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Blackbody radiation contains (on average) an entropy of 3.9 ± 2.5 bits per photon. If the emission process 
is unitary, then this entropy is exactly compensated by “hidden information” in the correlations. We 
extend this argument to the Hawking radiation from GR black holes, demonstrating that the assumption 
of unitarity leads to a perfectly reasonable entropy/information budget. The key technical aspect of our 
calculation is a variant of the “average subsystem” approach developed by Page, which we extend beyond 
bipartite pure systems, to a tripartite pure system that considers the influence of the environment.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The “information puzzle” due to the Hawking evaporation of 
GR black holes continues to provoke much heated discussion and 
debate [1–18]. On the other hand, there simply is no “information 
puzzle” associated with chemical burning [19], nor with the Hawk-
ing radiation from analogue black holes [20–41], where physics is 
manifestly unitary. (Horizons, if present at all, are apparent/trap-
ping horizons; definitely not event horizons [42–44].) Previously 
we carefully analyzed the blackbody radiation from a “blackbody 
furnace” [19]. In the current article we focus on Hawking radiation 
from both analogue and GR black holes. Despite many claims to 
the contrary, (assuming unitarity and complete evaporation), the 
Hawking evaporation process is relatively benign, no worse than 
burning a lump of coal.

2. Entropy/information in blackbody radiation

When burning a lump of coal (or an encyclopaedia for that 
matter) in a blackbody furnace, individual photons in the result-
ing blackbody radiation carry (on average) an entropy/ information 
content of [19]

〈 Ŝ2〉 ≈ 3.90 ± 2.52 bits/photon. (1)
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We use S to denote the physical entropy, Ŝ = S/kB for the dimen-
sionless entropy measured in nats (natural units), and Ŝ2 = Ŝ/ ln 2. 
We now apply these results within the context of Hawking radi-
ation, paying particular attention to the von Neumann entangle-
ment entropy, and thence to the Page curve, as one of the main 
features underlying the firewall argument.

3. Hawking evaporation: analogue and GR black holes

Analogue black holes [20–29] have unitary Hawking flux; the 
relevant blocking/acoustic horizons are apparent/trapping horizons. 
Hawking quanta simply deliver a coarse-grained thermodynamic 
entropy [45] S = h̄ ω/T to the radiation field; exactly compen-
sated by the information hidden in the correlations between the 
quanta [19]. Analogue black holes provide the only experimental
evidence for the reality of Hawking radiation [30–36], showing a 
quite standard unitary preserving quantum physics without involv-
ing any “information puzzle”.

If there is any “information puzzle” for GR black holes, it is not 
Hawking radiation per se that is the central issue. It is the assumed 
existence of event horizons (which certainly do exist in the classi-
cal limit) surviving in the semiclassical quantum realm that is the 
source of the potential difficulties.

The “information puzzle” can be traced back to Hawking’s 1976 
article [1] where he introduced the concept of “hidden surface”, 
which was to be understood as a synonym for “absolute causal 
horizon”. (Hawking has since twice abjured the semiclassical sur-
vival of event horizons [46,47].) Also note that event horizons are 
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Fig. 1. Clausius (thermodynamic) entropy balance: As the black hole Bekenstein entropy (defined in terms of the area of the horizon) decreases the Clausius entropy of the 
radiation increases to keep total entropy constant and equal to the initial Bekenstein entropy.
simply not physically observable (in any finite size laboratory), 
whereas apparent/trapping horizons certainly are physically observ-
able, at least in spherical symmetry [48]. Furthermore, even in a 
general relativity context, event horizons are simply not essential 
for generating a Hawking-like flux [49–52].

4. Thermodynamic entropy: Hawking flux from a GR black hole

For the Hawking evaporation of a GR black hole, we shall argue 
that classical thermodynamic entropy fluxes stay the same. Quan-
tum entanglement entropy fluxes might in principle differ; that is 
essentially what all the arguing is about. To clarify these issues 
we shall compare and contrast the behaviour of the classical ther-
modynamic (Clausius) entropy with the quantum entanglement 
(von Neumann) entropy (of suitably defined subsystems).

