; 3; 4; ðA13Þ

ϕm ↦ e2ð1−mÞiχϕm; m ¼ 0; 1; 2: ðA14Þ

Again, a quantity η is said to have a “spin weight” s if it
transforms like η ↦ e2isχ under the spin. The associated
spin raising/lowering operators ð and ð̄ are defined by
[25,42]
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ðη ¼ δηþ sðᾱ − βÞη; ð̄η ¼ δ̄η − sðα − β̄Þη: ðA15Þ

Another kind of transformation of the null tetrad is a
“null rotation” about la with complex parameter c:

la ↦ la; ma ↦ ma þ c̄la;

na ↦ na þ cma þ c̄m̄a þ jcj2la; ðA16Þ

under which the spin coefficients (A3) transform as
follows:

κ ↦ κ;

τ ↦ τ þ cσ þ c̄ϱþ κjcj2;
σ ↦ σ þ κc̄;

ϱ ↦ ϱþ κc;

ε ↦ εþ cκ;

γ ↦ γ þ cðβ þ τÞ þ αc̄þ σc2 þ ðεþ ϱÞjcj2 þ κc2c̄;

β ↦ β þ cσ þ εc̄þ κjcj2;
α ↦ αþ cðεþ ϱÞ þ κc2;

π ↦ π þ 2cεþ c2κ þDc;

ν ↦ νþ cð2γ þ μÞ þ c̄λþ c2ð2β þ τÞ þ c3σ

þ jcj2ðπ þ 2αÞ þ c2c̄ð2εþ ϱÞ þ c3c̄κ

þ jcj2Dcþ Δcþ cδcþ c̄ δ̄ c;

μ ↦ μþ 2cβ þ c̄π þ c2σ þ 2jcj2εþ c2c̄κ þ c̄Dcþ δc;

λ ↦ λþ cðπ þ 2αÞ þ c2ðϱþ 2εÞ þ κc3 þ cDcþ δ̄c:

ðA17Þ

The transformation rules for the Weyl and electromagnetic
scalars (A6) and (A7) read

Ψ0 ↦ Ψ0;

Ψ1 ↦ Ψ1 þ cΨ0;

Ψ2 ↦ Ψ2 þ 2cΨ1 þ c2Ψ0;

Ψ3 ↦ Ψ3 þ 3cΨ2 þ 3c2Ψ1 þ c3Ψ0;

Ψ4 ↦ Ψ4 þ 4cΨ3 þ 6c2Ψ2 þ 4c3Ψ1 þ c4Ψ0;

ϕ0 ↦ ϕ0;

ϕ1 ↦ ϕ1 þ cϕ0;

ϕ2 ↦ ϕ2 þ 2cϕ1 þ c2ϕ0: ðA18Þ

Finally, a “null rotation” about na with complex param-
eter d is defined by the relations

na ↦ na; ma ↦ ma þ dna;

la ↦ la þ d̄ma þ dm̄a þ jdj2na: ðA19Þ

The spin coefficients (A3) now transform as

κ ↦ κ þ dð2εþ ϱÞ þ d̄σ þ d2ðπ þ 2αÞ þ d3λ

þ jdj2ðτ þ 2βÞ þ d2d̄ð2γ þ μÞ þ d3d̄ν

− jdj2Δd −Dd − dδ̄d − d̄δd;

τ ↦ τ þ 2dγ þ d2ν − Δd;

σ ↦ σ þ dðτ þ 2βÞ þ d2ðμþ 2γÞ þ d3ν − dΔd − δd;

ϱ ↦ ϱþ 2dαþ d̄τ þ d2λþ 2jdj2γ þ d2d̄ν − d̄Δd − δ̄d;

ε ↦ εþ dðαþ πÞ þ βd̄þ λd2 þ ðμþ γÞjdj2 þ νd2d̄;

γ ↦ γ þ dν;

β ↦ β þ dðγ þ μÞ þ d2ν;

α ↦ αþ dλþ d̄γ þ jdj2ν;
π ↦ π þ dλþ d̄μþ jdj2ν;
ν ↦ ν;

μ ↦ μþ dν;

λ ↦ λþ νd̄: ðA20Þ

For the Weyl scalars (A6) and the electromagnetic scalars
(A7) we now have

Ψ0 ↦ Ψ0 þ 4dΨ1 þ 6d2Ψ2 þ 4d3Ψ3 þ d4Ψ4;

Ψ1 ↦ Ψ1 þ 3dΨ2 þ 3d2Ψ3 þ d3Ψ4;

Ψ2 ↦ Ψ2 þ 2dΨ3 þ d2Ψ4;

Ψ3 ↦ Ψ3 þ dΨ4;

Ψ4 ↦ Ψ4;

ϕ0 ↦ ϕ0 þ 2dϕ1 þ d2ϕ2;

ϕ1 ↦ ϕ1 þ dϕ2;

