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The algebraic structure, given by a null alignment of the Weyl tensor, of expanding
Robinson-Trautman and non-expanding Kundt geometries is analyzed in an arbitrary
dimension. Conditions for all possible algebraic types are identified in closed form. Since
the expansion parameter © is explicitly kept in all expressions, it can be simply set to
zero to obtain results for the Kundt class. Usefulness of these general results obtained
for all non-twisting and shear-free geometries in any metric theory of gravitation are
demonstrated on specific vacuum solutions to the Einstein field equations.
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1. Introduction

This contribution is based primarily on our recent works? in which we investi-
gated the algebraic structure of a fully general class on non-twisting and shear-free
geometries in any dimension D, i.e., the Robinson—Trautman and Kundt family.3 8

The line element of the most general non-twisting and shear-free geometry +%:¢
can be written as

ds? = Gpg(r,u, ) da? dz? + 2 gyp(r, v, x) duda? — 2dudr + guu(r, u, x) du?, (1)

where gpq = R*(r,u, x) hpq(u, z) with R=exp ([O(r,u,x)dr). The coordinates
employed correspond to the non-twisting character of the spacetime, which is equiv-
alent to the existence of its global null foliation. Coordinate u thus labels null hy-
persurfaces (u = const.) with a tangent non-twisting null vector field k. The affine
parameter r along a null geodesic congruence generated by k is taken as the second
coordinate, i.e., k = 0,.. Finally, at any fixed u and r we are left with a Riemannian
manifold covered® by D — 2 spatial coordinates x?.

The Kundt class is defined by having the vanishing expansion, ® = 0, in which
case gpq is r-independent and R reduces to R =1, i.e. gpq = hpg(u, ). The case
© # 0 gives the expanding Robinson—Trautman class for which R is a non-trivial
function of 7.

In particular, by projecting the Weyl tensor onto the natural null frame we eval-
uated the corresponding scalars and proved in Ref. 1 that all these geometries are
of type I(b), or more special, with the Weyl aligned null direction (WAND) corre-
sponding to the optically privileged non-twisting and shear-free null direction k. We
were able to explicitly derive the necessary and sufficient conditions of all principal

aThroughout this contribution, the indices m,n,p, ¢ (ranging from 2 to D — 1) label the spatial
coordinates.
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alignment types® with k being a multiple WAND. No field equations were employed
in these calculations, so that all results are “purely geometrical”. They can be ap-
plied in any metric theory of gravity that admits Robinson—Trautman and Kundt
geometries. The nonexpanding Kundt family can be obtained by setting © = 0.

Of course, there are specific constraints on the spacetime metric imposed by the
field equations. To illustrate the utility of our results, we investigated the Robinson—
Trautman vacuum solutions in Einstein’s theory.>%% We proved that in D > 4 there
only exist types D(a)=D(abd), D(c)=D(bcd) and O. This is in striking contrast to
the classical D = 4 case, which is much richer (see Table 2 below).

2. Algebraic structure of the Weyl tensor

The most natural null frame, satisfying k-1l = -1, m; -m; = 5ij,b for the metric
(1) is given by

kzk:ara l:%guuar"'au» mzsz<gupar+6p) (2)
All the Weyl tensor components with respect to such a null frame are

b d
\IIOij = Capea k* m; k¢ m;,

Uik = Capea K4 m? m§ mg, Wypi = Capea k1" k°m¢
Woisnt = Capeq MY mé’» m§mé Wos = Caped k" 1P 19k,
Uois = Copeaq k1 m; m? , Vori; = Caped k” mli) l m? )
\Ij3ijk = Capea 1 mi’ m‘; mz s \I/3Ti = Capea 1* kb I m;i )
\I/4z‘j = Cabcd A mf l° m;j y (3)

see e.g. Refs. 1, 2, 9, ordered according to their boost weight, and their irreducible
components® are

I 2
\Iflijk :\Iflijk - méi[qulTk] )
T 1
Voran =Wapin — p—50ijPas ,
~ 9 ~ ~ ~ ~
\I/2ijkl :\I/2ijkl — m((gik\lj2T(jZ) + 5jl\I/2T(ik) _ 5il\IJ2T(jk) — 5jk;\:[12T(il))
46i[k51]j
~(-2)(D-3) Y25
0 —U.,.. 2
\I]3ijk —\Ilgzjk - méi[j\l]3Tk] . (4)

