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Abstract
We elucidate the dynamics of a thin spherical material shell with a tangential 
pressure, using a new approach. This is both simpler than the traditional 
method of extrinsic curvature junction conditions (which we also employ), 
and suggests an expression for a ‘gravitational potential energy’ of the shell. 
Such a shell, if slowly spinning, can rotationally drag the inertial frames within 
it through a finite angle as it collapses and rebounds from a minimum radius. 
Rebounding ‘spherical’ and cylindrical pulses of rotating gravitational waves 
were studied previously. Here we calculate their angular momentum and show 
that their rotational frame dragging is in agreement with that of the rotating 
spherical shell and a rotating cylindrical dust shell. This shows that Machian 
effects occur equally for material and analogous ‘immaterial’ sources.

Keywords: gravitational waves, thin shells, frame-dragging, Schwarzschild, 
Kerr, Mach’s principle, gravitomagnetism

(Some figures may appear in colour only in the online journal)

1.  Introduction

Pfister gave a brief summary of the history of the gravitomagnetism in [1]. In 1995 Ciufolini 
and Wheeler published the monograph, [2], on various aspects of gravitomagnetism and on 
the origin of inertia within general relativity.

Various interpretations of Mach’s principle were summarized comprehensively in an excel-
lent book, [3], which contains talks and includes also discussions from the 1993 Tuebingen 
conference.
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The statement of Mach’s principle which we use is that the local inertial frame at any event 
is determined by some average of the distribution of energy and momentum. We demonstrated 
how this formulation acquires concrete mathematical content in our study of linear perturba-
tion of closed universes, [4], and of Friedmann–Robertson–Walker universes with any curva-
ture and cosmological constant, [5].

However, the first-order perturbation theory could not reveal the influence of gravitational 
waves. The question of whether and how some (averaged) stress tensor of gravitational waves 
influences local inertial frames remained unclear for long time. Going back to the origins, 
Einstein wrote in 1917, [6, 7], when he already knew about gravitational waves: ‘In a con-
sistent theory of relativity there can be no inertia relatively to ‘space’, but only an inertia 
of masses relatively to one another...’. The idea that the metric tensor and thus inertia in a 
Machian solution of general relativity might be determined completely by the distribution of 
the energy-momentum tensor of matter, with no contribution from gravitational waves was 
explored in the late 60s in the independent works by Al’tshuler, Lynden-Bell, Sciama, Waylen 
and Gilman, and then developed further by Raine (see his review, [8]).

We studied the effects of gravitational waves on local inertial frames in [9–11]. We inves-
tigated the effects of the waves in the second order perturbation schemes on Minkowski back-
ground rather than in a more complicated cosmological background. First we studied the 
rotation of the inertial frame in an approximately flat cylindrical region surrounded by an 
ingoing and then outgoing pulse of gravitational waves rotating about the axis of cylindrical 
coordinates in [10] and [9]. The effect of angular momentum of the waves on the rotation 
of the inertial frames demonstrates explicitly that any formulation of Mach’s principle must 
necesserily involve the influence of waves, not only of material Tjk. This work was general-
ized to the case of a time-symmetric ingoing and then outgoing regular pulse of rotating 
gravitational waves propagating in empty asymptotically flat spacetime, [11]. A nonvanishing 
angular momentum of the waves keeps them away from the origin where the spacetime is 
approximately flat. By solving the relevant Einstein equations to second order in the amplitude 
of the waves, it is seen that the rotation of local inertial frames near the origin is without time 
delay and follows from the constraint equation.

The relevance of the present paper to Mach’s principle is that it shows explicitly that the 
angular momentum of gravitational waves has the same effect on the inertial frame as the 
angular momentum of a spherical material shell bouncing due to a tangential pressure. We find 
strong and quantitative similarities between these cases.

In order to see this in depth we here give the results of the calculations of the angular 
momentum and the effective energy of the rotating waves in asymptotically flat spacetime. This 
was not done in our previous work, [11]. Although the ‘starting expressions’ are indeed quite 
complicated, the final results turn into simple, intuitive forms allowing detailed comparison 
between rebounding material shells and gravitational waves.

We also present videos demonstrating the evolution of the rotating bouncing shells and 
waves, and their effect on the rotation of an inertial frame at the centre where the spacetime 
is very nearly flat.

The weak gravomagnetic effects of rotating cylindrical and spherical material shells might 
be found by, for example, constructing them from non-relativistic dust and applying the gravi-
tational Biot–Savart law. For a cylinder of angular momentum per unit length lz and radius P, 
and a sphere of angular momentum Lz and radius R, the uniform gravomagnetic fields inside 
have strengths Bg = 8lz/P2 and Bg = 4Lz/R3 respectively. By implementing the gravitational 
Larmor theorem we may transform away these fields, finding ourselves in inertial frames 
rotating at
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ω(Cm) =
4lz
P2� (1)

within the cylinder and

ω(Sm) =
2Lz

R3� (2)

within the sphere, with respect to the observer at infinity. Curiously, the dragging at the ori-
gin from a cylinder is the same as that of the radially inscribed sphere R = P if the Lz of the 
sphere is replaced by the angular momentum of that part of the cylinder which lies within 45° 
of z = 0, i.e. the part of the cylinder in which the sphere is inscribed. Analogous effects are 
found with spinning, charged spheres and solenoids in classical electromagnetism.

