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The mass per unit length of a cylindrical system can be found from its external metric as can its angular
momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so
found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-
Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried
by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both
for this beam and in general. The three Killing vectors of any stationary cylindrical system give three
Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar’s mysterious factor 2 by
evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar
formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical
systems their formula gives correct results.
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I. INTRODUCTION

Any system that carries a flux of angular momentum has
an associated spatial twist in its metric. This was illustrated
earlier by a static cylindrical shell that carried a torque
producing a flow of upward angular momentum upward
which can equally be interpreted as a flow of downward
angular momentum downward [1,2]. From this twisted
metric it was deduced that a flux of angular momentum
along a cylindrical system could be detected via the
external twist in its metric. However the externally twisted
metric described above has dφdz and dz2 terms that diverge
at large radii. Furthermore although there is a full dis-
cussion of the fecundity of Levi-Civita’s metric which has
three Killing vectors, the same arguments were not applied
to the flat interior metric which was assumed to be
dt2 − ½dR2 þ R2dφ2 þ dz2�. Thus the deduction that the
angular momentum flux could be detected externally was
not fully established. We shall return to this problem after
we have gained understanding from a second cylindrical
system that carries a flux of angular momentum, the
circularly polarized beam of light. The exact Einstein-
Maxwell metric for the plane wave can be found in the
literature see, for example, the fine paper [3]. However
there is a problem with uniform waves that extend to
infinite distance from their propagation axis. The electro-
magnetic vectors E, B are perpendicular both to each other
and to the propagation vector k so the Poynting vector
Π ¼ E × B=ð4πcÞ lies along k so the angular momentum

flux R ×Π has no component along the direction of
propagation. This is clearly wrong for circularly polarized
waves. The apparent paradox is nicely resolved in
Jackson’s book [4] Classical Electrodynamics examples
7.19 and 7.20 in the second edition or 7.28, 7.29 in the
third, where it is shown that the angular momentum in the
direction of propagation lies at the edge of the beam where
the intensity falls off. It is also pointed out there that the
ratio of the energy per unit length to the angular momentum
per unit length of the beam is the angular frequency ω. This
agrees with the concept that each photon has an angular
momentum ℏ and an energy ℏω [5]. To assess the angular
momentum we must therefore consider non-uniform beams
of finite cross section. The metric of such a system was first
considered by Bonnor in [7,8] but with the light replaced by
null dust. Here we shall first detail the classical electro-
magnetic field of a circularly polarized beam in flat space.
The angular momentum of a circularly polarized electro-
magnetic plane wave has been discussed for over a century.
In [9] Poynting considered the analogy between the
mechanical model of a rotating shaft consisting of a thin
cylindrical shell, and a beam of circularly polarized light
falling normally on an absorbing surface, which led him to
suggest that the beam would transfer its angular momentum
to the surface. In a letter preserved in the Einstein archive at
the Hebrew university of Jerusalem, Einstein wrote to the
US National Research Council emphasizing the importance
of Beth’s proposed experiment to demonstrate this. The
experiment was a success; in [10] Beth showed that a
circularly polarized beam carried angular momentum just
as Poynting had proposed. An exact calculation of such a
beam confined by a wave-guide was given in [11] while a
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general discussion of angular momentum in electromag-
netic fields was given in [12]. Discussions of the apparent
paradox may be found in [13] where the torque on a sphere
embedded in such radiation is considered and more
recently in [14] which relates the effects to quantum optics.
After detailing the stress-energy tensor of the electro-

dynamic beam we derive the corresponding metric within
general relativity. The solution is of the general form found
in [8] for spinning null dust. We determine his free
functions in terms of the electric field profile across the
wave. For the beam of uniform intensity and finite cross
section all the angular momentum is at the edge. Inside a
rotating cylindrical shell space time is flat but in axes that
rotate. We therefore conjectured that such a beam of
circularly polarized radiation should give the same gravity
field as the beam of unpolarized light given in Bonnor’s
paper [7], but in rotating axes. We find this is so and thus
demonstrate the relationship between Bonnor’s papers. Of
course rotating axes have problems at large distances from
the axis so although they can be helpful locally, they are not
part of a continuous global metric that can be used
externally far from the beam. Later works [15–17] have
concentrated on “gyratons,” short bursts of waves as
models of spinning particles. After giving the flat-space
solution for a circularly polarized electromagnetic beam of
finite cross-section in Sec. II, we discuss cylindrical
boundary conditions for Einstein’s equations in Sec. III.
We give the general solution to the Einstein-Maxwell
equations for such beams in Sec. IV. In Sec. V we give
explicit solutions for beams with particular profiles. In
Sec. VI we turn to the general questions posed earlier
concerned with detection of conserved quantities and show
how six conserved quantities may be detected asymptoti-
cally using Komar’s integrals [18]. We show that his
formula, which agrees with Tolman’s, gives too large a
result for the energy by a factor 2 for beams of radiation
while both give the correct result for static cylinders. We
compare these results with others for cylindrical systems in
the literature. In Sec. VII we revise the metric for the
torqued cylindrical shell by a coordinate transformation
that brings it into a form that obeys our boundary
conditions but raises problems over the meaning of
azimuthal angle φ. We also show how a Komar integral
allows us to use the asymptotic metric to calculate the flux
of angular momentum carried by a torqued cylinder.
For relativistic metrics we bring out the analogy between

gravomagnetism and electromagnetism by using calli-
graphic letters A, B, E, H, D for the gravitational fields
that correspond to the A, B, E, H, D of electromagnetism.
These calligraphic symbols are vectors so should be
considered as though they were in boldface letters. We
deal with axially symmetrical systems so we use a
continuous azimuthal coordinate φ both inside the beam
and outside it. We normally use the cylindrical coordinate R
defined so that 2πR is the circumference at fixed z and t.