4.1. Loss of Bekenstein entropy of the GR black hole

Let us first estimate the Bekenstein entropy loss of the black 
hole per emitted quanta. We assume for simplicity an exact 
Planck spectrum at the Hawking temperature, this being a good 
zeroth-order approximation to the actual physics [53,54]. For a 
Schwarzschild black hole we have

dS

dN
= dS/dt

dN/dt
= (8πkB GM/h̄c)(h̄〈ω〉/c2), (2)

where so far we have only used the definition of Bekenstein en-
tropy and the conservation of energy. Thus, for a Planck spectrum 
of emitted particles [19]

dS

dN
= kBπ

4

30 ζ(3)
. (3)

This is Bekenstein entropy loss of the black hole (per emitted 
massless boson).

4.2. Gain of thermodynamic entropy of the radiation

Contrast this with the thermodynamic entropy gain (Clausius 
entropy gain) of the external radiation field (the Hawking flux) per 
emitted quanta. We have

dS

dN
= dE/T H

dN
= h̄〈ω〉

T H
= kBπ

4

30 ζ(3)
. (4)

Independent of the details of the microphysics, at the macroscopic 
level the Hawking radiation is essentially just (adiabatically) trans-
ferring the Bekenstein entropy from the black hole into the Clau-
sius entropy of the radiation field; there are no significant quali-
fications or limitations to this result. Throughout the evaporation 
process, in terms of the initial Bekenstein entropy SBekenstein,0 we 
have (see Fig. 1):

SBekenstein(t) + SClausius(t) = SBekenstein,0. (5)

4.3. Total number of emitted Hawking quanta in GR

As a cross-check, let us estimate the total number of emitted 
massless quanta. We have

dN

dM
= (dN/dt)

(h̄〈ω〉/c2)(dN/dt)
= 30ζ(3)

π4

8πGM

h̄c
. (6)

Integrating this we have:

N = 30ζ(3)

π4
Ŝ ≈ 0.26 Ŝ2. (7)

The total number of emitted quanta is proportional to the original 
Bekenstein entropy. Conversely:

d Ŝ2

dN
= π4

30ζ(3) ln 2
≈ 3.90 bits. (8)

Semi-classically (at the level of macroscopic thermodynamics) ev-
erything holds together very well; the total number of massless 
quanta emitted over the life of the black hole is comparable to the 
(initial) dimensionless Bekenstein entropy.

5. Entanglement entropy: Hawking flux from a GR black hole

Now we come to the heart of the matter: Do these classical 
thermodynamic entropy arguments match with quantum entropy 
arguments based on the von Neumann entropy? If we wish to pre-
serve unitarity, then over the lifetime of the black hole we will 
have to encode approximately 3.9 ± 2.5 bits per photon of hid-
den information into the Hawking flux. But, can we implement 
this “purification” process “continuously”, or is it all hidden in a 
(non-perturbative) burst of information at/near total evaporation? 
Or after the so-called Page time? [55]. We argue, assuming unitar-
ity, complete evaporation, and a variant of the “average subsystem” 
argument, that the purification process is continuous and ongoing.

5.1. Entanglement: subsystem entropies

Page [56] has established a number of interesting results re-
garding average subsystem entropies. Consider a Hilbert space that 
factorizes, HAB = HA ⊗ HB , and on that Hilbert space consider 
a pure state ρAB = |ψ〉〈ψ |. Now define subsystem density matri-
ces via the partial traces: ρi = tr j(|ψ〉〈ψ |), where i, j runs over 
A, B . Then the subsystem von Neumann entanglement entropies, 
Ŝ i = −tr(ρi lnρi), both satisfy
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Fig. 2. Page curve, bipartite entanglement entropy: Under the “average subsystem” assumption applied to a pure-state bipartite system consisting of (black hole) plus 
(Hawking radiation) the entanglement entropy rises from zero to one half the initial Bekenstein entropy before dropping back to zero.
Ŝ A = Ŝ B ≤ ln min{dim(HA),dim(HB)}. (9)

This particular equality and inequality hold before any averaging 
is enforced. Page then considered the effect of taking a uniform 
average over all pure states on HAB . Taking n1 = dim(HA) and 
n2 = dim(HB), with m = min{n1, n2} and M = max{n1, n2}, he de-
fined the equivalent of

Ŝn1,n2 = 〈 Ŝ A〉 = 〈 Ŝ B〉 ≤ lnm. (10)