In section 2 we analyse the motion of a rebounding shell using a new method simpler than 
Israel’s junction-matching procedure, [12], (as employed by e.g. Evans, [13]). We consider 
the rotation of the flat internal space caused by a perturbative rotation of the shell. In section 3 
we consider the rotation of inertial frames at the centre of the rotating, rebounding cylindrical 
wave pulse introduced in [10]. Finally in section 4 we inspect the same effects as caused by the 
rotating, rebounding ‘spherical’ wave pulse introduced in [11]. Conclusions follow.

Latin and Greek indices are understood to run over spaces of signature −2 and −1 respec-
tively and we use the Planck units, c = G = 1.

2.  Rotating and rebounding material shell

2.1.  Equation of motion

Consider a heavy thin spherical shell made up from counter-rotating collisionless equal par-
ticles all of which have the same magnitude of angular momentum. We are interested in the 
radial motion of the whole shell. Let the total rest mass of all the particles be M and the gravi-
tational mass of the external Schwarzschild metric be mg; we define the ratio a = mg/M  as in 
[14]. At any one moment we may consider the whole shell to be made up of nested sub-shells 
living in the Schwarzschild metric,

ds2 = (1 − 2µ/r)dt2 − (1 − 2µ/r)−1dr2 − r2(dθ2 + sin2 θdϕ2),� (3)

where the parameter μ varies from 0 for the innermost subshell to mg for the outermost. The 
specific energy of particles in the subshell μ is given by ε(µ) = (1 − 2µ/r)dt/dτp where τp 
is the proper time measured on the particle, and the specific angular momentum of motion 
(which without loss of generality we can take to be equatorial) is h = r2dϕ/dτp so its motion 
is governed by

1 = (1 − 2µ/r)−1 [ε2 − (dr/dτp)
2]− h2/r2.� (4)

Proper time on the shell at constant θ, ϕ is given by dτ 2 = (1 + h2/r2)dτ 2
p . For a thin shell, all 

subshells share the same radial coordinate, R, and writing Ṙ = dR/dτ  the specific energy is

ε(µ) =

√
(1 + h2/R2)(1 − 2µ/R + Ṙ2).� (5)

The subshell that contributes dµ to mg contributes only dµ/ε(µ) to M so that

M =

∫ mg

0

dµ√
(1 + h2/R2)(1 − 2µ/R + Ṙ2)

=


(−R)

√
1 − 2µ/r + Ṙ2

1 + h2/R2




mg

0

,

�

(6)
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or
√

1 + h2/R2 M/r −
√

1 + Ṙ2 = −
√

1 − 2mg/R + Ṙ2.� (7)

Squaring and solving for mg which is the total energy of the system gives

mg = M
√

(1 + h2/R2)(1 + Ṙ2)− 1
2
(1 + h2/R2)M2/R.� (8)

By considering the contribution of each moving particle, the first term is seen to be equivalent 
to the total kinetic energy of the shell, the second to the gravitational potential energy.

If h vanishes, we recover the well-known result for dusty shells derived by Israel in [12]:
√

1 + Ṙ2 = a +
mg

2aR
.� (9)

A more conventional derivation of (8) using the method of Israel is presented in  
appendix A.

2.2.  Dynamics of the shell

To categorise the various trajectories of the shell, we determine the stationary points of the 
radial motion, i.e. the zeroes of Ṙ. We introduce the dimensionless quantity ξ = h/R and use 
(8) to express its dependence on the parameters a, h and mg as an implicit function:

mg = hf (a, ξ) =
2ah

(√
1 + ξ2 − a

)

ξ (1 + ξ2)
.� (10)

Through variation of a, mg and h two radial turning points may merge or bifurcate at a point in 
the parameter space corresponding to circular orbits of the particles in the shell. The condition 
for this is ∂f (a, ξ) /∂ξ = 0, which can eventually be written as

g (a, ξ) = 4ξ6 +
(
8 − 9a2) ξ4 +

(
5 − 6a2) ξ2 + 1 − a2 = 0.� (11)

At a = 0, (11) has no solution since all the coefficients are positive. As a is increased from 
0 two zeros of g (a, ξ), ξ = ξ1 and ξ = ξ2, bifurcate from a double zero, ξ = ξ0

.
= 0.478 at 

a = a0
.
= 0.958. As a increases further from a0 to 1, ξ1 vanishes, meanwhile ξ2 continues to 

increase indefinitely with a. This corresponds to the development of a local minimum and 
maximum in f (a, ξ) from an inflection point at a0. The dimensionless number a0 is a funda-
mental constant of this particular class of shells, it is given by the simultaneous solution of 
(11) with the condition ∂g (a, ξ) /∂ξ = 0. As shown in figure 1 the dependence of the trajec-
tories of the shell on a can be broken into several contingencies.