II. MONOCHROMATIC CIRCULARLY
POLARIZED LIGHT

In flat space such a beam has electromagnetic vectors
that satisfy

∇:E¼ 0; ∇2E¼ c−2∂2E=∂t2; ∇×E¼−∂B=∂ct:
ð1Þ

If thewave travels in the z direction thenE∝ℜexp½ikðz−ctÞ�
and a solution of the Eqs. (1) is

E ¼ ℜðEcÞ; B ¼ −ℜðiEcÞ;
Ec ¼ E0ðx̂þ iŷÞ exp½ikðz − ctÞ�; ð2Þ

where E0 is a constant, a suffix c denotes a complex
vector and unit vectors are denoted with hats. This
electrodynamic field can also be described by the complex
4-vector potential ðAcÞt ¼ 0, Ac ¼ −Eci=k. However
such a wave fills all space and we wish to have a beam of
finite cross section. So following Jackson [4] we look for a
solution that falls to zero at the edge with E0 ¼ E0ðRÞ,
R2 ¼ x2 þ y2. To satisfy ∇:E ¼ 0 we take E ¼
ℜ½½E0ðx̂þ iŷÞ þ E1ẑ� exp½ikðz − ctÞ�� and find

E1 ¼ ði=kÞð∂E0=∂xþ i∂E0=∂yÞ
¼ iðkRÞ−1ðxþ iyÞE0

0; ð3Þ

where E0
0 ¼ dE0=dR. Thus our fields take the form

E ¼ ℜðEcÞ; B ¼ −ℜ½iEc�; Ac ¼ −Eci=k;

Ec ¼ ½E0ðx̂þ iŷÞ þ iẑ
kR

E0
0ðxþ iyÞ� exp½ikðz − ctÞ�: ð4Þ

Because E0 varies, (4) no longer satisfies (1) exactly, but
provided E0ðRÞ varies slowly so that it remains almost
constant over the scale of one wavelength, then (4) remains
an approximate solution with the amplitude varying slowly
across the beam. The terms in Eq. (1) that we neglect are
ðRE0

0Þ0=R ≪ k2E0 and the radial derivative of that inequality
which is necessary for the ẑ terms. Thus provided E0 varies
only on the scale of the overall beam radiusR ¼ a and ka ≫
1 the errors will be of order ðkaÞ−2. Expressing the fields in
real terms with u ¼ ct − z,

E ¼ E0½x̂ cosðkuÞ þ ŷ sinð−ku� þ ðE0
0=kÞẑ sin½−kuþ φ�;

ð5Þ

B ¼ E0½−x̂ sinðkuÞ þ ŷ cosðkuÞ� þ ðE0
0=kÞẑ cos½ku − φ�:

ð6Þ

These fields make up the field tensor Fμν ¼ ∂μAν − ∂νAμ.
How well do these approximate fields obey the conditions
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E:B ¼ 0 and E2 − B2 ¼ 0 which ensure that the field’s
relativistic invariants vanish? We find all the major terms
vanish leaving only the squares of the edging fieldswhich are
of the order of those we neglect in the slowly varying
approximation:

E:B ¼ −
1

2
ðE02

0 =k
2Þ sin 2½kðz − ctÞ þ φ�; ð7Þ

E2 − B2 ¼ −
1

2
ðE2

0=k
2Þ cos 2½kðz − ctÞ þ φ�; ð8Þ

both terms have k2 in their denominators and average to zero
over each half wavelength. The Poynting vector of the field
(4) is

Π ¼ cE ×B=ð4πÞ ¼ c
4π

�
E0E0

0

kR
ðr × ẑÞ þ E2

0ẑ

�
; ð9Þ

the component around the beam has only one k in its
denominator. In keeping with the above we shall neglect
terms of order 1=ðkaÞ2 but keep terms of order 1=ðkaÞ. The z
component of angular momentum density lz is
ẑ:ðr × ΠÞ ¼ ðẑ × rÞ:Π, so

lz ¼ −
E0E0

0R
4πkc

: ð10Þ

For an almost uniform beam which falls off near the
edge, E0

0 is zero except near the edge. The total angular
momentum per unit length along the beam thus concentrated
at the edge is

Lz ¼ −
1

4πkc

Z
E0E0

02πR
2dR ¼ 1

4πkc

Z
E2
0dV; ð11Þ

where we have integrated by parts from R ¼ 0 to the place
where E0 vanishes. The energy in unit length of beam is

U ¼
Z

E2 þ B2

8π
dV ¼

Z
E2
0

4π
dV; ð12Þ

so Lz ¼ U=ω where ω ¼ kc. This agrees with the quantum
concept that each photon carries an angularmomentumℏ and
an energy ℏω. The stress-energy tensor in Cartesian coor-
dinates ðt; x; y; zÞ is given by

4πT00 ¼ E2
0;

4πT01 ¼ −Πx; 4πT02 ¼ −Πy; 4πT03 ¼ −Πz;

4πT11 ¼ 0; 4πT12 ¼ 0; 4πT13 ¼ −αy;

4πT22 ¼ 0; 4πT23 ¼ αx;

4πT33 ¼ −E2
0; ð13Þ

where α ¼ E0E0
0=ðkRÞ and we have dropped the term

E0
0
2=k2 in the energy density as it is comparable with the

terms neglected in our slowly varying approximation. The
minus sign before theΠ components arises becausewe use a
þ − −− signature and covariant spatial components of the
tensor then have the opposite sign to contravariant ones
which point in the direction of the vectors. For later use we
put this tensor into cylindrical polar coordinates and use
the relativist’s coordinate components in the metric ds2 ¼
dt2 − ðdR2 þ R2dφ2 þ dz2Þ:

4πT00 ¼ E2
0;

4πT0R ¼ 0; 4πT0φ ¼ R2α; 4πT0z ¼ E2
0;

4πTRR ¼ 0; 4πTRφ ¼ 0; 4πTRz ¼ 0;

4πTφφ ¼ 0; 4πTφz ¼ αR2;

4πTzz ¼ −E2
0: ð14Þ

The other components are found by symmetry. Notice that
the terms involving α are only significant close to the edge of
an almost uniform beam. In the simplest model we treat them
as a delta function at the edge of a uniform beam giving
surface currents

Jφ0 ¼
Z

Tφ
02πRdR=ð2πaÞ ¼ −E2

0=ð4πkaÞ ¼ J:ẑ; ð15Þ

whereJ is the angularmomentumper unit height in thebeam.
We may summarize this energy momentum tensor as being
the same as that for unpolarized light within the body of the
beam but with a shell source at the edge that carries both a
positive angular momentum and a torque. Hereafter we
set c ¼ 1.

III. BOUNDARY CONDITIONS ON
CYLINDRICAL METRICS

For isolated systems boundary conditions are given via
the notion of asymptotic flatness. This is in turn defined via
conformal completeness at null infinity and appropriate
initial data on a Cauchy surface at spatial infinity as
introduced in the classical works of Penrose and others
(see Wald [19] for a review). Cylindrical systems are
infinite by definition but one can exploit the asymptotic
structure by identifying points along the ∂=∂z Killing
vector and thus reducing the problem to a finite (2þ 1)-
dimensional problem.This often admits a conformal com-
pletion at null infinity and is flat near spatial infinity [20];
however in contrast to fully isolated systems, where sta-
tionary and radiative spaces satisfy the same boundary
conditions, the asymptotics for stationary cylinders is
different from that of cylindrical waves as explained in
[20] Appendix B; for them standard conformal completion
is not possible. Alternatively following [19] in 4-dimen-
sions, we can define our boundary conditions for stationary
cylindrical systems by the requirements that there exist
coordinates ðt; R;φ; zÞ (in which φ is an azimuth and R is
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the length of the corresponding Killing vector); further the
metric components gφφ ¼ R2 by definition, ξ2 ¼ gtt should
be O½Rn� for some n; gtφ=ξ2 ¼ O½1�, gtz=ξ2 ¼ O½1=R�,
gRR ¼ O½Rn� for some n; gφz ¼ O½R�, gzz ¼ O½lnR� all at
large R, wherever the system extends to large R. (Levi-
Civita’s metric with m ≥ 1 does not.) We now adopt these
boundary conditions generally.