The central result of Ref. [56] is that the average subsystem en-
tropy is extremely close to its maximum possible value. (So that 
the “average subsystem” is effectively very close to being “maxi-
mally mixed”.) Combined with the exact result derived by Sen [57], 
(Sen provided a formal analytic proof of an exact result conjec-
tured by Page), and our own calculations involving an expansion 
in terms of the harmonic numbers [58], this can be strengthened 
to a strict bound

Ŝn1,n2 = 〈 Ŝ A〉 = 〈 Ŝ B〉 ∈ (
lnm − 1

2 , ln m
)
. (11)

The average subsystem entropy is within 1
2 nat, (less than 1

2 ln 2 <
3
4 bit), of its maximum possible value.

5.2. Bipartite entanglement: GR black hole + Hawking radiation

In Ref. [55] Page applies the average subsystem formalism 
to an idealized bipartite system consisting solely of (GR black 
hole) + (Hawking radiation). This is a “closed box” argument, ignor-
ing the rest of the universe. In the idealized bipartite HR system, 
initially there is not yet any Hawking radiation, HHawking radiation =
HR is trivial, (so it is 1-dimensional), while Hblack hole = HH is 
enormous. But it is the minimum dimensionality that dominates 
the average subsystem entropy and so ( ŜnH,nR)0 = 0. We shall 
use a subscript 0 to denote time zero. Likewise a subscript ∞
will denote time infinity. After the black hole has (by assump-
tion) completely evaporated it is Hblack hole = HH that is trivial 
(1-dimensional), and so ( ŜnH,nR)∞ = 0. At intermediate times both 
HH and HR are nontrivial, (having dimensionality greater than 
unity), so the average subsystem entropy is non-zero.

Since the evolution is assumed unitary the dimensionality of 
the total Hilbert space is constant, so

nH(t) nR(t) = nH0 = nR∞ . (12)

The subsystem entropy rises from zero to some maximum and 
then descends back to zero. That maximum is reached when

ŜnH,nR(t = tPage) ≈ 1

2
ln nH0 . (13)

It is the (symmetric) sawtooth shape of the Page curve (see Fig. 2) 
that underlies much of the modern discussion surrounding the 
“information puzzle”, and in particular the asserted and much de-
bated existence of firewalls [2–9]. But is there some way of evading 
the current argument?

One particularly disturbing feature of the current bipartite ar-
gument is that the subsystem entropy is initially zero. But this 
observation is in marked tension with the fact that the Bekenstein 
entropy of the black hole is initially enormous, and this Beken-
stein entropy is usually attributed to some form of entanglement 
entropy. In this model the Bekenstein entropy is never the en-
tanglement entropy of the black hole, it is instead the maximum 
entropy that the black hole could have had given the size of the 
Hilbert space used to describe the bipartite system.

Page’s main result implies that the black hole subsystem is 
maximally entangled with the radiation subsystem. But, at the 
same time, if we sub-divide the Hawking radiation subsystem be-
tween early and late radiation (respectively, before and after Page 
time), these two subsystems would be also maximally entangled 
with each other, and also with the black hole subsystem. One 
way of looking at the problem relies on the fact that due to the 
monogamy of entanglement, this is not possible. This was one of 
the motivations for the firewall proposal [2,3]. We are much less 
sanguine regarding the physical relevance of the Page curve, and 
in fact will argue against the physical relevance of the Page curve.

We shall instead argue that it is more appropriate to consider a 
tripartite system taking into account also the environment (rest of 
the universe), and that the average subsystem entropy argument, 
when applied to this (pure state) tripartite system, yields much 
more acceptable (and hopefully noncontroversial) physics.

5.3. Bipartite entanglement: asymmetric subsystem information

In Ref. [55] Page also defines a novel asymmetric version of 
subsystem information, (whereas the subsystem information of 
Ref. [56] is symmetric):

Ĩn1,n2 = lnn1 − Ŝn1,n2 ; Ĩn2,n1 = ln n2 − Ŝn1,n2 . (14)

This definition of asymmetric subsystem information is not entirely 
standard, and we shall see that its physical interpretation is not 
entirely clear. Nevertheless, approximately (to within 1

2 nat) the 
“random subsystem” argument leads to

Ĩn1,n2 ≈ ln
(n1

m

)
; Ĩn2,n1 ≈ ln

(n2

m

)
. (15)

This quickly leads to the subsystem information version of the Page 
curve, see Fig. 3.