When a = 1 the gravitational mass coincides with the sum of the particle rest masses and 

the only circular orbit is at ξ2 = 1
2

√
1/2 +

√
17/2 .

= 0.80. By expanding the effective poten-

tial about this point it is clear that it represents a merger of two distinct shell trajectories, so 
the circular orbit is completely unstable. These trajectories are a collapse from rest at infinity 
followed by a rebound at a pericenter, RP, and a collapse to a black hole either from rest at an 
apocenter, RA < RP, or from rest at infinity. Ṙ diverges as R−2 on the approach to singularity.

When a > 1, the shell’s kinetic energy exceeds its gravitational potential energy, so the 
shell is always in motion at infinite radius.

Alternatively, if a < 1 but a0 < a, the circular orbit at ξ1, which is completely stable, must 
also be taken into account. As a drops below 1 the asymptote in f (a, ξ) as R → ∞ disappears 

W Barker et alClass. Quantum Grav. 34 (2017) 205006
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so the shell never reaches an infinite radius, instead falling from rest at a new apocenter, 
R′

A > RA. This allows for a new trajectory where the shell oscillates between the two radii R′
A 

and RP.
Finally for a < a0, RA = R′

A and the oscillating trajectory vanishes. Thus a0 is interpreted 
to be the minimum ratio of gravitational to nucleonic mass for which the shell can resist col-
lapse to a black hole. The circular orbit ξ0 is stable against expansion but unstable to collapse.

It is neatly found in [14] that ‘no shell of dust can remain permanently submerged within 
its Schwarzschild sphere’. By solving (10) for a we find the parameters of the shell which 
collapses from rg,

a =
1
2

√
1 + h2/4m2

g,� (12)

which reduces to a = 1/2 for dusty shells as found in [14]. Since this solution is unique for 
nonzero physical parameters, and since ∂f (a, h/R) /∂R vanishes at the origin and approaches 
2a (1 − a) for large R, it is clear that RA never drops below rg and so this principle is pre-
served, independent of h. There are no shells which collapse from rg for a < 1/2.

2.3.  Pertubative rotation and conservation of angular momentum

We now spin the shell about its polar axis with total angular momentum Lz, using the for-
malism developed in [15] for the case of slowly rotating, collapsing dusty shells. Working to 
O (rω) the exterior space now has a Kerr-like perturbation,

Figure 1.  mg = hf (a, h/R) as a function of R for various a at h = 1 with space below 
the gravitational radius, rg, shaded in grey. A rebounding collapse from rest at infinity is 
shown in orange, the oscillating trajectory in red and collapse to a black hole from rest 
at finite radius in blue. Israel’s principle of submerged shells applies because the curves 
only ever brush rg, and the only effect of specific angular momentum of the particles, h, 
is to dilate the curves in mg − R space.

W Barker et alClass. Quantum Grav. 34 (2017) 205006



6

ds2 = (1 − rg/r) dt2 − (1 − rg/r)−1 dr2 − r2 [dθ2 + sin2 θ
(
dϕ2 − 2ωdϕdt

)]
,

�
(13)

where ω = 2Lz/r3 or at the shell itself ω(Sm) = 2Lz/R3. The interior space is flat,

ds2 = d̄t2 − dr̄2 − r̄2 (dθ2 + sin2 θdϕ̄2) ,� (14)

but the azimuthal coordinates ϕ and ϕ̄ no longer generally match at the shell itself, which can 
have the coordinates,

ds2 = dτ 2 − R2 (dθ2 + sin2 θdϕ̄2) .� (15)

It can be shown (see appendix B) that the sphericity and equation of motion of fluid shells are 
unchanged by the rotation to O

(
Rω(Sm)

)
. An important relation used in [15] (see appendix C) is

τ 0
3 = − 1

16π
dω(Sm)

d 1
R

sin2 θ,� (16)

where ταβ  is the stress-energy tensor in the shell hypersurface. If the rotation angle in the shell 
hypersurface (measured in ϕ̄) of the fluid of the shell as it rotates is denoted by Φ̄, and analo-
gously in the exterior (measured in ϕ) by Φ, there is to O

(
Rω(Sm)

)
,

τ 0
3 = −

mg

4πaR

(√
R2 + h2 +

h2

2
√

R2 + h2

)
˙̄Φ sin2 θ,� (17)

or

˙̄Φ =
3aR2ω(Sm)

4mg

(√
R2 + h2 +

h2

2
√

R2 + h2

)−1

.� (18)

If h vanishes, we recover the analogous result for dusty shells, found in [15]:

˙̄Φ =
3aRω(Sm)

4mg
.� (19)

It is useful to note that it is possible to write down Lz for any rotating spherical shell imme-
diately by transforming the unperturbed ταβ  with the rotation to find momentum density as 
seen in the shell hypersurface, then integrating over the angular coordinates. For perfect fluid 
spheres and to O

(
Rω(Sm)

)
,

Lz = 2π
∫ π

0
dθ ˙̄ΦR4 sin3 θ (σ +Π) ,� (20)

where σ = τ 0
0  is the mass-energy density and Π is the tangential pressure (see appendix A). 

