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Abstract. The cross sections and reaction rates for the associative detachment reaction Li+H− → LiH+e−

are calculated for energies from 1 meV to 1 eV within the nonlocal discrete-state-in-continuum model. The
nonlocal model yields stable results for this nonadiabatic process although there is no obvious curve crossing
of the ground anion state into the continuum in adiabatic approximation.

1 Introduction

Lithium hydride molecular anion attracted a lot of atten-
tion as a smallest stable molecular anion (see [1] and
references therein). The calculation of its properties is
challenging due to a strong electron correlation and the
nonadiabatic couplings [2]. It is also a system of large
interest in astrophysics. Lithium atoms are observed in
stellar atmospheres and presence of atomic hydrogen
anions in stars indicates that lithium anions will be
present too. Even more interesting is a possible role of
molecular lithium in the chemistry of the early Universe
[3,4]. Although less abundant than molecular hydrogen,
neutral lithium hydride can be important cooler in for-
mation of the first stars due to its large state density
and dipole moment. The process of associative detachment
(AD)

Li + H− → (LiH)− → LiH + e−

can be an important source of LiH molecules, but there
are neither experimental nor theoretical data for the cross
sections or reaction rates available and only estimates are
used in simulations [5,6].

The development of the theoretical treatment of the AD
reaction

A+B− → AB + e−

dates back to pioneering works of Chen [7] and
Herzenberg [8] in 1967. The basic assumption of most
of theoretical models is that the discrete electronic state
corresponding to A + B− asymptote disappears in the
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electron continuum describing AB + e− system. The adi-
abatic bound discrete state thus does not exist for small
separations of A and B−, but the existence of the diabatic
representation is postulated for all internuclear separa-
tions R. The detailed theoretical analysis [9] results in the
effective potential for partial waves representing the nona-
diabatic coupling of the discrete state with the electronic
continuum, which is often approximated with the local
complex potential.

This kind of treatment has been used for calculation
of the associative detachment production of the hydrogen
molecule since late 1960’s (see for example [7,10,11]). In
1980 Bieniek [12] pointed out that the nonlocal nature
of the effective interaction is essential for proper predic-
tion of the final state distribution of the emerging H2

molecule. Availability of accurate potential energy curves
[13] and electron-H2 scattering data [14] made finally pos-
sible accurate calculation of the AD cross sections and
reaction rates [15] that proved to be in very good agree-
ment with experimental data for both H2 [16,17] and D2

molecules [18].
The AD process has also been treated theoretically for

collisions of negative halogen ions X− with atomic hydro-
gen H [19,20]. Because these molecules possess large dipole
moments the nonlocal effects proved to be even more
important [21–23]. The cross sections for these systems
exhibit pronounced Wigner cusps which were discovered
before for the reverse process of dissociative attachment
(see [24] for the first experimental evidence or [25] for a
review of results for hydrogen halides).

The potential energy curves for all of the above men-
tioned systems have a common feature. The potential of
electronic bound state corresponding to A + B− channel
directly crosses to electronic continuum. The bound state
disappears and is transformed into a virtual state or a
resonance at small internuclear separations. The associa-
tive detachment can thus naturally be understood as a
curve-crossing process. On the contrary, the ground state
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of LiH− anion is bound for all internuclear separations of
Li and H−. The purpose of this paper is to show that the
nonlocal discrete-state-in-continuum model still provides
accurate and stable description of the AD process.

The paper is organized as follows. In Section 2, we
describe the fixed-nuclei electron structure and scattering
calculations necessary to construct the nonlocal model and
we also give the details of the model functions. Section 3
provides details of numerical calculation of the nuclear
dynamics and gives discussion of the resulting cross sec-
tions and reaction rates. We conclude with remarks on
further extensions of the model in Section 4.

2 Construction of the model

The first step in the construction of the nonlocal model
for the nuclear dynamics of the LiH− ion is a set of
fixed-nuclei calculations. This involves the calculation of
potential energy curves for the ground state of both the
neutral LiH molecule and the LiH− ion. The second
important ingredient is the calculation of fixed-nuclei elas-
tic scattering eigenphase sums for e− + LiH collisions. In
this section we first describe these two sets of calculations
and then the procedure of construction of the nonlocal
model compatible with these data is briefly outlined.