If one only considers the bipartite system of black hole and 
Hawking radiation, (ignoring the rest of the universe), then (as-
suming the black hole is initially in some unknown pure state) 
the asymmetric subsystem information exhibits odd features as 
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Fig. 3. Page curves for entanglement entropy and (asymmetric) subsystem information: Note the “kinked” behaviour of the (asymmetric) subsystem information and that 
the “not-quite sum rule” 〈 ĨH,R〉 + 〈 ĨR,H〉 + 2〈 ŜH〉 = ŜBekenstein,0 is satisfied.

Fig. 4. Modified Page curves, bipartite mutual information and (asymmetric) subsystem information: Note that the “sum rule” 〈 ĨH,R〉 + 〈 ĨR,H〉 + 〈 ÎH:R〉 = ŜBekenstein,0 is 
satisfied.
sketched in Fig. 3. By construction this bipartite system satisfies 
the “not-quite sum rule”

〈 ĨH,R〉 + 〈 ĨR,H〉 + 2〈 ŜH〉 = ŜBekenstein,0. (16)

(We say “not-quite sum rule” because of the annoying factor 2 in 
front of 〈 ŜH〉.)

The hole subsystem information (in this bipartite model) does 
not have a direct physical interpretation; is the defect between the 
maximum entropy that the black hole could have had (given the 
time dependent size of the black hole Hilbert space) and the en-
tanglement entropy.

5.4. Bipartite entanglement: mutual information

It should be emphasized that mutual information is certainly 
not the same as what Page calls the subsystem information [56,
55]. In general one has

I A:B = S A + S B − S AB . (17)

For the bipartite HR system considered by Page one finds the par-
ticularly simple result

IH:R = 2SH = 2SR. (18)

More specifically, in dimensionless units, and after applying the 
“average subsystem” argument

〈 ÎH:R〉 = 2〈 ŜH〉 = 2〈 ŜR〉 ≈ 2 ln min{nH,nR}. (19)

While at first glance this seems uninteresting, when combined 
with Page’s asymmetric subsystem information this leads to the 
approximate sum rule

〈 ĨH,R〉 + 〈 ĨR,H〉 + 〈 ÎH:R〉 ≈ ln (nHnR)

≈ lnnH0 ≈ ŜBekenstein,0. (20)
Here the approximation is now valid to within 3
2 nat. This sum 

rule is summarized in Fig. 4.

5.5. Tripartite entanglement: GR black hole + Hawking radiation + rest 
of universe

Consider the tripartite system with Hilbert space HHRE =HH ⊗
HR ⊗ HE; the subscripts denoting the black hole, Hawking ra-
diation, and environment (rest of the universe). Take the entire 
universe to be in a pure state, so at all times SHRE(t) = 0, while 
the subsystem entropies satisfy: SH(t) = SRE(t), and SR(t) = SHE(t), 
and SE(t) = SHR(t). At time zero, as in the bipartite system, HH0 is 
trivial (1-dimensional). Then

SH0 = SE0; SR0 = 0 = SHE0 . (21)

Once the black hole has completely evaporated, then it is HH∞
that becomes trivial. Then

SH∞ = 0 = SRE∞; SR∞ = SE∞ . (22)

As the evolution is assumed unitary the total dimensionality of 
the Hilbert space must be fixed, but now the role of the environ-
ment is simply to give the HR subsystem something to be entan-
gled with — the environment does not itself directly participate 
in the Hawking evaporation process — so the unitary time evo-
lution operator factorizes as UHRE(t) = UHR(t) ⊗ UE(t). Therefore 
nE0 = nE(t) = nE∞ ≡ nE; and nH(t) nR(t) = nH0 = nR∞ . That is, dur-
ing the evaporation process the dimensionality of the black hole 
Hilbert space is being transferred to the Hawking radiation Hilbert 
space.

