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Aspects of stability of hairy black holes
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We analyze spherical and odd-parity linear perturbations of hairy black holes with a
minimally coupled scalar field.

1. Spherical Modes

In order to have an asymptotically flat hairy black hole with a minimally coupled

scalar field a necessary condition is a scalar field potential with a negative region.

For a recent review see, for example.
1

As is well-known the stability problem can be mapped to the analysis of the

spectrum of a Schrödinger operator, which appears in the master equation for per-

turbations. An everywhere positive spectrum implies there are no modes which

exponentially grow in time. Using the method of Ref. 2 we study the equations of

motion for the radial perturbations of the form

−d2u

dρ2
+ Veffu = E2u with δφ ∝ eiEtu(ρ) , (1)

where Veff(ρ) (explicitly given below) is an effective potential in which the modes

u(ρ) propagate and ρ is a “tortoise” radial coordinate sending the horizon at minus

infinity; it always exhibits a negative region. A sufficient condition for the existence

of bound states with negative E2
(for bounded Veff that fall-off faster than |ρ|−2

)

is the Simon criteria, which states that if S ≡ ∫ +∞
−∞ Veff dρ is negative there will

always be at least one bound state with negative E2
; hence, we only study positive

Simon integrals. Using “shooting” techniques to solve (1), we do indeed find un-

stable modes in Ref. 1. However, there is only a finite number of unstable modes

and, moreover, their characteristic time of growth can be made arbitrarily large for

certain values of the black holes parameters, as is the case if the size of the black

hole is small enough.

We are interested in studying the linearized dynamics around a background

solution. Hence, starting from the metric in the form

ds2 = − [A(r) + εA1(r, t)] dt
2
+ [B(r) + εB1(r, t)] dr

2
+ C(r)dΩ2

, (2)

where r is a general radial coordinate, not necessarily ρ, and the scalar field is

assumed in the form φ = φ0(r) + εφ1(r, t). We expand the scalar field potential

as V (φ) = V0 + εV1φ1(r, t) where V0 = V (φ0) , Vn =
dnV
dφn

∣∣∣
φ=φ0

. As a consequence

of spherical symmetry all the dynamics is driven by the scalar field. Indeed, it

is possible to write the metric perturbations in terms of the φ1(r, t) by using the

Einstein field equations. We introduce the master variable

ψ(ρ, t) = φ1(r, t)C(r)1/2 , (3)
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where ρ is the tortoise coordinate

dρ =

(
B

A

)1/2

dr . (4)

The master equation is

−∂2

ρψ + Veffψ = −∂2

tψ , (5)

with the effective potential

Veff

A
= 4κC

[
(κV0C − 1)

(
dφ0

dC

)2

+ V1

(
dφ0

dC

)]
−κV0+V2+

1

C
− 1

4B

(
C′

C

)2

. (6)

If ρ takes its values in the whole real line and Veff is non-negative, the operator

(5) is essentially self-adjoint and its spectrum is positive which implies that the

background is mode stable under spherically symmetric perturbations.

As mentioned above, using the shooting method, we found the asymptotically

flat black holes unstable with respect to spherically symmetric perturbations. How-

ever, if their mass M and size r+ are small compared with the coupling constant

appearing in the scalar field potential, the time for the instability to develop is long

compared to the scale set by M . More details are given in Ref. 3, see also Ref. 4.

For asymptotically anti-de Sitter boundary conditions, the tortoise coordinate

takes its values in the half real line ρ ∈ ]−∞, 0]. If Veff is non-negative, the spectrum

can still contain a negative eigenvalue which depends on the details of the theory

and the boundary conditions of the scalar field. This was recently discussed in more

detail by one of us in Ref. 5.