This confirms conservation of Lz as it rotates according to (18).
The evolving azimuthal discontinuity at the junction is the direct manifestation of the rota-

tional frame dragging of the interior. It is pointed out in [15] that

dϕ̄
dt

= 0 =⇒ dϕ
dt

= ω(Sm),� (21)

so that external observers falling with the shell and at angular velocity ω(Sm) see a nonrotating 
interior inertial frame, equivalently observers at rest at infinity see the interior inertial frame 
rotating at ω(Sm).

W Barker et alClass. Quantum Grav. 34 (2017) 205006
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For a spinning a = 1 shell which falls from rest at infinity and rebounds from a pericenter 
(see section 2.2), the consequent rotation of the inertial frame, and the time taken according to 
the observer at infinite radius are

∆ϕ = 2
∫ ∞

RP

ω(Sm)ṪdR

Ṙ
, ∆t = 2

∫ ∞

RP

ṪdR
Ṙ

.� (22)

Both integrands usually contain an integrable singularity at the lower limit, the exception 
being the limit of asymptotic collapse to the unstable circular orbit of particles where the 
expansion of Ṙ changes from Ṙ ∝

√
R − RP to Ṙ ∝ (R − RP). Then the integrals are over log-

arithmic singularities and so ∆ϕ and ∆t  diverge. Conversely in the upper limit, the integrand 
of ∆t  approaches 2a/

√
a2 − 1 or 2

√
R/mg  for a > 1 and a = 1, however ∆ϕ converges in 

this limit due to the factor of 2Lz/R3, so it is reasonable to expect finite rotations of the inertial 
frame in albeit long times4.

To illustrate this behaviour, animations are available from http://utf.mff.cuni.cz/~ledvinka/
psi/a1.mp4 and http://utf.mff.cuni.cz/~ledvinka/psi/a2.mp4. The shell (outer sphere) rebounds 
from RP above its rg (inner sphere). The time and the angle Φ through which the fluid of the 
shell rotates are those of the observer at infinity, who sees the ϕ̄ inside rotationally dragged. 
Blue arrows are for reference, angular momenta (J = Lz) are made artificially large and the 
observer at constant θ, ϕ̄ whose proper time is τ is marked by the point P. In the first anima-
tion, RP is far from rg, and during the prompt rebound the rotation of inertial frames is very 
slight compared to that of the shell fluid. Conversely the second animation, RP is close to the 
unstable particle orbit and whilst the shell lingers on the brink of gravitational collapse near to 
rg the rotation of the frames is much stronger.

3.  Rotating and rebounding cylinder of gravitational waves

In [10] a cylindrical pulse of gravitational waves parametrised by a timescale A5 is anal-
ysed, with relevant quantities being evaluated in the dimensionless coordinates ρ̃ = ρ/A and 
t̃ = t/A. The first order metric perturbations are proportional to the small function,

ψ ∝ Bρ̃m
[(

1 + ρ̃2 − t̃2)2
+ 4̃t2

]− 1
2 (m+ 1

2 )
,� (23)

where B acts as an amplitude and we neglect a trigonometric factor in t̃  and ρ̃  which produces 
the spiralling wavefronts: looking down the z-axis, this is the radial envelope of the ring-
shaped wavepacket. The maximum of this envelope is given at P̃  such that

m
P̃

=
2 (m + 1/2)

(
1 + P̃2 − t̃2

)
P̃

(
1 + P̃2 − t̃2

)2
+ 4̃t2

,� (24)

or

P̃2 =
t̃2 − 1 +

√
(̃t2 − 1)2

+ 4m (1 + m) (̃t2 + 1)2

2 (m + 1)
.� (25)

4 Rough estimates to this rotation may be given by the Laplace approximation, ∆ϕ =
(
2Lz/R3

)√
2πRP/3R̈ (RP), 

although this too must fail near χ2 where R̈ disappears
5 Where this characteristic width A = a as it appears in both [10] and [11], so as to avoid confusion with the unre-
lated quantity mg/M = a as it appears in both [14] and in the current paper
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As expected for large times the radial pulse approaches the speed of light, P̃ = t̃ , but slows 
as it approaches the central axis. The rate of rotational frame dragging, ω (as perceived by the 
distant observer), is generally calculated as an average over the azimuthal coordinate of the 
metric describing the waves, an operation denoted by 〈〉; in the nearly flat space at the central 
axis it simply reduces to the formula given in [10],

〈ω〉
∣∣∣∣
ρ̃=0

= ω(Cw) =
B2

A
· (2m)!

22m−1 ·
1 + m

(
1 + t̃2

)

(1 + t̃2)
2 .� (26)

From here we may write the rate of on-axis rotational frame dragging as a function of this 
radius for various m:

ω(Cw) =
B2

A
· (2m)!