IV. RELATIVISTIC METRIC OF CIRCULARLY
POLARIZED LIGHT

An empty cylindrical shell of radius a that carries torque
has a flat static internal space but produces a φ; z twist
(gφz ≠ 0) in its metric [2]. An empty rotating cylindrical
shell produces a flat internal space but in axes that rotate
relative to axes fixed at infinity. It is no surprise that an
empty rotating cylindrical shell that carries a torque also
produces a flat internal space in axes that rotate relative to
infinity. We conjecture that the gravitational internal
solution will be the same as [7] internal solution below.
To agree with [3] we write Φ for Bonnor’s A which is not
the electromagnetic vector potential considered above. For
R ≤ a we write

ds2 ¼ dt2 − ðdR2 þ R2dφ2 þ dz2Þ þΦðdt − dzÞ2; ð16Þ
but the external solution will show that this is now relative
to rotating axes. Equation (16) can be rewritten in the
Landau and Lifshitz form that completes the square on dt
and writes γ for the determinant of the spatial metric jjγkljj,
ds2 ¼ ξ2ðdt −AkdxkÞ2 − γkldxkdxl; k; l ¼ 1; 2; 3

¼ ξ2ðdt −Φdz=ξ2Þ2 − ðdR2 þ R2dφ2 þ dz2=ξ2Þ;

Φ ¼ 1

2
κσR2; ξ2 ¼ 1þΦ;

Az ¼ Φ=ξ2; γ ¼ R2=ξ2; ð17Þ
where σ is the mass-energy density per unit cross sectional
area of the beam. The gravomagnetic induction in this
metric is

Bk ¼ ðcurlAÞk ¼ ϵklm∂lAm ¼ ½0;−κσ=ξ3; 0�: ð18Þ
Here ϵklm is the alternating tensor that contains the factor
γ−1=2. The usual gravitational acceleration is given by
E ¼ −∇ ln ξ. [1] building on the work of [21] showed that
in stationary spaces the gravomagnetic field, Hk ¼ ξ3Bk,
obeys an equation analogous to Maxwell’s curlH ¼ 4πj
to wit

ðcurlHÞk ¼ −2κξTk
0; ð19Þ

so for the metric above, Hk ¼ ð0;−κσ; 0Þ which is purely
toroidal as is appropriate for a current along ẑ. It is here
treated as a 3-vector. In relativity Hk is often called the

twist vector. In terms of the Killing vector ξμ,
Hκ ¼ −ϵκλμνξλ∇μξν, Hk consists of the spatial components
of that 4-vector. Since ξκHκ ¼ 0, Hk determines the
4-vector. As we shall see later we are actually using axes
that rotate at infinity so the Killing vector being used here is
helical at large distances. With respect to the Killing vector
that has no curl at infinity there is a toroidal current too
which leads to an extra H field.
Bonnor’s fine papers do not start from the Einstein-

Maxwell equations. Instead [7] treats unpolarized light as
null dust and his [8] generalizes this to some sort of spinning
null fluid which he believed to have some relationship to a
neutrino field. By contrast van Holten [3] starts from the
exact Einstein-Maxwell equations but unlike Bonnor he is
interested in infinite waves that are of uniform amplitude
perpendicularly to the wave vector rather than being con-
fined to a beam. Since the edge is missing there is no angular
momentum in these solutions; indeed they give the internal
solution that we seek for a uniform beam, but need
modification for application to a beam with a non-uniform
amplitude E0ðRÞ. In [8] Bonnor gives a metric which has
sufficient generality to solve our problem. However he does
not give an interpretation of the physical meaning of his free
functions or show how to specialize them to be the metric of
a circularly polarized light beam that satisfies the Einstein-
Maxwell equations.We do this here. In fact Bonnor’s results
are considerably more general than those needed here. His
beams (and van Holten’s) can be of finite length so they lack
helical and ∂=∂z symmetry and although he is concerned
with a beam that carries angular momentum, he does not
specialize to axial symmetry and is therefore forced to
consider angular momentum in the weak field approxima-
tion. Beams of circularly polarized light do not have ∂=∂z or
∂=∂φ symmetries in their electromagnetic fields which have
only helical and null vector symmetries, however the
Maxwell stress tensor of their electromagnetic fields have
∂=∂t, ∂=∂φ, and ∂=∂z symmetries which therefore hold for
the gravity of our circularly polarized beam. There are many
other examples of electromagnetic fields that do not inherit
all the symmetries of the space-time they generate. These
symmetries do not hold for the stress tensors of linearly or
elliptically polarized beams and hold only approximately for
unpolarized beams.
In what follows ourΦðRÞ (and van Holten’s) is Bonnor’s

A, our ψ is
ffiffiffi
2

p
times that of Bonnor. Thus we write ψ=

ffiffiffi
2

p
where Bonnor writes ψ . Also our u and v are

ffiffiffi
2

p
times

those of Bonnor, so our u ¼ t − z; v ¼ tþ z, dudv ¼
dt2 − dz2. Denoting the derivative of ψðRÞ by ψ 0 his metric
in our notation is

ds2 ¼ −dR2 − R2dφ2 þ dudvþΦdu2 − Rψ 0dφdu; ð20Þ

where the functions Φ, ψ depend on R only. Comparing
this to van Holten’s exact Einstein-Maxwell wave which
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has the form (16) we conclude that ψ is zero for the infinite
uniform wave, so in the slowly varying approximation ψ 0 is
small and will be neglected when multiplied by E0

0. We also
neglect E00

0 and ðE0
0Þ2; as in the purely electromagnetic case

of Sec. II. The metric (20) does not depend on v which is an
affine parameter along the null rays ðR;φ; uÞ ¼ const. The
null vector lμ is Killing with only the component lv non-
zero. It obeys Dαlβ ¼ 0, so it is covariantly constant. The
metric (20) belongs to the well-known class of pp—waves
characterized by a nontwisting, nonexpanding, and non-
shearing geodesic null congruence generated by the vector
field lμ, see [22]. We require a solution of the Einstein-
Maxwell equations

DμFμν ¼ 0; ϵμνκλDνFκλ ¼ 0;