2. Odd-Parity Modes

In the second part we analyze the stability of hairy black holes under odd-parity

perturbations following our work in Ref. 6. In contrast to the radial perturbations

in asymptotically flat spacetimes we show that independently of the scalar field

potential and of specific asymptotic properties of spacetime (asymptotically flat,

de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole

solution of the Einstein theory minimally coupled to a real scalar field with a gen-

eral potential is mode stable under linear odd-parity perturbations. We analyze

their odd-parity perturbations following the general treatment of the “axial” per-

turbations of spherically symmetric spacetime which are not necessarily vacuum,

by Chandrasekhar. The perturbed metric reads

ds2 = −Adt2+Bdr2+C

[
dz2

(1− kz2)
+

(
1− kz2

)
(dϕ+ k1dt+ k2dr + k3dz)

2

]
, (7)

where k1, k2 and k3 are functions of (t, r, z), A(r), B(r) and C(r) are the metric

functions parameterizing the most general static background solution of a scalar-

tensor theory. For asymptotically locally AdS solutions, k = ±1 or 0. Asymp-

totically flat or de Sitter solutions have k = 1. The scalar field is taken to
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be of the form φ = φ0(r) + εΦ (t, r, z), where φ0 is the background field. The

metric perturbations (k1, k2, k3) are all taken to be first order in ε. Since any

surface of constant (t, r) is of constant curvature, we consider only axisymmetric

perturbations, without any loss of generality. The Einstein field equations are trun-

cated at first order in ε. This yields the vanishing of Φ. Introducing the variable

Q = CA1/2B−1/2
(1 − kz2)2 (∂zk2 − ∂rk3) and assuming Q = q(r, t)D(z), we find

that a combination of the field equations yield

C2

√
AB

∂

∂r

[
A1/2

CB1/2

∂q

∂r

]
− λq =

C

A
∂2

t q , (8)

(
1− kz2

)2 ∂

∂z

[
1

(1− kz2)

∂D

∂z

]
= −λD , (9)

where λ is a separation constant. Let us put k = 1 and set z = cos θ in equation

(9); then C
−3/2
l+2

(θ) = D(z) is the Gegenbauer polynomial with λ = (l − 1) (l+ 2),

l ≥ 1 holds. The master variable in this case is Ψ(ρ, t) = q(r, t)C−1/2
where

∂
∂r =

B1/2

A1/2
∂
∂ρ . Fourier decomposing the master variable, Ψ(ρ) =

∫
Ψωe

iωtdt, yields

the master equation

HΨω ≡ −d2Ψω

dρ2
+

(
λ
A

C
+

3

4C2

(
dC

dρ

)2

− 1

2C

d2C

dρ2

)
Ψω = ω2

Ψω . (10)

The scalar field perturbation vanishes, however equation (10) depends on the back-

ground scalar field through its influence on the background metric (in vacuum, the

equation (10) becomes the Regge-Wheeler equation). The operator H is not mani-

festly positive, but its spectrum is positively defined as has been shown by finding

a suitable S−deformation.

3. Slowly Rotating Hairy Black Holes

Consider a stationary perturbations with k2 = k3 = 0 and k1 = ω(r). In this case

we find

ω = −c1

∫ √
AB

C2
dr + c2 , (11)

where c1 and c2 are two integration constants. Let us first consider the case of the

Schwarzschild black hole. We have
√
AB = 1 and C = r2, so it follows that

ω =
c1
3r3

+ c2 . (12)

Hence, choosing c2 = 0 and c1 = 3Ma, we find the slowly rotating Kerr black hole.

Now let us consider the hairy black hole family reviewed in Ref. 1. In analogy

with the Kerr solution, the slowly rotating hairy black hole is a deformation of

the static one plus gtϕ = ων(1 − z2)C(r), C(r) is the areal function. The metric
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Fig. 1. The ratio ω/ων=1 versus the square root of the areal function,
√

C(r), for different values
of ν. The plots are for ν = 1.2, ν = 2.1, ν = 3 and ν = 4 (from down up).

component gtϕ determines the frame dragging potential. We find that

ων = c̄1

(
r2−ν

ν2(ν2 − 4)
((ν − 2) r2ν +

(
4− ν2

)
rν − 2− ν) +

1

ν2 − 4

)
. (13)

To measure the deviation of the dragging effects from those from the slowly rotating

Kerr solution we plot the ratio ω/ων=1 versus the square root of the areal function√
C(r). In Figure 1 it can be seen that there is a smooth departure from the

Kerr frame dragging as both coincide when ν approaches 1 or asymptotically for

large
√
C(r). It should be noticed that the departure from Kerr dragging can be

important and that the horizon can be located at any point in the graph. Indeed,

the location of the horizon is defined by the equation A(r+) = 0, which has a

solution for any r+ by adjusting the value of the other parameters in the metric,

see Ref. 6.
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