22m−1 ·
(
2m2) ·

2 + P̃2
(√

(2m + 1)2
+ 8m

P̃2 − 1
)

P̃4

(√
(2m + 1)2

+ 8m
P̃2 − 1

)2 .� (27)

The formula for the angular momentum per unit height of the cylinder is

lz =
AB2

2
· m (2m)!

22m� (28)
and so we may eliminate the B in favour of the more general quantity lz to give

ω(Cw) =
4lz

mA2 ·
1 + m

(
1 + t̃2

)

(1 + t̃2)
2� (29)

=
8lzm
A2 ·

2 + P̃2
(√

(2m + 1)2
+ 8m

P̃2 − 1
)

P̃4

(√
(2m + 1)2

+ 8m
P̃2 − 1

)2 .� (30)

This formula for the rate of rotational frame dragging reduces to that of the material cyl-
inder both at large absolute times where P̃  is also large, and at t̃ = 0 where the wavepacket 
is closest to the central axis and ρ is minimal at P̃2 = a2m/ (m + 1). Plots of the wave-pulse 
in [10] show that the radial confinement of the wave crests increases at large times, and so by 
comparison with relation (1) this result is not surprising. Conversely, at t̃ = 0 the wavepulse is 
hardly recognisable as a cylinder, being highly anisotropic; so it is interesting that (1) is also 
recovered in the instant of rebounding. This behaviour is illustrated in figure 2.

4.  Rotating and rebounding shell of gravitational waves in asymptotically flat 
spacetime

Rotating cylindrical waves allow relatively simple comparison of their gravomagnetic effects 
with those from a slowly rotating collapsing spherical shell.

However, in contrast to the shell their behaviour both at radial infinity and along the axis 
of symmetry is significantly different because there the spacetime is not asymptotically flat. 
Interestingly, a much more complicated case of rotating gravitational waves in an asymptoti-
cally flat vacuum spacetime allows us to make a very telling comparison between the shell 
and the waves.

W Barker et alClass. Quantum Grav. 34 (2017) 205006
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In [11] we solve the Einstein equations  to first order and form a time-symmetric ingo-
ing and outgoing regular pulse in asymptotically flat spacetime. The waves are assumed to 
have odd parity and they keep away from region around the origin due to their non-vanishing 
angular momentum. In that region the spacetime is almost flat as it is inside a slowly rotating 
spherical shell. Indeed, we produced an ingoing and outgoing pulse of typical width A, local-
ized in the radial direction, resembling an infalling and expanding rotating shell. We solved 
the relevant Einstein equation (see equations (6.8)–(6.12) in [11]) to the second order and thus 
found the metric component gtϕ in the form

g(2)
tϕ = −ω(Sw) r2 sin2 θ.� (31)

Here the angular velocity ω(Sw) determining the rotation of an inertial frame located near the 
origin is given by

ω(Sw) =
1

4π

∫ ∞

0

∫
R(2)

tϕ

[
h(1), h(1)

]
dΩ

dr
r

,� (32)

where dΩ = sin θ dθ dϕ and h(1) denotes the first order perturbations. All relevant h(1)s are 
determined by the derivatives of the function χ (t, r, θ,ϕ) = r2ψlm, where ψ satisfies the flat 
space wave equation; in contrast to cylindrical waves it depends on two spherical harmonic 
indexes l and m. The second-order Ricci tensor determining, after integration, the angular 
velocity ω(Sw), is given in terms of derivatives of χ by a rather lengthy formula which will not 
be reproduced here (see equation (7.6) in [11]).

To see the pulse and the rotating character of the first-order wave let us first explicitly write 
down the form of the ‘potential’ function, χ. It reads

χ (t, r, θ,ϕ) = B̃lNm
l Re


 rlPm

l (cos θ) eimϕ

Al+2
(

r2 + (A + it)2
)l+1


� (33)

Figure 2.  For lz = A = 1, relative deviation of ω(Cw) caused by wave pulses of various 
m from the ω(Cm) of the material cylindrical shell at P̃ . The cylindrical wave pulse 
always rotates the central inertial frame faster than the material cylinder, though there is 
agreement at large P̃  and also at the minimal P̃ , at which the waves rebound.

W Barker et alClass. Quantum Grav. 34 (2017) 205006
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= B̃lNm
l κ (t, r)Pm

l (cos θ) cos (mϕ− λ (t, r)) ,� (34)

where, writing ̃r = r/A and t̃ = t/A,

Nm
l =

√
2l + 1

4π
(l − m)!

(l + m)!
, κ =

r̃l+2

[
(1 + r̃2 − t̃2)

2
+ 4̃t2

](l+1)/2 ,� (35)

λ (t, r) = (l + 1) arctan
(

2̃t
1 + r̃2 − t̃2

)
= arg

[
r̃2 + (1 + ĩt)2

](l+1)
.� (36)

The argument of the cosine function gives the apparent angular velocity of wave 
shell rotation when the Taylor expansion of the function λ is performed at time t1, i.e. 
cos (mϕ− λ (t, r)) ≈ cos [m (ϕ− ϕ0 − (t − t1)ω1)], with ω1 = ∂tλ/m and ϕ0 = λ (t1, r). 
Near the pulse center at r2 = A2 + t2 we get ω1 = (l + 1) / (mA).