2.1 Calculation of ground state potentials for LiH and
LiH−

To obtain the potential energy curves of the X 1Σ+ state
of LiH and the X 2Σ+ state of LiH− we used the multicon-
figurational self-consistent field (MCSCF) method [26,27]
followed by the multireference configuration interaction
method [28] with the aug-cc-pVQZ basis of Gaussian
orbitals developed by Dunning [29]. The complete active
space in MCSCF calculations consisted of ten active
orbitals with four or five active electrons for LiH and
LiH− respectively. All calculations were performed using
the MOLPRO package [30,31]. The data for the poten-
tial energy curves were thus obtained on the interval of
internuclear distances R ∈ 〈1.5, 40〉 with irregular spacing
0.1–1.0 bohr. The data were interpolated by cubic splines
within this interval. For internuclear distances smaller
then 1.5 bohr we extrapolated using a Morse potential
fitted from the data on the interval 1.5–2.0 bohr. For dis-
tances larger than 40 bohr, we used for extrapolation the
known polarizability of lithium atom α = 164.1 a.u., i.e.
Vion(R) = −0.5αR−4.

The potential energy curves obtained in this work are
close the ones of Gadéa and Leininger [2] and of Chang
et al. [32], the latter we used for comparison in Figure 1.
The accuracy of the data can be estimated from the
calculated electron affinities. We obtained the values of
620 meV and 740 meV within the present quantum chem-
istry description for Li and H atoms respectively, which
correspond well with the experimental values of 618 meV
and 754 meV [33]. Since the molecular anion is electron-
ically bound for all internuclear separations we can also
calculate the electron affinity for the LiH molecule (taking

Fig. 1. Potential energy curves (solid lines) for neutral and
anionic LiH system compared with data of Chang et al. [32]
(points). Positions of the resonances seen in Figure 2 are indi-
cated as circles. The dashed lines show the discrete state
potential for models 1, 2, 3 (from top to bottom).

into account the lowest vibrational level in both poten-
tials). We thus obtained the value of 320 meV which is by
22 meV lower than the experimental value of 342 meV [33]
and by 10–12 meV lower than previous theoretical results
[2,32]. Although the electron affinities correspond rather
well to values in the literature, the dissociation energies
for both LiH and LiH− are less accurate as we can clearly
see from comparison with the data of Chang et al. [32]
in Figure 1. Thus we expect that relative positions and
shapes of our potential energy curves are accurate within
50–70 meV.

In Figure 1 we can see that the ground state of the anion
(solid blue line) is located below the ground state of the
neutral molecule (solid red line) for all R. Nevertheless,
the two curves come very close to each other for short
internuclear distances and we expect strong coupling of
the anion state with the electron scattering continuum.
For completeness we also show the excited anion state
(green line) connected to the Li−+H asymptote which is
not used in this work. Later in this section we will dis-
cuss the construction of the diabatic representation of the
anion ground state which determines the potential Vd(R).
Three possible choices are shown as dotted blue line (see
the Sect. 2.3).

2.2 Scattering eigenphase sums for e−+LiH

The fixed-nuclei eigenphase sums for the electron scat-
tered from the LiH molecule in its ground state were
calculated using theR-matrix method [34] as implemented
in the UK molecular R-matrix suite of codes [35,36]. The
target molecule was described on the MCSCF level, or
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Fig. 2. Fixed-nuclei eigenphase sums for e−+LiH scattering
at internuclear separation 2.0, 2.2,. . . , 4.6 bohr (from bottom
to top).

to be more specific, the complete active space with 4
electrons in 8 active molecular orbitals was used. The tar-
get was described using the cc-pVTZ basis of Gaussian
orbitals, but the two most diffuse s and p Gaussian basis
functions were changed to be less diffuse to avoid problems
with the linear dependence between target basis functions
and the functions used to expand the continuum orbitals.
The close-coupling model [34] with 1 target state and 10
virtual orbitals was used as model for scattering within
the R-matrix approach. This choice was validated by com-
paring the potential energy curves with the results of the
MOLPRO calculation from the previous section.

The energy-dependent eigenphase sums for 14 internu-
clear distances R =2.0, 2.2,. . . , 4.6 are shown in Figure 2.
The eigenphase sums should diverge logarithmically at
zero energy [37,38], but this divergence is hidden in the
energy resolution of the figure. Resonances visible in the
eigenphase sums for R > 1.5 are unrelated to the potential
energy curve for Li+H−. Their positions (green circles in
Fig. 1) indicate that the resonances are continuation of the
Li−+H curve into the region where the bound excited elec-
tronic state of the anion transforms into the metastable
resonance state. Similar resonances were found also in
R-matrix calculation of Antony et al. [39].