A rather long calculation reveals that Wy, = 0 = Wqie so that a general non-
twisting and shear-free geometry (1) is at least of algebraic type I(b) with k =
k = 0, being a WAND. The remaining Weyl scalars take the following explicit and

bThe indices 4, §, k, I label the transverse spatial directions of the frame.
“See Ref. 2 for relations of these Newman—Penrose-like quantities to other equivalent notations
employed in Ref. 9.
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surprisingly simple form:

Uy = mf fj [(_%gup,r + Ogup),r + 6717] ) (5)
Uyg = B3 p, (6)
Voran = mfm? %2 (qu ﬁ 9pq Q) ) (7)
Woijir = m?m?mﬁm? SC’mpnq , (8)
Wyis = mym Fpq (9)
aps =ml 8=V, (10)
Wi = mfmeZ (Xpmq - % gp[qu]) ) (11)
Wy = mi’m;‘ (qu ~ D—2 gqu) J (12)
where
P = (39uur = O0uwi) , + -2jp-3) "R~ 153 9" Jum,rGun,r

+ 55 (9" Gun,rr + 9™ Gum,rlin) — 5oz 9" GunOr — 20,4 — 55 97O

—02 575 9" gun + O (525 9" Gun.r — 5 9" Jumiin) » (13)
Qpq = "Rpg + (D = )[5 (o + JupIgyurr) = (©.r — %) gupgug

~20u9.9) ~ © (utolia) + 29u@Iayur)], (14)
Fpq = Gulp,ql,r — GulpIalu,rr + 20(Gupalu,r — ulp,a)) (15)

Vo = 3 [39uuGup,rr — Guu,rp + Gupru = 59" Gun,r Gup,r
9™ Gum e Enp — Gup (Guwsrr — 39" Gum,r Gun,r) |
+553 (39" JunGup,rr + 9" eminIplur = 9" Gulnplr + 39" (Gulp,riin) + Fon)
~9"™" (Imip.ulin) + Gulmpllin) = 59up (97" Gun,rr + 9™ frun) ]
+29up9un©.r + Gup© . + 39uuO p
—O[ S 9uulup.r = Guup + Gupu — 9" GuinIplur + 9" Enp — GupGuu.r
+553 39" JulnIplur — 39" Gulnp) = 59upg™ " Imnu + 39" Gnpu)]

(16)
Xpmaq = Gp[m,ullg) T Gulg,m]|lp T JupFuimIqlu,rr T EplmIqlu,r
~Gulgmlu,rllp — JupGulm,rlla) = 39ulgImlurIup,r + O (39ulqFmu,rJup
+GulgImlpu + JulgImlullp — JupllimIalu — 29ulg,mGup) » (17)
Wpq = _%guullpllq - %gpq,uu + Gu(pulle) — %guuwepq + %guu,(pgq)um ~ Juu,r(p9q)u

Jr%g“ugu(p,r\\q) + %guugu(qu)umr - %gu%”gupguq + Gu(q9pyu.ru
_i_%gmn (gumgungup,rguq,r + gum,rgun,rgupguq) - %gmngumgun,rgu(qu)u,r
+g™" (EmpEnq + gum,TEn(pgq)u - gumEn(pgq)u,r)

+®(gupgquuu,r + guu,(pgq)u - guugu(pgq)u,r - 2gu(pgq)u,u - %guugpq,u) 5
(18)
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with contractions @Q = ¢PQpe, Xq=""Xpmq, W =gP"Wp,, and auxil-
iary quantities defined as ey = gu(p||q) — %gpq,u, Epq = Gup,q T %gpq,u, and
Ipa = Guip,rl|q) + %gup,rguq,r (the symbol || stands for the covariant derivative with
respect to transverse metric g,,), and & Crmpngs & R,, and SR are the Weyl tensor,
Ricci tensor and Ricci scalar for g,q, respectively.