Gμν ¼ −
κ

4π

�
FμλFν

λ −
1

4
gμνF2

�
: ð21Þ

The second equation in (21) is automatically satisfied by
Fμν ¼ ∂μAν − ∂νAμ and in ðt; x; y; zÞ coordinates we take
A in the complex 4-vector form ð0;AcÞ as given in (4).
However we shall need this in ðR;φ; u; vÞ ¼ ðx1; x2; x3; x4Þ
coordinates in which it is k−1ð−iE0=k; E0R=k;− 1

2
E0
0=

k2; 1
2
E0
0=k

2Þ expðiφ − ikuÞ. With the metric (20) we find
g ¼ − 1

4
R2 and

gμν ¼ −1 0 0 0

0 −1=R2 0 −ψ 0=R

0 0 0 2

0 −ψ 0=R 2 Φ�; Φ� ¼ −ð4Φþ ψ 02Þ:

ð22Þ

From A we have the antisymmetric field tensor Fμν where

Fμν exp½−iφþ iku� ¼ 0 E0
0R=k E0 0

0 iE0R 0

0 − 1
2
iE0

0=k

0 :

ð23Þ

Using gμν to raise the indexes we find the contravariant
components

F12eiku−iφ ¼ E0
0

kR
; F13 ¼ 0;

F14eiku−iφ ¼ ψ 0E0
0

k
− 2E0; F23 ¼ 0;

F24eiku−iφ ¼ −2iE0=R; F34eiku−iφ ¼ þ2iE0=k: ð24Þ

Since Fμν is antisymmetric the first equation (21) becomes

DμFμν ¼ ð2=RÞ∂μ

�
1

2
RFμν

�
¼ 0: ð25Þ

For F given by (24), E0
0 is small and kR is large so their

ratio is neglected. The only surviving equation is that with
ν ¼ 4 which yields

E0
0k

−1ðψ 00 þ 2ψ 0=RÞ ¼ 0; ð26Þ

in which both terms are neglected in the slowly varying
approximation and are exactly zero when the beam is
uniform. Thus the Maxwell equations are satisfied in the
curved space-time. The solution is exact for the uniform
wave even when ψ is present in the metric. We now turn to
the Einstein equations. Since these are nonlinear in Fμν we
first put it into the real form using cos½φ − ku� etc. We then
find both F2 ¼ 0 ¼ FF� and

4πTμν ¼ FμσFσ
ν ¼ 0 0 0 0

0 0 RE0E0
0=k 0

0 RE0E0
0=k E2

0 0

0 0 0 0:

ð27Þ

Bonnor gives the Tμν corresponding to his metric (20) but
with x, y replacing R, φ and with the notational changes
given earlier. Putting his result in our notation, using for
instance Tuu ¼ 1

2
½Tuu�Bonnor, we find his stress tensor has

the form of Eq. (27) with

κTuu ¼
1

2

�
∇2Φþ 1

4
ð∇2ψÞ2

�
¼ 2GE2

0;

κTφu ¼ κTuφ ¼ −
1

2
R∂R∇2ψ ¼ 2GRE0E0

0=k: ð28Þ

This establishes that Bonnor’s metric can be specialized to
correspond to the gravity of a circularly polarized electro-
magnetic beam in the high frequency limit. In what follows
we treat the metric (20) with (27) as source exactly. We
shall no longer throw away the small terms. Thus while the
electrodynamics of a finite beam has to be done approx-
imately (just as the solution of Maxwell’s equations for a
beam in flat space is approximate), the ensuing gravita-
tional calculation will give the exact metric of the approxi-
mate stress tensor. The approximation becomes exact in
both the high frequency limit and for the uniform beam of
infinite cross section. We perform the integrations under the
boundary condition that Rψ 0 should not diverge at infinity.
We then integrate the second equation of (28) to give

∇2ψ ¼ −2G½E0ðRÞ�2=k;

ψ ¼ −2G
Z

R

0

�
1

kR

Z
R

0

E2
0RdR

�
dR: ð29Þ
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Now 1
2

R∞
0 E2

0RdR is the total energy flux S in the beam,
ignoring its self-gravity, so the ψ of Eq. (29) is only
logarithmically divergent at large R. The first of (28) gives

Φ ¼ G
Z

R

0

�
1

R

Z
R

0

ð4E2
0 − GE4

0=k
2ÞRdR

�
dR; ð30Þ

which is logarithmically divergent too. The formulae above
give the metric for a circularly polarized beam of any
profile. They satisfy the boundary conditions of Sec. III.

A. An alternative metric with a different
boundary condition

The metric above has ψ ¼ − 1
2
GE2

0R
2=k for a uniform

beam whereas van Holten’s exact solution has it identically
zero. If in place of the boundary condition used above we
ask that ∇2ψ ¼ 0 on axis then from the second equation of
(28) we see that

∇2ψ ¼ 2GΔk; Δ ¼ ½E2
0ð0Þ − E2

0ðRÞ�: ð31Þ

Notice that Δ ¼ 0 inside a homogeneous but finite beam.
Integrating twice we find

ψ ¼ 2G
Z

R

0

�
ðkRÞ−1

Z
R

0

ΔRdR
�
dR: ð32Þ

Integrating the first of (28)

Φ ¼ 4G
Z

R

0

�
1

R

Z
R

0

�
E2
0 −

1

4
GΔ2=k2

�
RdR

�
dR: ð33Þ

For reasons that will become clear we shall write this new
metric with ~φ where we previously wrote φ because they
turn out to be different. The new forms of Φ and ψ give
an alternative metric for any circularly polarized beam.
Outside the beam E0ðRÞ drops to zero butΔ ¼ E2

0ð0Þ. Thus
asymptotically ψ → 1

2
GE2

0ð0ÞR2=k and the term in the
metric (20) becomes −2ψd ~φdu which has both a divergent
d ~φdt and a divergent twist term d ~φdz. If we set φ̂ ¼
~φþΩt with Ω ¼ ψ=R2 ¼ 1

2
GE2

0ð0Þ=k, then the rotation at
large R would be eliminated. Thus the ~φ used in this
alternative metric was actually an angle defined relative to
axes that rotate at infinity and the φ̂ angles are the
nonrotating ones. However that transformation would still
leave a divergent twist term in the external metric. There is
nevertheless an advantage in this alternative metric because
for a uniform beam it gives Δ ¼ 0 ¼ ψ within the beam so
it agrees with van Holten’s exact solution and shows that
our conjecture at the start of Sec. IV has proved true. Thus
we have demonstrated that van Holten’s solution when
considered as the limit of a finite beam is actually in
rotating axes and furthermore outside the finite beam the
metric diverges like R2 so it does not obey the boundary

condition at large R. The Killing vector η̂ ¼ ∂φ̂ obeys the
regularity conditions at the axis so φ̂ can be identified with
the azimuth everywhere not just at large R, but that would
leave the very divergent twist term in the metric at large R
which is unacceptable. We now have two different metrics
of the form (20), given by (29)þ(30) and (32)þ(33),
describing almost the same physical situation, so we expect
that they must be connected by a coordinate transformation.
This is indeed true. If we write the first metric in terms of φ
and then set