2.3 Construction of the nonlocal model for nuclear
dynamics of Li+H− system

The present procedure for the construction of the nonlocal
model from fixed-nuclei data described above follows to a
large degree the procedure proposed in [40] for the H+Br−

system. The scattering eigenphase sums are decomposed
into a resonance and a background part δ = δbg + δres.
The dependence of the background part on both electron

energy ε and internuclear distance R is assumed to be
smooth and we fit it with a linear function

δbg(ε, R) = Aε+BR+ C. (1)

The resonance part is described by projection-operator
formalism in the model of a discrete state in the contin-
uum (see for example the review article [41]) with the
generalized Breit-Wigner formula

δres = − arctan

(
Γ (ε, R)/2

ε− Vd(R) + V0(R)−∆(ε, R)

)
. (2)

The function V0(R) is the known potential energy of the
ground state of the neutral LiH molecule. The width
function Γ (ε, R) is assumed to be of the form

Γ (ε, R) = a(R)

(
ε

b(R)

)α
e−ε/b(R), (3)

which makes possible analytic evaluation of the level-shift
function

∆(ε, R) =
1

2π
p.v.

∫
Γ (ε′, R)

ε− ε′
dε′. (4)

Furthermore, the discrete state potential function Vd(R) is
constrained by the position of the ground state potential
Vion(R) since the relation between the diabatic discrete
state and the adiabatic ion potential within the discrete-
state-in-continuum model reads [19,40]

Vd(R) + ∆(ε, R)|ε=Vion(R)−V0(R) = Vion(R). (5)

Given the fixed-nuclei data for V0(R), Vion(R) and phase-
shifts δ(ε, R) we can try to find the constants A, B, C
and α and the smooth functions a(R) and b(R) so that
the formulae (1)–(5) reproduce these data as accurately
as possible. The resulting fit is neither perfect nor unique.
This is not surprising since the choice of the discrete state
within the model is to a large degree arbitrary [42]. Dif-
ferent fits can for example lead to different splitting of the
anion potential into the discrete-state potential and the
level shift in the formula (5). To check the sensitivity of
the final cross sections and reaction rates to this ambi-
guity we constructed three different models numbered as
model 1, 2 and 3. The discrete-state potential Vd(R) for
these three models is shown in Figure 1 with dashed lines.
The eigenphases calculated from (1)–(4) follow the data
in Figure 2 for all R and energy ε = 0.05–1.5 eV within
0.2 rad. This is not a perfect fit but we will see in the
next section that the resulting cross sections and reac-
tion rates are quite insensitive to the specific choice of the
model.

3 Cross sections and reaction rates

In this section we first describe briefly the theory of anion-
atom scattering within the nonlocal model including the
details of numerical treatment of the resulting equations.
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The behavior of calculated cross sections and rates is
discussed in the second part.

3.1 Details of the nonlocal calculation of the reaction
dynamics

The method for the treatment of the AD process has been
described in detail previously in [15] or in the review [43]
and is based on projection-operator treatment of vibra-
tional dynamics in electron-molecule collisions within the
discrete-state-in-continuum model (see [41,43] for review).
We give only short account of basic equations needed for
description of the numerical details specific for these cal-
culations. The basic equation is the Lippmann-Schwinger
equation for the lth partial wave expansion coefficient of
the full wave function projected on the discrete state

|ψl〉 = |φl〉+Gl(E)Fl(E)|ψl〉, (6)

where |φl〉 is the partial wave for the potential scattering
in the discrete-state potential Vd, Gl(E) is the retarded
Green’s function in this potential and Fl(E) is the non-
local energy-dependent potential due to coupling of the
discrete state to the electronic scattering continuum and
it can be expanded in the vibrational states |χn〉 of the
neutral molecule[

TN + V0(R) +
l(l + 1)

2µR2

]
|χn〉 = En|χn〉, (7)

where TN is the kinetic-energy operator for the nuclei and
µ
.
= 1606.5 a.u. is the reduced mass of the LiH system.

Using these functions the effective potential reads

〈R|Fl(E)|R′〉

=
∑
n

χn(R)

[
∆̃(εn, R,R

′)− i

2
Γ̃ (εn, R,R

′)

]
χn(R′),

where εn = E − En and

Γ̃ (ε, R,R′) =
√
Γ (ε, R)Γ (ε, R′),

∆̃(ε, R,R′) =
1

2π
p.v.

∫
Γ̃ (ε′, R,R′)

ε− ε′
dε′. (8)

The vibrational wavefunctions |χn〉 are found using the
DVR method with the Fourier basis. The resulting func-
tions are calculated on the regular grid of 6000 points
on the interval R ∈ 〈0, 20〉 a.u. For the representation
of the nonlocal potential Fl(E) on this grid we use the
first 90 functions |χn〉 including functions from the dis-
cretised dissociation continuum. The solution φl of the
scattering problem for the local potential Vd and the
Green’s function Gl(E) are found on a more extended grid
(depending on energy typically R goes up to 150 bohr).
The equation (6) with the potential (8) is solved using
the iterative Schwinger-Lanczos algorithm [44]. The cross

Fig. 3. The integral cross section for associative detachment
in Li+H− collision. Examples of contribution of the individual
partial waves are also shown for the orbital angular momenta
l = 0 and l = 25 with dashed lines.

section is finally calculated from the formula

σAD =
2µ

K3

∑
ln

(2l + 1)|〈χn|
√
Γ (E − En)|ψl〉|2. (9)

For more numerical details see [45,46].