This rotation with l = m = 10 is illustrated in figure 3 and in the animation 3 available as 
an on-line resource http://utf.mff.cuni.cz/~ledvinka/psi/a3.mp4. Notice the pulse character of 
the wave and how the pulse starts and ends as a quite narrow shell.

The rotation is related to the angular momentum one can assign to the gravitational waves. 
This angular momentum was not considered in [11]. We would now like to discuss, in some 
detail, the relation betwen the angular momentum and gravomagnetic dragging.

To find the angular momentum of the waves we realize that quadratic terms in the second-

order Ricci tensor R(2)
jk  play the role of an effective energy-momentum tensor of the waves 

as is explained in [11] (near (6.2)):

G(1)
tϕ[h

(2)] = 8πTeff
tϕ = −

〈
R(2)

tϕ

[
h(1), h(1)

]〉
.� (37)

We therefore define the angular momentum as

Lz = −
∫

Teff
tϕd3x =

1
8π

∫
R(2)

tϕd3x.� (38)

This integral can be evaluated using the methods given in [11]:

Lz = B̃2
l
(l + 1)2

(l − 1) (l + 2)2 lm
(5 + 2 l)A2 (2 l + 3)π

(
I1/2
l+3

(
2 A2l + 3 A2 + 7 t2 + 2 lt2)A2

+ I3/2
l+3 (2 l + 3)

(
t2 + A2)2

)
.

�
(39)

Here the integrals defined in appendix C of [11] give the following results:

I1/2
l+3 =

π

1 + t̃2

(2l + 3)!!
(l + 2)!23l+7 ,� (40)

I3/2
l+3 = π

(2l + 1)!!
(l + 2)!23l+7

[
2l + 3

(1 + t̃2)
2 +

4

(1 + t̃2)
3

]
.� (41)

With these integrals, I1/2
l+3 and I3/2

l+3 combined, the total value of the angular momentum turns 
out to be an integral of the motion (assuming l > 1 to simplify the term l (l − 1) /l!) :
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Lz = mA2 B̃2
l
(l + 1) (l + 2) (2l + 1)!!

23 l+6 (l − 2)!
.� (42)

Similar cancellations occur for integral representing energy of linearized gravitational waves, 
E =

∫
Teff

ttd
3x. For our packet of gravitational waves an interesting relation holds between 

both conserved quantities:

Lz =
mA

l + 1
E.� (43)

The relation between the angular momentum of the gravitational waves and the central 
frame dragging can be seen from the similarity of the integrals (32) and (38). Denoting 

dLz = (8π)−1 R(2)
tϕr2dΩdr and dω(Sw) = (4π)−1 R(2)

tϕr−1dΩdr  we get

dω(Sw) = 2
dLz

r3 .� (44)

The angular velocity of the central frame dragging can be expressed as an explicit function 
of the time in the form,

ω(Sw)(t) =
B̃2

l

2π
m (l + 1) (l + 2)

A (l + 3) l
×
[(

Ul − Vl̃t
2
)(

1 + t̃ 2
)

I2
l+3 (̃t)� (45)

Figure 3.  Function χ with l = 20, m = 10 and t/A = 2 in the equatorial plane. 
Rotation is illustrated by dotted lines which show node lines of function χ at a later 
time t′/A = 2.05.
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+
(

Ul + Vl̃t
2
)

I1
l+3 (̃t)

]
,� (46)

where

Ul =
(
2 l5 + 7 l4 + 4 l3 − 7 l2 + 24 l + 36

)
,

Vl = 3
(
l4 + 2 l3 + 3 l2 + 8 l + 12

)
.

�
(47)

Here the integrals I1
l+3 and I2

l+3 are discussed in appendix C in [11]. Using (42) we can express 
ω(Sw) as a function of the angular momentum

ω(Sw)(t) =
Lz

2πA3

23l+6 (l − 2)!
l (l + 3) (2l + 1)!!

×
[(

Ul − Vl̃t
2
)(

1 + t̃ 2
)

I2
l+3 (̃t)� (48)

+
(

Ul + Vl̃t
2
)

I1
l+3 (̃t)

]
.� (49)

This result corresponds to the simple relation (52) for dragging by a cylindrical wave.
The dragging becomes maximal at t = 0 when the wave is closest to the origin:

ω(Sw)

∣∣
t=0 =

Lz

4πA3

23l+6 (l + 1)! (l − 1)! (l − 2)!
(2l + 3)! (2l + 1)!!

Ul� (50)

=
Lz

A3

(
2 +

9
2l

+
9

16 l2
+ ...

