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Shape resonances of Be− and Mg− investigated with the method of analytic continuation
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The regularized method of analytic continuation is used to study the low-energy negative-ion states of
beryllium (configuration 2s2εp 2P ) and magnesium (configuration 3s2εp 2P ) atoms. The method applies an
additional perturbation potential and requires only routine bound-state multi-electron quantum calculations. Such
computations are accessible by most of the free or commercial quantum chemistry software available for atoms
and molecules. The perturbation potential is implemented as a spherical Gaussian function with a fixed width.
Stability of the analytic continuation technique with respect to the width and with respect to the input range of
electron affinities is studied in detail. The computed resonance parameters Er = 0.282 eV, � = 0.316 eV for the
2p state of Be− and Er = 0.188 eV, � = 0.167 for the 3p state of Mg− agree well with the best results obtained
by much more elaborate and computationally demanding present-day methods.
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I. INTRODUCTION

Resonances in electron-atom or electron-molecule scatter-
ing, also addressed as transient negative ions, have attracted
attention over the last decades. It is because these temporary
states provide a pathway for electron-driven chemistry via
dissociative electron attachment (DEA) and therefore, applica-
tions can be found in chemistry of the planetary atmospheres
[1], nanolithography in microelectronic device fabrication
[2,3], and in cancer research where these states provide a
mechanism for DNA damage by low-energy electrons [4,5].

Accurate calculation of energies and lifetimes of the reso-
nances represents a challenging task that is more complicated
than the determination of energies of the bound atomic or
molecular states. Temporary negative ions differ from the
bound states in two important respects: (i) they are not stable
and decay into various continua, (ii) corresponding poles
of the S matrix are complex and they are expressed by
E = Er − i�/2. Numerous studies have been published that
discuss several methods for determination of the resonance
energies and widths. In scattering calculations, the presence
of the resonances leads to enhanced cross sections and sharp
changes in phases of the continuum wave functions. Resonance
positions and widths are then determined by Breit–Wigner fits
of the eigenphase sums or their energy derivatives (time-delay
method) [6,7]. Stabilization methods [8–11] search for a region
of stability of the energies with respect to different confining
parameters. The Stieltjes imaging technique [10] allows us to
represent the resonant state by a square-integrable basis and
the width is defined by the resonance-continuum coupling.
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Complex rotation methods [12–14] and the methods employ-
ing complex absorbing potential [15,16] compute complex
resonant energy as an eigenvalue of a complex, non-Hermitian
Hamiltonian.

Recently, the method of analytic continuation in coupling
constant (ACCC) [17–19] has been applied to several molec-
ular targets, such as N2 [20,21], ethylene [22,23], and amino
acids [24]. Furthermore, the known low-energy analytic struc-
ture of the resonance was incorporated into the inverse ACCC
(IACCC) method providing so-called regularized analytic con-
tinuation (RAC) method. The RAC method was successfully
employed for determination of π∗ resonances of acetylene [25]
and diacetylene [26] anions, proving that the ACCC method
can yield accurate resonance energies and widths for various
molecular systems using data obtained with standard quantum
chemistry codes.

Common features of all methods of analytic continuation
is an application of the perturbation potential λV to the
multi-electron Hamiltonian H , i.e., H → H + λV . The role
of this attractive perturbation is to transform the resonant
state into a bound state. Although the RAC method was
developed for strictly short-range perturbations V , authors
were able to successfully use the Coulomb potential in its
stead [25,26]. This obvious inconsistency can yield reason-
able results, because in practical applications the perturbation
potential is often projected onto a finite set of short-range basis
functions, e.g., Gaussian functions used by the quantum chem-
istry software. However, weakly bound states thus obtained
need to be examined carefully because they may, in fact, be
Rydberg states supported by the basis and the long-range tail
of the Coulomb perturbation V [26]. Such states need to be
excluded from the continuation procedure because they do not
represent a resonance transferred to a bound state. To avoid
such complications, in the present study we adopt a short-range
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perturbation potential in the form of a Gaussian function,

V (r) = −e−γ r2
. (1)

This choice of the perturbation was recently evaluated by White
et al. [21] and applied to the well-known 2�g resonance of N−

2 .
Furthermore, Sommerfeld and Ehara [27] introduced another
short-range potential, termed the “Voronoi soft-core potential,”
which they successfully used to analyze the 2�u resonance of
CO−

2 .
The present analysis of the Gaussian perturbation potential

(1) will be carried out for expectedly simpler problems—
atomic shape resonances of beryllium and magnesium. Both
atoms are known to possess a p-wave shape resonance very
close to the elastic threshold. While in the case of the Mg−

the agreement between the available computed resonance
parameters [28–30] and the experimental data [31,32] is
quite good, the situation is very different for the beryllium
atom. There has been a great number of theoretical studies
[33–45] aiming to numerically characterize the Be− 2s2εp 2P

resonance, with various levels of success. Table III in Ref. [43]
clearly summarizes that the theory of the last four decades
predicts the resonance position between 0.1 and 1.2 eV and
the resonance width between 0.1 and 1.7 eV. Even the most
recent calculations differ by a factor of about three for the
two resonant parameters. Moreover, no experimental data are
available for the Be− resonance that could narrow the spread
of all the available theoretical predictions.