3.2 Discussion of the results

The resulting cross section for the AD process is shown
in Figure 3. The total cross section (solid line) is an over-
all monotonously decreasing function with structures of
sharp peaks and cusps superimposed on it. The overall
decreasing shape is a consequence of the attractive char-
acter of the Li+H− potential. The origin of the structures
is best understood if we look at individual partial-wave
components of the cross section (dashed lines in Fig. 3).
The partial wave component for l = 0 exhibits cusps for
energies E > 0.04 eV. These cusps are Wigner cusps due
to contributions of the individual vibrational states (7).
These structures are also seen in the total cross section,
but since the total cross section is a sum of 60 individ-
ual partial waves the structures almost disappear in the
logarithmic plot. Similar structures are present also in the
AD cross sections for halogen anions [20]. The sharp peaks
for E < 0.03 eV originate in higher partial waves. We can
nicely see it on the l = 25 contribution in Figure 3. These
peaks come from orbiting resonances similar to those in
the H + H− system [47] and in hydrogen halides [48].

In the previous section we constructed three different
nonlocal models with discrete-state potentials differing by
as much as 0.5 eV. This difference is partially compensated
with the level shift function ∆ present in the nonlocal
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Fig. 4. The associative detachment reaction rates and their
sensitivity to the choice of model parameters.

potential (8) but the size of the nonlocal coupling is quite
different among the three models. The cross sections for
all three models differ by at most 2% in the studied energy
range. The difference that would be indistinguishable in
the logarithmic scale in Figure 3. This is very important
observation validating our approach in two respects. First,
it shows that the ambiguity of the fitting procedure does
not have significant influence on the final cross sections.
Second, we could doubt whether the whole idea of using
the nonlocal discrete-state-in-continuum model is right for
a system without obvious curve crossing. But the stability
of the cross sections with respect to model details ensures
us that this way of description of the nonadiabatic cou-
pling between the discrete state of the anion molecule and
the electron scattering continuum is correct.

We also calculated the AD reaction rates by averag-
ing the product of velocity and the cross section over
the Maxwell-Boltzmann distribution of velocities [20]. The
results are shown in Figure 4. Here we show explicitly the
results for all three models. The difference is again within
2%, but now we can distinguish it since linear scale is used.

Note that the resulting reaction rates can be fitted with
the formula

log10 kAD = a(log10 t)
2 + b log10 t+ c

within the same accuracy (<2%) as the difference among
the individual models. The numerical values of parameters
are a = −0.0996, b = 0.15, c = −9.56 for temperatures in
Kelvin and rates in cm3/s.

4 Conclusions and future prospects

We have calculated the reaction rate for the associa-
tive detachment process Li + H− → LiH + e− within the

nonlocal model which can be used in simulations of chem-
istry of the early Universe or stellar atmospheres. The
calculated reaction rate is a decreasing function of temper-
ature. The maximum value at temperature 100 K is more
than one order of magnitude smaller than the Langevin
rate and almost two times smaller than the estimated
value of 4× 10−10 cm3s−1 used in the simulations [5] (note
that a rate independent of temperature was used in the
simulations). We should note that recent calculations [49]
of the charge transfer cross sections also give estimates of
detachment rates, but these are for higher energies (tem-
peratures) than are considered in our work and include
only collisional detachment, but not formation of the
neutral molecule because the coupling to the electron con-
tinuum at short internuclear distances is not included
in their calculation. Because our results show that the
associative detachment rate is several orders of magni-
tude larger than results of [49] at temperature 1000 K we
can conclude that to estimate detachment rates at low
temperatures one must take into account the associative
detachment process.

In future we also want to include the second associative
detachment channel Li− + H→ LiH + e−. To achieve this
goal we have to extend the fixed-nuclei electron-scattering
calculations into the region of internuclear distances R ∈
〈5, 7〉bohr near the crossing of the potentials of the excited
anion state with the ground state of the neutral LiH
molecule. Currently we obtained unstable results in this
region using the R-matrix method. After resolving these
problems we will construct a model including both anion
states which can also be used for calculation of low-energy
inelastic electron collisions with LiH molecules, electron
photodetachment from the ground state of the LiH− ion
and charge transfer in Li + H− and Li− + H collisions.

The work is supported by the Charles University, project
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