φ ¼ ~φþ Ωu; ð34Þ

where Ω ¼ − 1
2
GE0ð0Þ2=k, we get the second form of the

metric. For uniform beams this transformation simplifies
the internal metric by eliminating the Rψ 0 terms. However
if we require that φ be continuous, as any true azimuth must
be, then it forces us into the unacceptably divergent form of
the external metric. These difficulties of interpretation arise
from the fecundity of a system with three different Killing
vectors. The solutions of Einstein’s local differential
equations do not distinguish which combinations of
φ; t; z are to be interpreted as the true angle about the
axis, true time, and true coordinate along the axis. That
interpretation comes from our imposition of the appropriate
boundary conditions. In summary Van Holten’s metric is
perfectly good within the beam but it cannot be extended to
large R outside a finite beam while keeping a continuous
azimuthal angle. We shall show shortly how to amend it to
avoid this problem.

V. LIGHT BEAMS WITH SPECIFIC PROFILES

All these beams have metrics of Bonnor’s form (20) or in
cylindrical polars

ds2 ¼ ð1þΦÞdt2 − ½Rψ 0dtdφþ 2Φdtdzþ dR2

þ R2dφ2 − Rψ 0dφdzþ ð1 −ΦÞdz2�; ð35Þ
whereΦ and ψ are functions of R, dependent on the beam’s
profile. The metric can also be written in the Landau and
Lifshitz form

ds2 ¼ ð1þΦÞðdt−Aφdφ−AzdzÞ2− γkldxkdxl;

Aφ ¼
1

2
Rψ 0=ð1þΦÞ; Az ¼Φ=ð1þΦÞ;

γ11 ¼ 1; γ22 ¼R2

�
1þΦþ 1

4
ψ 02

�
=ð1þΦÞ;

γ23 ¼−
1

2

Rψ 0

1þΦ
; γ33 ¼

1

1þΦ
; γ ¼ R2

1þΦ
: ð36Þ

The usual gravitational acceleration is given by the 3-vector

ER ¼ −
1

2
Φ0R̂=ð1þΦÞ; ð37Þ
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the gravomagnetic induction is given by the 3-vector

BR ¼ 0; Bφ ¼ −γ−1=2∂RAz; Bz ¼ γ−1=2∂RAφ;

ð38Þ

and the lines of gravomagnetic force by

Hφ

Hz ¼
Bφ

Bz ¼ −
∂RAz

∂RAφ
¼ dφ

dz
; ð39Þ

where we remember that H ¼ ξ3B. In what follows it is
convenient to set the dimensionless

s ¼ ðR=aÞ2; μ ¼ G½E0ð0Þ�2a2: ð40Þ

A. The uniform beam of radius ’a’

The first form of the metric is given by (20) with ψ andΦ
given in (29) and (30). Then the uniform beam has

ψ ¼ −
1

2
μs=k; Φ ¼ μs

�
1 −

1

4
μ=ðkaÞ2

�
; R ≤ a;

ψ ¼ −
1

2
ðμ=kÞð1þ ln sÞ; R ≥ a;

Φ ¼ μ

�
1 −

1

4
μ=ðkaÞ2

�
½1þ ln s� R ≥ a: ð41Þ

In this form of the metric Φ and ψ only diverge logarithmi-
cally as does the Newtonian potential of a rod. Notice
however that ψ 0 is not zero outside the beam. Thus the twist
caused by the transport of angular momentum along the
beam is still detectable in the external metric. Setting
Q ¼ μ½1 − 1

4
μ=ðkaÞ2�, the gravomagnetic field is

HR ¼ 0; Hφ ¼ −2∂sΦ=a2 ¼ −2Q=a2; R ≤ a;

Hφ ¼ −2Q=ða2sÞ; R ≥ a;

Hz ¼ −
μ

ka2
; R ≤ a; Hz ¼ μ

ka2
Q=s; R ≥ a:

ð42Þ

The gravity field is radial and given by (37) with the newΦ.
The gravomagnetic lines of force are helices

dφ=ðkdzÞ ¼ 2Q=μ ¼ 2

�
1 −

1

4
μ=ðkaÞ2

�
; R < a;

dφ=ðkdzÞ ¼ −2=μ; R > a: ð43Þ

These should be compared with the helix formed by the
electric field with dφ=ðkdzÞ ¼ −1. Evidently the internal
gravomagnetic field has its helix twisted in the opposite
sense and with nearly twice the number of turns per unit
height, while the external gravomagnetic helix is wound in

the same sense as the electrical one but with many more
turns per unit height. This external field is illustrated
in Fig. 1.
In the second form of the metric

ψ ¼ 0; Φ ¼ μs; R ≤ a;

ψ ¼ 1

2

μ

k
ðs − 1 − ln sÞ; R ≥ a;

Φ ¼ μ

�
1þ ln s −

1

4

μ

ðkaÞ2 ðs − 1 − ln sÞ
�
; R ≥ a: ð44Þ

Notice that both Φ and ψ diverge like s at large axial
distance. Because we change to use the timelike Killing
vector of the internal space, the gravomagnetic field also
changes to, in relativist’s components,

Hφ ¼ −Φ0=R ¼ −2μ=a2; HR ¼ Hz ¼ 0; R < a;

HR ¼ 0; Hφ ¼ −2
μ

a2

�
1 −

μ

4ðkaÞ2 ðs − 1Þ
�
; R ≥ a;

Hz ¼ μ

ka2

�
1þ μ

�
1þ ðln s − 1þ 1=sÞ

�
1þ μ

4k2a2

���
;

ð45Þ

with the purely radial gravity given by (37). The frame φ
component is R times the relativist’s component and

FIG. 1. The internal electric field of the circularly polarized
beam of light is shown by the horizontal black arrows. The
resulting external gravity by the inward radial arrows and a
gravomagnetic field line by the outer spiral.
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therefore diverges at infinity. The constant Hφ inside the
beam corresponds to a physical component that grows like
R. This is expected by Ampere’s law for a uniform vertical
current density. The vanishing ofHz inside is related to the
fact that inside a rotating cylindrical shell space-time is flat,
but the inertial frame rotates relative to infinity. Inertial
frames that have no rotation at infinity are more physical. In
these we use a different Killing vector so the gravomagnetic
field is not the same. In the form of the metric above both ψ
and Φ diverge as OðR2Þ at infinity.