To quantify things we now make an additional assumption: 
That the Bekenstein entropy can be identified with the average en-
tanglement entropy. In dimensionless units at time zero we have

ŜBekenstein,0 = 〈 ŜH0〉 ≈ ln min{nH0 ,nE}, (23)
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Fig. 5. Tripartite quantum (von Neumann) entropy flux: The quantum (von Neumann) analysis now reproduces the Clausius (thermodynamic) analysis. As black hole Beken-
stein entropy (entanglement entropy) decreases, the entanglement entropy of the radiation increases, to keep total entropy approximately constant, at least to within 1 nat. 
In the limit where the environment (rest of universe) becomes arbitrarily large the correspondence is exact.
to within 1
2 nat. But the Bekenstein entropy depends only on in-

trinsic properties of the black hole, not on its environment, so we 
must have min{nH0 , nE} = nH0 whence nH0 ≤ nE. Subsequently, at 
later times we would still assert

ŜBekenstein(t) = 〈 ŜH(t)〉
≈ ln min{nH(t),nR(t)nE}. (24)

(With the approximation holding to within 1
2 nat.) But now note 

nH(t) ≤ nH0 ≤ nE ≤ nR(t) nE. Therefore (as one would expect)

ŜBekenstein(t) = 〈 ŜH(t)〉 ≈ lnnH(t), (25)

throughout the entire evolution.
Conversely, for the average entanglement entropy of the radia-

tion, (with the HE subsystem), we have

〈 ŜR(t)〉 ≈ ln min{nR(t),nH(t)nE}. (26)

But nR(t) ≤ nR(t)nH(t) = nH0 ≤ nE ≤ nH(t) nE. So

〈 ŜR(t)〉 ≈ ln nR(t), (27)

throughout the entire evolution.
Combining these two results

〈 ŜH(t)〉 + 〈 ŜR(t)〉 ≈ ln nH(t) + ln nR(t)

= ln[nH(t)nR(t)] = ln nH0 . (28)

Here the approximation is valid to within at worst 1 nat. In view 
of earlier assumptions, we can rephrase this (to within 1 nat) as

ŜBekenstein(t) + 〈 ŜHawking radiation(t)〉 ≈ ŜBekenstein,0. (29)

This now is the quantum von Neumann entropy version of the re-
sult we previously obtained by using classical Clausius entropy ar-
guments. (Compare with Eq. (5).) Note the only significant change 
is that the equality now holds only to within 1 nat. (See Fig. 5.)

5.6. Tripartite entanglement: the “rest of the universe” environment

What can we say concerning the entanglement of the (black 
hole) + (Hawking radiation) subsystem with the rest of the uni-
verse? We have

〈 ŜE(t)〉 = 〈 ŜHR(t)〉 ≈ ln min{nE,nH(t)nR(t)}. (30)

But we have nH(t) nR(t) = nH0 ≤ nE, so

〈 ŜE(t)〉 = 〈 ŜHR(t)〉 ≈ ln nH0 ≈ SBekenstein,0. (31)

That is, 〈 ŜE(t)〉 is not the total entropy of the rest of the uni-
verse; it is merely the extent to which the rest of the universe 
is entangled with the HR subsystem, which in turn is equal to the 
initial Bekenstein entropy of the black hole. While 〈 ŜE(t)〉 is by 
construction fixed and time independent, the fact of its existence 
is nevertheless crucial to a deeper understanding of entropy fluxes.

5.7. Tripartite entanglement: mutual information

For the more interesting tripartite system we have

IH:R = SH + SR − SHR = SH + SR − SE. (32)

Now averaging over the pure states we have at all times (the ar-
gument t is suppressed for clarity)

〈 ÎH:R〉 = ŜnH,nRnE + ŜnR,nHnE − ŜnE,nHnR . (33)

But nH ≤ nRnE, while nR ≤ nHnE, and nHnR ≤ nE. So in dimension-
less units, and using the harmonic numbers Hn we have the exact 
result [58]

〈 ÎH:R〉 =
[

HnHnRnE − HnRnE − nH − 1

2nRnE

]

+
[

HnHnRnE − HnHnE − nR − 1

2nHnE

]

−
[

HnHnRnE − HnE − nHnR − 1

2nE

]
. (34)

Then after a little simplification

〈 ÎH:R〉 = HnHnRnE + HnE − HnRnE − HnHnE

+ (nH − 1)(nR − 1)(nHnR + nH + nR)

2nHnRnE
.