)
,� (51)

where for l � 4 these first three terms of expansion provide a relative error less than 4%.
Finally, neglecting the cosine function in (33) we find that the maximum of the first order 

wave occurs approximately at r = R(t) ∼=
(
A2 + t2

) 1
2 . We then arrive at the simple result 

demonstrating how the dragging of inertial frame near origin depends on the distance of the 
(approximate) maximum of the wave and its total angular momentum, it is the same formula 
as for the material shell:

ω(Sw) = ω(Sm) =
2Lz

R3 .� (52)

5.  Conclusions

In our past work we studied how local inertial frames or gyroscopes are influenced by the 
motion of both matter and gravitational waves. It is only here, however, where we studied 
in detail their relationship. By explicit examples we demonstrated how matter described by 
standard local energy-momentum tensors drags local inertial frames similarly to gravitational 
waves satisfying Einstein’s equations in vacuum when a local energy and momentum has not 
in general been defined.

Since the dragging effects are best illustrated in approximately flat regions surrounded 
by rotating matter or waves we considered wave pulses ingoing from infinity, bouncing due 
their angular momentum and outgoing again to infinity. A suitable analogue made of matter 
is a collapsing spherical shell made from counter-rotating particles the angular momentum of 
which can make the shell to rebound like the waves. If the shell is given a small net rotation, 
in the first approximation the spacetime inside the shell remains flat but inertial frames there 
will rotate with respect to infinity. The analogy cannot be perfect, because the shell rebounds 
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due to its tangential pressure, and this pressure contributes only secondarily to its total angu-
lar momentum (by increasing the masss-energy surface density)—the Lz itself comes only 
from a perturbative rotation, whereas it is the Lz of the wave pulse which directly causes it to 
rebound. Furthermore, unlike the shell, the wave pulse must move at light speed at infinity.

Hence, we first discussed the motion of such a shell. We derived the motion of the shell 
from the energy conservation, (8).

Next we perturbed the shell by giving it a small net angular momentum which is conserved 
during the motion. When compared with the work on slowly rotating shells of dust from 
particles without counter-rotation, some new effects arise, e.g. for the asymptotic collapse of 
the shell to and from the region close to the unstable circular orbits of the particles forming 
the shell. Inside the shell the spacetime remains flat for such small rotations. The dragging of 
inertial frames inside the shell with respect to infinity can thus be well interpreted.

For the time-symmetric pulse of rotating cylindrical waves ingoing towards the axis of 
symmetry and then outgoing to infinity again, the rotation of inertial frame at the symmetry 
axis is, at the moment of time symmetry t = 0, determined by the angular momentum per unit 
length by precisely the same formula as for the cylinder made of dust (see expressions (1) and 
(44)); the same is true at large times when pulse/dust cylinder is near infinity. The values of 
the dragging are very similar for general positions as well (see figure 2).

In a more complicated case of a time-symmetric ingoing and outgoing regular rotating 
pulse of gravitational waves in an asymptotically flat spacetime we assumed the waves to have 
odd-parity and a non-vanishing angular momentum which keeps them away from the origin 
where spacetime is very nearly flat, just as it is inside a slowly rotating bouncing material 
spherical shell.

When the dragging of the inertial frame due the pulse near origin is expressed in terms of 
the distance of the maximum of the pulse and its total angular momentum, we get precisely 
the same formula as for a slowly rotating spherical shell, (52).
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Appendix A

The metrics of the exterior and interior are respectively

ds2 = (1 − rg/r) dt2 − (1 − rg/r)−1 dr2 − r2 (dθ2 + sin2 θdϕ2)� (A.1)

and

ds2 = d̄t2 − dr̄2 − r̄2 (dθ2 + sin2 θdϕ2) ,� (A.2)

due to spherical symmetry there are common angular coordinates θ,φ in both. The shell con-
stitutes a timelike hypersurface, whose normals in the exterior and interior regions are space-
like, it has the metric,
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ds2 = dτ 2 − R2 (dθ2 + sin2 θdϕ2) .� (A.3)

Defining

d̄t
dτ

∣∣∣∣
(shell)

= ˙̄T =
√

1 + Ṙ2,
dt
dτ

∣∣∣∣
(shell)

= Ṫ =

√
1 − rg/R + Ṙ2

1 − rg/R
,� (A.4)

the four-normals of the hypersurface, each directed into their respective spaces in the style of 
[16], are:

[ni] =
(
−Ṙ, Ṫ , 0, 0

)
, [n̄i] =

(
Ṙ,− ˙̄T , 0, 0

)
.� (A.5)

An observer whose proper time is τ has four-velocities ui and ūi. Einstein’s equations relate 
the contents of thin shells to the geometry of their embedding by

ni
Dui

Dτ
+ n̄i

Dūi

Dτ
= 8π

(
ταβuαuβ − 1

2
ταα

)
,� (A.6)

where ταβ  is the stress-energy tensor defined in the shell:

ταβ = (σ +Π) uαuβ −Π gαβ .� (A.7)