B. Smoothly varying beams

We choose Ga2E2
0ðRÞ ¼ μ=½1þ sn�. This is so con-

structed that it becomes the uniform beam as n → ∞,
but varies smoothly for finite n. We define for 0 ≤ s ≤ 1

F1ðsÞ ¼ s − s2=22 þ s3=32 − � � �≐s −
α1s2

β1 þ s
;

β1 ¼
1 − π2=12

1þ ln 2 − π2=6
− 1 ¼ 2.6822;

α1 ¼ ðβ1 þ 1Þð1 − π2=12Þ ¼ :65371; ð46Þ

and

F2ðsÞ ¼
Z

s

0

s−1 lnð1þ sÞds ¼ F1ðsÞ; s ≤ 1;

F2 ¼ π2=12þ 1

2
ðln sÞ2 þ ln 2 − F1ð1=sÞ; s ≥ 1:

ð47Þ

Then for n ¼ 1;ψ ;Φ are given by

ψ ¼ −
1

2
ðμ=kÞ

Z
s

0

s−1 lnð1þ sÞds ¼ −
1

2
μF2ðsÞ=k;

Φ ¼ μF2ðsÞ −
1

4
½μ=ðkaÞ�2 lnð1þ sÞ: ð48Þ

For large n we have likewise

ψ ¼ −
1

2
ðμ=kÞs½1 − n−2F1ðsnÞ; s ≤ 1

¼ −
1

2
ðμ=kÞ

�
1 −

π2

6n2
þ
�
1þ π2

6n2

�
ln sþ s

n2
F1ðs−nÞ

�
;

s ≥ 1; ð49Þ

Φ ¼ μs

�
1 −

F1ðsnÞ
n2

�

−
μ2

4k2a2
s

�
1 −

½snF1ðsnÞ þ lnð1þ snÞ�
n2

�
s ≤ 1

¼ μ

�
1 −

π2

6n2
þ
�
1þ π2

6n2

�
ln sþ s

n2
F1ðs−nÞ

�

−
μ2

4k2a2
F3; s ≥ 1;

F3 ¼ 1þ ln sþ ðπ2
6
− ln 2Þ ln s − π2

6

n2

þ s½F1ðs−nÞ − lnð1þ s−nÞ�
n2

: ð50Þ

VI. KOMAR INTEGRALS FOR CONSERVED
QUANTITIES OF STATIONARY

CYLINDRICAL SYSTEMS

Here we consider cylindrical systems which are invariant
under the triple reversal t → −t, z → −z, φ → −φ so the
metric has no cross terms involving dR and all the metric
coefficients are functions of R alone. There are then three
Killing vectors ξμ, ημ, ζμ corresponding to shifts in the
t;φ; z coordinates. From any vector field Vμ we can
construct antisymmetric tensors and their symmetric coun-
terparts

Fμν ¼
1

2
ð∂μVν − ∂νVμÞ ¼

1

2
ðDμVν −DνVμÞ;

Kμν ¼
1

2
ðDμVν þDνVμÞ: ð51Þ

Evidently

DνDμVν ¼ DνðKμν þ FμνÞ ¼ DμDνVν þ RμνVν: ð52Þ

Thus

DνFμν ¼ RμνVν −DνðKμν − gμνKÞ; K ¼ Kμ
μ: ð53Þ

For any Killing vector or much more generally for any
vector field that satisfies DνðKμν − gμνKÞ ¼ 0, we define a
current with a minus sign only if Vμ is timelike. Inspection
of the Tμ

νVν term shows that this choice of sign gives the
fluxes in the right sense, hence

�jμ ¼ ð1=κÞDνFμν ¼ ð1=κÞRμ
νVν ¼ −

�
Tμ
ν −

1

2
δμνT

�
Vν

;ð54Þ

and since Fμν is antisymmetric,
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�κDμjμ ¼ DμDνFμν ¼ ð1= ffiffiffiffiffiffi
−g

p Þ∂μ∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0:

ð55Þ

Integrating over the 4-volume defined by 0 ≤ t ≤ 1,
0 ≤ z ≤ 1, 0 ≤ φ ≤ 2π, 0 ≤ R ≤ ∞, we get surface inte-
grals of jμ over the three dimensional faces of the 4-
volume. Now provided Vμ satisfies the symmetries of the
space (as it certainly will do if it is Killing) then the flux of
jμ through the two faces with t ¼ constant will be equal
and opposite as the normal points out of the 4-volume of
integration. Thus the fluxes in the direction of increasing t
will be equal and give in ðt; R;φ; zÞ coordinates
Z

1

0

Z
∞

0

Z
2π

0

�j0
ffiffiffiffiffiffi
−g

p
dφdRdz ¼ 2π

κ

Z
∞

0

∂Rð
ffiffiffiffiffiffi
−g

p
F01ÞdR

¼ 2π

κ
½ ffiffiffiffiffiffi

−g
p

F01�j∞: ð56Þ

Likewise the flux through the two faces z ¼ constant are
equal and opposite and if evaluated in the direction of
increasing z give

Z
1

0

Z
∞

0

Z
2π

0

�j3
ffiffiffiffiffiffi
−g

p
dφdRdt ¼ 2π

κ

Z
∞

0

∂Rð
ffiffiffiffiffiffi
−g

p
F31ÞdR

¼ 2π

κ
½ ffiffiffiffiffiffi

−g
p

F31�j∞: ð57Þ

We shall apply this Komar technique to the currents jμðξÞ,
jμðηÞ, j

μ
ðζÞ, formed from each of the Killing vectors, ξμ, ημ, ζμ.

Notice that the currents �jμ ¼ −ðTμ
ν − 1

2
δμνTÞVν are not

currents of the stress tensor itself but Tμ
ν has twice its trace

removed to make a trace-reversed stress tensor. Related to
this, Komar finds that jμðξÞ must be multiplied by 2 to give

the mass, and his formula agrees with Tolman’s. This is a
reflection of the fact that T0

0 −
1
2
ðT0

0 þ Tk
kÞ ¼ 1

2
ðT0

0 −
Tk
kÞ; ðk ¼ 1; 2; 3Þ and Komar’s factor 2 is needed to cancel

out the resultant 1
2
. No such factor is needed for jμðηÞ which

yields the angular momentum because the trace term 1
2
Tgμν

is not involved. We find below that Komar’s formula for the
mass per unit length of a light beam, which has no T, gives
twice the mass, so his factor two, which was compensating
for the removal of half of T0

0 by − 1
2
T, is not needed when

we deal with systems without a trace of Tμ
ν . Wherever the

Killing vector is in the direction of the surface over which
the flux is evaluated any nonzero trace T affects the result.
In other cases it does not because the contribution to the
integral from the trace is zero. For the special case of energy
Komar gives his extra factor 2 which is the correct
adjustment for most stationary cases but, as we shall
see, is wrong for a light beam which needs no such
adjustment because T ¼ 0. However if the Tolman-
Komar mass is not thought of as the energy content but
as the gravitating power then it is always right since the

beams with T ¼ 0 gravitate twice as strongly per unit
energy as rods with there same T0

0.