(35)

It is now relatively easy to see [58] that

〈 ÎH:R〉 ≤ nHnR

2nE
= nH0

2nE
≤ 1

2
. (36)

So, the average mutual information between the black hole and 
the Hawking radiation never exceeds 1

2 nat throughout the entire 
evaporation process.

5.8. Tripartite entanglement: infinite-dimensional environment

For the bipartite HR system, the whole point is to keep the to-
tal dimensionality fixed. For the tripartite HRE system however, the 
environment is used to initially entangle the black hole with the 
rest of the universe, but then “comes along for the ride”. There is 
no real loss of generality in taking the limit nE → ∞ (arbitrarily 
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high dimensional Hilbert space). This is not making any assump-
tions concerning the actual thermodynamic entropy of the rest of 
the universe. Under these conditions we have demonstrated (at all 
times) [58] the following limits:

lim
nE→∞〈 ŜH〉 = lnnH; lim

nE→∞〈 ŜR〉 = ln nR;
lim

nE→∞〈 ŜE〉 = ln(nHnR) = lnnH0 . (37)

In this limit we therefore have the equality

lim
nE→∞

(
〈SH〉 + 〈SR〉

)
= lim

nE→∞〈SE〉, (38)

an equality which (in this limit) reproduces the classical thermo-
dynamic arguments, (balancing Bekenstein entropy versus Clausius 
entropy), that we started with. An immediate consequence of this 
result is

lim
nE→∞〈IH:R〉 = 0. (39)

For an infinite dimensional environment the mutual information 
between the subsystems H and R in a pure-state HRE system is 
zero. The fact that things simplify so nicely for an infinite dimen-
sional environment should perhaps not be all that surprising in 
view of the fact that even in purely classical thermodynamics an 
infinite volume limit (infinite degrees of freedom) is necessary for 
the existence of phase transitions. In counterpoint, an infinite di-
mensional environment is also necessary if for some reason one 
wishes to drive the Shannon entropy to infinity [59,60].

6. Discussion

Since we know that there is no information puzzle in burning a 
lump of coal [19], or in the Hawking emission from analogue black 
holes [20–41], we can use this as a starting point to understand 
what happens in a GR black hole system.

First, we explicitly calculated the classical thermodynamic 
(Clausius) entropy and the Bekenstein entropy. We found that they 
compensate perfectly, summing to the initial Bekenstein entropy 
of the hole. (As of course they must, given how Bekenstein en-
tropy was originally defined.) Once we had the classical behaviour 
under control, we proceeded with a quantum entropy argument 
based on the von Neumann entropy, realizing that on average we 
need to encode 3.9 ± 2.5 bits of information per emitted quantum 
to preserve unitarity.

We have developed a tripartite system in which, assuming uni-
tarity of the evolution of the (GR black hole) + (Hawking radiation) 
subsystem, we showed that, as long as it is suitably embedded in a 
tripartite system providing an environment to entangle with, there 
are no unusual physical effects; the results completely agree with 
the classically expected results, to within 1 nat.

(That consideration of the “rest of the universe” is necessary for 
making sensible statements about unitarity has also been argued, 
in a different context, in references [61,62].) In contrast, the results 
previously obtained by Page correspond to the choice of a “closed 
box model” which never interacts with, (or even notices), the rest 
of the universe. In that model, the consideration of a simplified 
and idealized bipartite system gives rise to physics that is not well-
understood; such as a zero initial Bekenstein entropy and an odd 
entropy/information balance that is a key part of the motivation for 
firewalls [2–9]. On the contrary, in our system the purification pro-
cess can occur continuously. Specifically, the mutual information 
between the black hole and the Hawking radiation, (when prop-
erly interpreted as part of a tripartite system entangled with an 
environment), never exceeds 1 nat. We also show that in the limit 
2
of infinite dimension of the environment, there is no loss of gener-
ality in our argument and, moreover, the “sum rule” holds exactly. 
This result can be related with the fact that in classical thermo-
dynamics we need an infinite volume limit for the existence of 
phase transitions. Overall this leads to noncontroversial and rela-
tively boring physics — quite similar to burning a lump of coal [19]
— one obtains a simple cascade of Hawking quanta [53,63].
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