The mass-energy density is τ 0
0 = σ, specifically

σ = M/4πR2
√

1 − ẋ2, dx2 = R2 (dθ2 + sin2 θdϕ2)� (A.8)

which can be re-written in terms of h using the (A.4),

h = R (dx/ds) = R (dx/d̄t)
[
1 − (dR/d̄t)2 − (dx/d̄t)2

]−1/2
� (A.9)

= R(dx/dt)
[
1 − rg/R − (dR/dt)2

/(1 − rg/R)− (dx/dt)2
]−1/2

� (A.10)

= Rẋ/
√

1 − ẋ2,� (A.11)

so that ẋ = h/
√

R2 + h2 . The pressure is then Π = Mẋ2/8πR2
√

1 − ẋ2.
Substituting, the RHS of (A.6) becomes −4π (σ + 2Π). This equation may be solved as in 

[12] by using the orthogonality constraints,

ui
Dui

Dτ
= ūi

Dūi

Dτ
= 0,� (A.12)

to give a second order ODE which may be written as

Ṙ
R̈
[√

1 + Ṙ2 −
√

1 − rg/R + Ṙ2

]
+

mg

R2

√
1 + Ṙ2

√
1 + Ṙ2

√
1 − rg/R + Ṙ2

=
mgṘ
aR3

R2 + 2h2
√

R2 + h2
�

(A.13)
and directly integrated to give (7). The integration constant was not free to choose because 
Israel’s junction conditions have also tangential components which yield precisely (8). If 
we divide (8) by R(t), its left-hand side would be a discontinuity in the θ − θ component 
of the extrinsic curvature of the junction hypersurface, while the right-hand side is equal 
to 8π

(
τ 2

2 − ταα /2
)
= −4πσ. Alternatively, equation  (7) may be recovered immediately by 
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substituting our σ and Π into the result of [16] which expresses σ in terms of desired quantities 
for more general choices of external and internal space.

Appendix B

If the shell spins, the projection of the shell hypersurface, yα, in the exterior space, xi is cor-

rected by an additional small quantity, h3
0 = ϕ̇ = ω(Sm)Ṫ ,

[
hi
α

]
=

[
∂xi

∂yα

]
=




Ṫ 0 0
Ṙ 0 0
0 1 0
ϕ̇ 0 1


 ,� (B.1)

but the ni and n̄i are unchanged. It is convenient to keep the definition of the radially attached 
observer from the perspective of exterior, whose ‘proper time’ is now an undetermined ds2 
rather than dτ 2 as for non-rotating shells. With this in mind,

[
ui] = (

Ṫ , Ṙ, 0, 0
) dτ

ds
,

[
ūi] =

(
˙̄T , Ṙ, 0,ω(Sm)Ṫ

) dτ
ds

� (B.2)

and since ds2 = dτ 2 − R2 sin2 θdϕ̄2 within the shell it follows that dτ/ds is unity to 
O
(
Rω(Sm)

)
. When re-casting equation (A.6) in terms of s rather than τ, the form of the LHS 

is then unchanged to O
(
Rω(Sm)

)
 since Γ1

03 is O
(
Rω(Sm)

)
 and Γ1

13 is identically zero in fully 
Kerr spacetime. The σ, Π and the inner product of fluid four-velocities in the shell with the uα 
are also are unchanged to O

(
Rω(Sm)

)
, accounting for the RHS. From these considerations, the 

sphericity and equation of motion for the shell must be unchanged to O
(
Rω(Sm)

)
.

Appendix C

The relation (A.6) stems from the more general result

Kαβ + K̄αβ = −8π
(
ταβ − 1

2
gαβτ

)
,� (C.1)

where the Kαβ and K̄αβ are components of the external curvature tensors of the hypersurface 
in the exterior and interior respectively. Particularly,

τ 0
3 = − 1

8π
K0

3 =
1

8π

(
Ṫ
[
∂Ṙ
∂ϕ

− Γ0
03Ṙ + Γ1

03Ṫ
]

+ Ṙ
[
−∂Ṫ
∂ϕ

− Γ0
13Ṙ + Γ1

13Ṫ
]

+ ω(Sm)Ṫ
[
−Γ0

33Ṙ + Γ1
33Ṫ

]
)

,

�

(C.2)

of which only Γ1
03 and Γ0

13 are nonvanishing to O
(
Rω(Sm)

)
 and Γ1

33 nonvanishing to O(1), giv-
ing (16):
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τ 0
3 =

1
8π

(
Ṫ2

[
R
(

1 −
rg

R

)(
ω(Sm) +

1
2

R
dω(Sm)

dR

)
sin2 θ

]

+ Ṙ2

[
− R2

2
(
1 − rg

R

) dω(Sm)

dR
sin2 θ

]

+ ω(Sm)Ṫ
2
[
−R

(
1 −

rg

R

)
sin2 θ

])

=
1

16π
R2 dω(Sm)

dR
sin2 θ

= − 1
16π

dω(Sm)

d 1
R

sin2 θ.

�

(C.3)
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