A. Application to light beams

To define mass or any other quantity per unit length we
need a definition of what we mean by unit length. For
systems with a regular axis we introduce a coordinate time
equal to the proper time there. In that spirit we introduce a
local coordinate along the axis equal to the proper length
there.We demand that the axially symmetric coordinate z be
orthogonal to t andR everywhere. This allows us to extend z
away from the axis to the rest of space. We may now talk of
quantities measured per unit coordinate length. To apply the
Komar techniquewe need the inversemetric to (35) which is
g00¼1−Φ−1

4
ψ 02, g01¼0¼g12¼g13, g02 ¼ − 1

2
ψ 0=R ¼ g23,

g03 ¼ −Φ, g22 ¼ −1=R2, g33 ¼ −ð1þΦþ ψ 02Þ, and the
determinant g ¼ −R2. From jμðξÞ and Eq. (30) we obtain the
mass per unit length, M, and the mass flux

M ¼ π

κ
½RΦ0�j∞ ¼

Z
∞

0

½E0ðRÞ�2
4π

�
1 −

G½E0ðRÞ�2
4k2

�
2πRdR:

ð58Þ

The 4π is due to the fact that the electric and magnetic fields
have equal magnitude. The term with G is due to the self-
gravitation of the electromagnetic beam. Noticewe have not
used the formula advocated by Komar who uses 2jμðξÞ for the
mass flux vector. His formula applied to this beam yields
twice themass per unit length. It is of interest that the gravity
field flux vector Dμ ¼ ξEμ ¼ ∇ξ, with ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þΦ
p

so the
gravitational flux toward the cylinder is −

R
D:dS ¼

16πGM per unit length. Again twice the true mass per unit
length. In this sense the energy in a light beam produces
twice the gravity of the energy in a static cylinder. The mass
flux,FM, is c times (58) which is no surprise since thewhole
beam moves at that speed. Of course this is not the case for
the rotating or the torqued cylinder considered later which
have no mass flux along the cylinder. From jμðηÞ we get the
angular momentum per unit length

J ¼ −ðπ=κÞ½Rψ 0�j∞ ¼ k−1
Z

∞

0

ð8πÞ−1½E0ðRÞ�22πRdR:

ð59Þ

Again the angular momentum flux along the cylinder FJ is
just cJ. Finally from jμðζÞ we get the momentum per unit

length, P, and its flux FP, the integral of the light pressure
across the beam which are hardly surprisingly P ¼ Mc and
Mc2.The fact that these expressions are so closely related to
the energy is again due to the whole system moving at c
which ensures thatE ¼ Pc. A useful check on our result that
the Komar formula with his factor two which is correct for
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static cylinders gives twice the correct value for beams of
light is provided by Bonnor’s work on unpolarized light.
Equation (5.1) of [B1] gives Bonnor’s A our Φ ¼
8M lnðR=aÞ where M is the mass per unit length; if we
use the current 2jμðξÞ as advocated by Komar, we find

Komar’s formula gives 2πRΦ0=κ ¼ 2M. Thus for these
systems which have no trace T we get the right mass using
jμðξÞ without the factor 2.

B. Rotating waves and rotating cylinders

At the end of Sec. IV we concluded that van Holten’s
metric needed modification if it was to be considered as the
limit of a metric of a laterally finite beam with a continuous
azimuth. If we call his azimuth ~φ, all we have to do is to
apply the transformation (34) and rewrite his metric in
terms of φ instead. This of course introduces a dφdz term
so the modified metric is of the form (20) with the new
internal metric given by (41). While this looks more
divergent at large R than van Holten’s original, this form
only holds at R ≤ a where the external forms takes over.
Rψ 0 then converges so the only divergent terms in the
external metric are those involving the logarithmically
divergent Φ. These obey our boundary conditions.
The metric outside a rotating cylinder of radius b is

ds2 ¼ ξ2ðdt2 −AdφÞ2 − ξ−2½e2kðdR2 þ dz2Þ þ R2dφ2�:
ξ2 ¼ ½1 − ω2b2ðR=bÞ2m�; ek ¼ CðR=bÞm2

;

A ¼ −ωb2=ð1 − ω2b2Þ. ð60Þ

See e.g. [1] but note the sign change in the definition
of A and that the R used here is not the length of the
∂=∂φ Killing vector. The contravariant metric reads
gtt ¼ ξ−2 − ξ2A2=R2, gtφ ¼ −ξ2A=R2, gφφ ¼ −ξ2=R2,
gRR ¼ gzz ¼ −ξ2e−2k and

ffiffiffiffiffiffi−gp ¼ RC2ðR=bÞ2m2

ξ−2. From
jμðηÞ and the Komar expressions above we find the angular

momentum per unit coordinate length of cylinder to be

J ¼ ð2π=κÞð−AÞð1 − 2mÞ: ð61Þ

Precisely the same result follows from Bondi’s definition of
angular momentum in cylindrical systems [23]. This
definition is based on a quantity that remains conserved
during slow changes of a cylindrical system and is
apparently unrelated to Komar’s flux integrals. It therefore
adds physical reality to Komar’s definition. With no dφdz
terms in the metric jμðηÞ has no component along z so as

expected there is no flux of angular momentum, FJ, along
cylinders in rotation that carry no torque. Inside a rotating
cylindrical shell of matter space-time is flat. However if the
normal flat metric is fitted to an external one with a
continuous φ then the external metric is in rotating axes
and fails to obey our boundary conditions at large R. The
external metric (60) obeys our boundary conditions; it fits

the internal flat space metric when the latter is written in
rotating coordinates. The timelike Killing vector is not the
same as in that of the nonrotating flat space. Indeed the new
gravomagnetic field B is confined within the cylinder like
the magnetic field of a long solenoid and it vanishes outside
the cylinder since A in (60) is constant. However the flux
through the cylinder is detectable externally through the
interference of either electromagnetic or gravitational
waves. As noted by many authors, this gives a purely
classical analogue of the quantum Bohm-Ahanarov effect
in electromagnetism.

C. Stressed cylindrical shells

A static cylinder of radius b under longitudinal stress has
no momentum but it carries a flux of linear momentum due
to its stress. The flux vector of interest here is jμðζÞ and its

flux through a constant z surface. However we must again
take care here because the stress (¼ momentum flux) that
we wish to measure comes from Tμν alone while the Komar
integral will give us that plus a contribution from − 1

2
gμνT.