Expressions (5)—(12) with (13)—(18) give the explicit conditions under which
k = 0, becomes a multiple WAND and Weyl tensor will thus be algebraicaly special
with respect to k (for explicit form of the conditions see Ref. 1). The corresponding
classification scheme is summarized in Table 1.

Table 1. The principal Weyl alignment types and subtypes defined with respect
to (multiple) WAND k = 0.

type vanishing components of the Weyl tensor

II = I(a) = I(ab) Wi

II(a) Wi Vs
H(b) ‘I’1T7? \~112T(i.7')
11(c) Wi Woijki
11(d) Wi Wyij
I1I = II(abcd) Wi Wog ‘?2T(U) ‘?Qijkl Woij
11I(a) Wi Vas Voreij) Yoiskt Voij Uapi
I11(b) Wi Wos Worcij) Yaijkr Wais Waijk
N = III(ab) Wi WYag ‘il2T(ij) ‘i’y‘jkl Wi Wapi \I~/31',jk
O Ui Vas \i’gT(ij) \i’ziﬂ'kl Wyij Wy ‘i’SUk i

3. Illustration: Robinson—Trautman vacuum spacetimes

A fully general Robinson-Trautman vacuum solution in the Einstein theory® is
given by the metric (1) with

Ipq = T2 hpg(u, ), gup = 1%ep(u, ), Guu= —a — b(u) D —cr 442, (19)
and
=  Ruz) = 2 (e"jn — L ) =ele, 4 —— 20
@=TD-—2)(D-3) ¢= " D=2\¢ln"3 mnu), 7 =€Cn T (D7) (D—2)>
(20)
where the metric functions are restricted by constraints following from Einstein’s
equations:4
-1 1
O=r—", Rpq = p—3 hwa R, hpg.u = 2 e(pllq) + Clpg s

(D=4)ap, =0, R™amn+ 5(D—1)(D-2)bc+(D—2)b,=0. (21)

dThe symbols R, Rpq and Cmpngq stand for quantities calculated with respect to the spatial -
independent metric hpq.
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Expression (5) implies Ui = 0, so that these spacetimes are at least of alge-
braic type II. Tt is now convenient to perform a null rotation of the frame (2) with
k fixed, see Appendix C of Ref. 10, to obatin an alternative null frame k' = 0,,
U'=-1g""0, + 0, — €? 9, and m = m? 9,, in which the nonvanishing irreducible
Weyl scalars (6)—(12) become

bs = —H(D (D~ 3)bri D (22)
‘iﬂzia‘kl = m?‘mﬁ-’m?m? Cmpng 2, (23)
Wi = —m} 5o apr ', (24)
s = gmimd [(@)plla + Cliplia™) = Doz hpa K™ (@)jmin + Cmin )] - (25)

Using the scheme given in Table 1, together with scalars (22)-(25) and con-
straints (21), we can explicitly determine the algebraic structure of all vacuum
Robinson—Trautman spacetimes in any dimension D, see Table 2.

Table 2. The necessary and sufficient conditions for all possible algebraic (sub)types
of the Robinson-Trautman vacuum solutions in Einstein’s theory. The algebraic
structure differs significantly in the case D = 4 and in D > 4.

type D=4 D >4
II(a) b=0 b=0 < D(a)
II(b)  always always < D(b)
II(c)  always Cmpng =0 < D(c)
II(d) always always < D(d)
111 II(abed)
III(a) b=0=R,; equivalent to O
III(b)  always for b =0 equivalent to O
N III(ab)
O b=0=Rp and ¢|p||q = ﬁ hpg K" C||m||n  equivalent to  D(ac)
D Ryp=0 and g = 53 hpa A" jm|n always D(bd)

To prove the non-existence of type N and type Il vacuum solutions in D > 4 it is
crucial to employ the non-trivial identity (D — 4) (c||p||q — ﬁ Rpg hm"chHn) =0,
see Ref. 1 for more details.

In the case of Robinson—Trautman family the Einstein gravity is thus more
restrictive in higher dimensions D > 4. There only type D Schwarzschild-like black
hole solutions are allowed, while type N radiative spacetimes are prohibited. This
is in striking contrast to the classical D = 4 case.
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