ϕ2 ↦ ϕ2: ðA21Þ

APPENDIX B: VISUALIZATION

In this section, we briefly present the visualization of the
differences between the standard twisting Kinnersley tetrad
and the nontwisting tetrad constructed in this paper.
Standard treatment of optical scalars for null geodesics
in the NP formalism can be found, e.g., in [25]. Here we
need to consider slightly more general case.
Consider a general NP tetrad la, na, and ma, for which

la is not necessarily a geodesic (which is the case of la
B

given by V) and ma is not necessarily parallelly propagated
along either la or na [which is the case for the Kinnersley
tetrad (4)]. We can always introduce complex null vectors
ξal and ξan for which Dξal ¼ 0 and Δξan ¼ 0, respectively.
Let zal and z

a
n be deviation vectors orthogonal to la and na,

respectively, which are propagated by equations
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Dzal ¼ zbl∇bla; Δzan ¼ zbn∇bna: ðB1Þ

We expand both connecting vectors as

zal ¼ clla − z̄lξal − zlξ̄al;

zan ¼ cnna − znξan − z̄nξ̄an; ðB2Þ

and interpret the component zl ¼ xl þ iyl (zn ¼ xn þ iyn)
as complex coordinate of the projection of zal (zan) onto the
spacelike plane orthogonal to la (na). Corresponding
evolution equations read

Dzl ¼ −ϱzl − σz̄l þ κcl;

Δzn ¼ μzn þ λz̄n − νcn; ðB3Þ

and

Dcl ¼ ðπ − α − β̄Þzþ ðπ̄ − ᾱ − βÞz̄;
Δcn ¼ ðᾱþ β − τÞzþ ðα − β̄ − τ̄Þz̄: ðB4Þ

In what follows we consider vectors la
K and naK of the

Kinnersley tetrad and la
B and naB of the Bondi-like tetrad. In

each case we choose the initial spacetime point with
coordinates ðr0; ϑ0Þ and a sequence fz0;n ¼ e2πin=NgNn¼0

of initial coordinates of the deviation vector. For each z0;n
we solve the deviation equations (B3) along the null
geodesic and plot points zn for given values of the
parameter along the geodesic, which we interpret as the

cross-sections of the family of nearby geodesics with
initially circular cross-section.
We choose the parameters of the Kerr-Newman space-

time M ¼ 1.2; a ¼ 1.1; Q ¼ 0.2. In Fig. 2 we plot the
congruence la

K _¼la
B on the horizon. By the properties of a

WIH, this congruence is nontwisting, nonexpanding and
shear-free. Congruence la

K off the horizon, see Fig. 3, is
expanding, twisting and shear-free, i.e. the cross-sections
remain circular. On the other hand, congruence naK , being
transversal to the horizon and future pointing, is converging
and twisting, see Fig. 4. Congruence naB of the Bondi-like
tetrad is also converging but has zero twist and non-
vanishing shear, as Fig. 5 demonstrates. Finally, optical
scalars of the congruence la

B vanish on the horizon, Fig. 2,
but off the horizon all optical scalars are nonvanishing,
see Fig. 6.

FIG. 4. Twisting, converging and shear-free congruence naK for
the initial position r0 ¼ 3, ϑ0 ¼ π=4.

FIG. 5. Nontwisting, converging and shearing congruence naB
for the initial position r0 ¼ 5, ϑ0 ¼ π=4.

FIG. 6. Twisting, expanding and shearing congruence la
K for

the initial position r0 ¼ 2, ϑ0 ¼ π=4.
FIG. 3. Twisting, expanding and shear-free congruence la

K with
the initial position r0 ¼ 0.5, ϑ0 ¼ π=4.

FIG. 2. Nontwisting, nonexpanding and shear-free congruence
la
K with the initial position r0 ¼ 0, ϑ0 ¼ π=4.

SCHOLTZ, FLANDERA, and GÜRLEBECK PHYSICAL REVIEW D 96, 064024 (2017)

064024-14



[1] A. Ashtekar, C. Beetle, and S. Fairhurst, Classical Quantum
Gravity 16, L1 (1999).

[2] A. Ashtekar, C. Beetle, and S. Fairhurst, Classical Quantum
Gravity 17, 253 (2000).

[3] A. Ashtekar, C. Beetle, and J. Lewandowski, Phys. Rev. D
64 (2001).

[4] A. Ashtekar, C. Beetle, and J. Lewandowski, Classical
Quantum Gravity 19, 1195 (2002).

[5] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys.
Rev. Lett. 80, 904 (1998).

[6] A. Ashtekar and B. Krishnan, Living Rev. Relativ. 7 (2004).
[7] A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D 62,

104025 (2000).
[8] A. Ashtekar, J. Engle, T. Pawlowski, and C. V. D. Broeck,

Classical Quantum Gravity 21, 2549 (2004).
[9] R. Geroch, J. Math. Phys. 11, 2580 (1970).

[10] R. O. Hansen, J. Math. Phys. 15, 46 (1974).
[11] N. Gürlebeck, Phys. Rev. D 90, 024041 (2014).
[12] N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015).
[13] E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A.

Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).
[14] T. Johannsen, A. E. Broderick, P. M. Plewa, S. Chatzopoulos,

S. S. Doeleman, F. Eisenhauer, V. L. Fish, R. Genzel, O.
Gerhard, and M. D. Johnson, Phys. Rev. Lett. 116 (2016).

[15] D. Psaltis, N. Wex, and M. Kramer, Astrophys. J. 818, 121
(2016).

[16] J. Lewandowski, Classical Quantum Gravity 17, L53
(2000).

[17] B. Krishnan, Classical Quantum Gravity 29, 205006 (2012).
[18] H. Bondi, M. G. J. van der Burg, and A.W. K. Metzner,

Proc. R. Soc. A Math. Phys. Eng. Sci. 269, 21 (1962).
[19] E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
[20] E. T. Newman and T.W. J. Unti, J. Math. Phys. 3, 891

(1962).
[21] N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010

(2017).
[22] J. Lewandowski and T. Pawlowski, Int. J. Mod. Phys. D 11,

739 (2002).
[23] S. J. Fletcher and A.W. C. Lun, Classical Quantum Gravity

20, 4153 (2003).

[24] R. Penrose and W. Rindler, Spinors and Space-time
(Cambridge University Press, Cambridge, England,
1984), Vol. 1.

[25] J. Stewart, Advanced General Relativity (Cambridge
University Press, Cambridge, England, 1993).

[26] B. Krishnan, in Springer Handbook of Spacetime, edited by
A. Ashtekar and V. Petkov (Springer, New York, 2014)
Chap. 25, p. 527.

[27] W. Kinnersley, J. Math. Phys. 10, 1195 (1969).
[28] J. Jezierski and M. Łukasik, Classical Quantum Gravity 23,

2895 (2006).
[29] E. G. Kalnins, W. Miller, Jr, and G. C. Williams, J. Math.

Phys. 30, 2360 (1989).
[30] Notice that, thanks to the properties of nonexpanding

horizon, Lie dragging preserves the normalization of the
vectors.

[31] I. Rácz, Classical Quantum Gravity 24, 5541 (2007).
[32] I. Rácz, Classical Quantum Gravity 31, 035006 (2014).
[33] B. Carter, Phys. Rev. 174, 1559 (1968).
[34] M. Walker and R. Penrose, Commun. Math. Phys. 18, 265

(1970).
[35] That is, radial geodesics emanating from the equatorial

plane will remain in this plane.
[36] J. A. Marck, Phys. Lett. 97A, 140 (1983).
[37] D. Kubizňák, V. P. Frolov, P. Krtouš, and P. Connell,

Phys. Rev. D 79, 024018 (2009).
[38] J. Lewandowski and T. Pawlowski, Classical Quantum

Gravity 20, 587 (2003).
[39] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,

and E. Herlt, Exact Solutions of Einstein’s Field Equations,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England,
2009).

[40] J. B. Griffiths and J. Podolský, Exact Space-times in
Einstein’s General Relativity (Cambridge University Press,
Cambridge, England, 2009).

[41] E. Poisson, A Relativist’s Toolkit: The Mathematics of
Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004).

[42] J. N. Goldberg, J. Math. Phys. 8, 2155 (1967).

KERR-NEWMAN BLACK HOLE IN THE FORMALISM OF … PHYSICAL REVIEW D 96, 064024 (2017)

064024-15

https://doi.org/10.1088/0264-9381/16/2/027
https://doi.org/10.1088/0264-9381/16/2/027
https://doi.org/10.1088/0264-9381/17/2/301
https://doi.org/10.1088/0264-9381/17/2/301
https://doi.org/10.1103/PhysRevD.64.044016
https://doi.org/10.1103/PhysRevD.64.044016
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1063/1.1665427
https://doi.org/10.1063/1.1666501
https://doi.org/10.1103/PhysRevD.90.024041
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1063/1.1704351
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.3847/0004-637X/818/2/121
https://doi.org/10.3847/0004-637X/818/2/121
https://doi.org/10.1088/0264-9381/17/4/101
https://doi.org/10.1088/0264-9381/17/4/101
https://doi.org/10.1088/0264-9381/29/20/205006
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724303
https://doi.org/10.1063/1.1724303
https://doi.org/10.1103/PhysRevD.95.064010
https://doi.org/10.1103/PhysRevD.95.064010
https://doi.org/10.1142/S0218271802001986
https://doi.org/10.1142/S0218271802001986
https://doi.org/10.1088/0264-9381/20/19/302
https://doi.org/10.1088/0264-9381/20/19/302
https://doi.org/10.1063/1.1664958
https://doi.org/10.1088/0264-9381/23/9/008
https://doi.org/10.1088/0264-9381/23/9/008
https://doi.org/10.1063/1.528565
https://doi.org/10.1063/1.528565
https://doi.org/10.1088/0264-9381/24/22/016
https://doi.org/10.1088/0264-9381/31/3/035006
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1007/BF01649445
https://doi.org/10.1007/BF01649445
https://doi.org/10.1016/0375-9601(83)90197-4
https://doi.org/10.1103/PhysRevD.79.024018
https://doi.org/10.1088/0264-9381/20/4/303
https://doi.org/10.1088/0264-9381/20/4/303
https://doi.org/10.1063/1.1705135