The external metric can be put in the form [1] equation (2.7)

ds2 ¼ ρ2nmdt2 − ½n2C2ρ2nm
2

dR2 þ R2dφ2 þ ρ−2mdz2�;
n ¼ 1=ð1 −mÞ; ρ ¼ R=b; ξ ¼ ρnm: ð62Þ

Alternatively the metric may be taken in the form given by
[24] but notice that they use an R that is not the length of the
Killing vector η. Both give the same result. The Komar flux
per unit coordinate length is Fζ ¼ 2πmð1 −mÞ=ðκCÞ. If we
want the total stress we must add to this 2π

R
∞
0

1
2
Tζ

ffiffiffiffiffiffi−gp
dR.

We cannot evaluate this using Komar integrals alone nor
can we evaluate it using the asymptotic metric. Wewrite the
metric everywhere in the form

ds2 ¼ e−2ψdt2− e2ψ ½e2ðζ−αÞdR̄2þ R̄2dφ2þ e2ζdz2�; ð63Þ

where ψ , ζ and α are zero at R ¼ 0 to ensure a regular axis
with z measuring proper distance along it. Notice that the
metric outside the body where α is constant can be put into
Weyl form only by changing z by a constant factor, and
ψ ¼ −m lnðR̄=aÞ, ζ ¼ m2 lnðR̄=bÞ there. Adding the GR

R
and the Gz

z components of Einstein’s equations and
multiplying by

ffiffiffiffiffiffi
−ḡ

p
, we find, writing a prime for d=dR̄

ðeαÞ0 ¼ κðpR
R þ pz

zÞ
ffiffiffiffiffiffi
−ḡ

p
: ð64Þ

For shells pR
R ¼ 0 so integrating and multiplying by 2π=κ

the momentum flux is

FP ¼ 2πðeα − 1Þ=κ: ð65Þ

This gives us directly what we want but the method only
works when pR

R ¼ 0 which is true for shells but is not
generally true for static cylinders. It is of interest to see how

D. LYNDEN-BELL and J. BIČÁK PHYSICAL REVIEW D 96, 104053 (2017)

104053-10



stress affects the energy per unit length which is given via
the flux of 2jμðξÞ through a constant t surface. This gives

M ¼ 4πm=ðκCÞ where the m is that of Levi-Civita. In the
classical limit (C ¼ 1) this gives the right result. It is also
exactly the mass as given by the flux of gravitation
D ¼ −ξ∇ ln ξ. This gives a flux per unit length of cylinder
of −

R
D:dS ¼ 4πm=C.

VII. THE TORQUED CYLINDER PARTIALLY
UNTWISTED

The problem reconsidered here is a static cylindrical
shell that carries a torque. As explained earlier [1,2] such a
system, though static, caries a flux of positive angular
momentum upward which is the same thing as a flux of
negative angular momentum downwards. It does this via a
characteristically twisted external metric with a dφdz
term. The flat metric inside was taken to be the usual
ds2 ¼ dt2 − ½dR2 þ R2d ~φ2 þ dz2�, and defining l1 ¼
ρ−2mcos2αþ ρ2sin2α, l2 ¼ ρ−2msin2αþ ρ2cos2α, the
external metric given in those papers is given by

ds2 − ρ2nmdt2 ¼ −½n2C2ρ2nm
2

dR2 þ l2b2d ~φ2

þ b sin 2αðρ−2m − ρ2Þd ~φdzþ l1dz2�
¼ −½n2C2ρ2nm

2

dR2 þ ρ2ðh1Þ2 þ ρ−2mðh2Þ2�;
h1 ¼ b cos αd ~φ − sin αdz;

h2 ¼ b sin αd ~φþ cos αdz ð66Þ

which is divergent at large R. However we can define a new
azimuth φ ¼ ~φ − z tan α in terms of which the metric obeys
the boundary conditions for cylindrical systems stated
above. The external metric then becomes

ds2 ¼ ρ2nmdt2 − ½n2C2ρ2nm
2

dR2 þ R2cos2αdφ2

þ ρ−2mðb sin αdφþ secαdzÞ2�: ð67Þ

While this is fine and good the requirement that the azimuth
be continuous with that of the internal metric forces us to
make the same transformation there so the internal metric
becomes

ds2 ¼ dt2 − ½dR2 − R2ðdφþ tan αdzÞ2 þ dz2� ð68Þ

While we can see that this is a flat metric and check that φ
obeys the conditions required for an azimuth on axis
nevertheless, it is disturbing to find that the surfaces of
constant azimuth twist up around the z axis at finite R < b
in the flat internal space. We are here forced to give up at
least one of our ideas of what an azimuth should be.
(1) it should be continuous as we move in both R and z.
(2) in a flat space the surfaces of constant φ and z should

be orthogonal.

(3) it should measure angle around the axis at both small
and large R.

To demonstrate that this form of static metric does indeed
carry a flux of angular momentum we now calculate
−π ffiffiffiffiffiffi−gp

F31
ðηÞ from jμðηÞ in the metric (66).The contravariant

metric is gtt¼ρ−2nm, gRR¼−n−2C−2ρ−2nm2, gφφ ¼ −1=
ðR2cos2αÞ, gφz ¼ −bR−2 tan α, gzz ¼ −ðρ2mcos2αþ
R−2b2sin2αÞ and

ffiffiffiffiffiffi−gp ¼ nCRρnmð1þmÞ−m. We deduce an
angular momentum flux

FJ ¼
1

2
πð1 −m2Þb sin 2α=ðκCÞ: ð69Þ

VIII. CONCLUSIONS

(i) We have expanded the use of Komar integrals for
cylindrical systems and shown that a flux of angular
momentum can be determined from the metric at
large distances. This is also true of the energy flux
but the momentum flux can be so determined only if
T ¼ 0. Otherwise it can not be determined from the
asymptotic metric. We have cast some light on why
Komar had to multiply the flux vector made from ξ
by a factor two to obtain the mass in agreement with
Tolman’s result [25], but no such factor was needed
for the angular momentum flux made from η. If we
think of the Toman-Komar formula as giving an
effective gravitating mass then we may regard it as
always correct.

(ii) Bonnor was right; his metric can be specialized to
that for any circularly polarized beam of light. We
have determined his free functions in terms of the
electric field and found the angular momentum flux
carried by the beam.

(iii) The nice metric for the infinite beam found by van
Holten is seen to be in rotating axes when it is
considered as the limit of a finite beam, and we have
modified it to obey the boundary conditions of that
application.

(iv) We have amended the metric of the torqued static
cylindrical shell by a coordinate transformation and
demonstrated that it carries an angularmomentum flux.
However the amendment is not without some damage
to our concept of what is meant by an azimuthal angle,
φ. Perhaps even more challenging is the cylindrical
NUT space discovered by Nouri-Zonoz [26].
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