Convergence patterns shown in Refs. [43,44] demonstrate
that the Be− resonance may be very sensitive to an accurate
description of the electronic correlation energy. Therefore,
in the present study we employ coupled-clusters (CCSD-
T) and full configuration-interaction (FCI) methods for the
perturbed Be− electron affinities that will then be continued
in the complex plane by the RAC method. The basic ideas of
the RAC method are given in the Sec. II. A quick summary
of the quantum chemistry details is presented in Sec. III. In
Sec. IV we analyze the stability and accuracy of the RAC
method with the Gaussian perturbation potential (1). The
conclusions then follow.

II. METHOD OF REGULARIZED ANALYTIC
CONTINUATION

The RAC method represents a very simple method for
calculating the resonance energies and widths and which
embraces all known analytical features of the coupling constant
λ near the zero energy [26]. The method works as follows:

(1) The atom or molecule is perturbed by an attractive
interaction V multiplied by a real parameter λ

Hneutral → Hneutral + λV, (2)

and bound-state energies EN
i of the neutral state are calculated

for a set of values λi .
(2) The same procedure is carried out for the corresponding

negative ion:

Hion → Hion + λV, (3)

where the bound-state energies EI
i are calculated for the same

values of λi . In the present study the two energies EI
i and EN

i

are the ground-state energies for the respective cases.

(3) Both energies are subtracted, forming the electron
affinity in the presence of the perturbation potential V :

EN
i − EI

i = Ei = κ2
i . (4)

The new set of data points {κi,λi} is then used to fit the
function

λ(κ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ)

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
. (5)

It is represented as a Padé 3/1 function and it defines the level of
complexity of the pole behavior at the low bound or continuum
energies. We call it the RAC [3/1] method. The origin of its
form and the fitting formulas for the [2/1], [3/2], and [4/2]
methods can be found in Ref. [25]. The parameters of the [3/1]
fit; namely, α, β, δ, and λ0 are found by minimizing the χ2

functional,

χ2 = 1

N

N∑

i=1

1

ε2
i

|λ(κi) − λi |2, (6)

where N denotes the number of the points used, while κi and
λi are the input data. Once an accurate fit is found, only the
parameters α and β determine the resonance energy

Er = β2 − α4 (7)

and the resonance width

� = 4βα2. (8)

The role of the parameter δ is to describe a virtual state with
Ev = −1/δ4. Even in the case in which the studied system
does not possess a virtual state, this parameter represents a
cumulative effect of the other resonances and other poles not
explicitly included in the model. The weights εi (accuracy of
the data) in Eq. (6) are generally unknown. The calculation
can be routinely performed with constant εi = 1 or, if the
importance of the data points closest to the origin needs to
be stressed, an increasing-weight sequence (e.g., εi = i) can
be used.

Our experience shows that, for realistic (not model) data
obtained by standard quantum chemistry approaches (CCSD-T
or MRCI), the higher RAC approximations ([3/2] and [4/2])
do not provide an essential improvement in the quality of
the fit represented by χ2. In addition, the higher RAC orders
are more influenced by the noise of the data than the lower
approximations and, when the number of fitting parameters
gets large, the optimization often ends in a local minimum.
For these reasons the RAC [3/1] approximation is used in the
present analysis because it constitutes the best compromise
between the accuracy and the stability of the calculation.

The RAC method has been recently critically evaluated by
White et al. [21]. The authors tested three types of perturbation
potential:

V (r) = −1

r
, (9)

V (r) = −e−γ r2

r
, (10)

V (r) = −e−γ r2
, (11)
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and they suggested that the attenuated Coulomb potential (10)
is the best choice of the three options. They also concluded that
the Gaussian potential (11) does not represent a good choice for
the RAC method. All these potentials are easily implemented
into the standard quantum chemistry codes. The aim of the
present contribution is twofold:

(1) to explore application of the Gaussian-type perturba-
tion and to find the parameters that allow accurate extraction
of the resonance data with the RAC method;

(2) to demonstrate that the RAC method can be applied
with success to low-lying atomic shape resonances.

Before applying the RAC method one must consider two
important issues:

(1) The first issue is the choice of the perturbation potential,
i.e., in the present context the choice of the exponent γ in
Eq. (11). Presently, there exist no general rule, no guide that
helps us to choose the perturbation potential. Therefore, it is
necessary to perform calculations for a set of values of the
parameter γ to find an optimal choice. If the optimal range
of values is found, it is reasonable to expect that the obtained
resonance data should stabilize in such a range, because the
exact function λ(κ) gives the same resonance data for every
choice of the perturbation potential. Since the present [3/1]
RAC function is only approximative, one can only expect an
existence of a plateau that gives approximative values of the
resonance parameters.

(2) The RAC method represents essentially a low-energy
approximation to the exact functionλ(κ). It is therefore obvious
that the method should be used in a range of energies (or
momenta) limited by some maximal energy EM . Our empirical
experience shows that EM ∼ 8Er (Er is the sought resonance
energy) gives a reasonable estimate for the range of energies.

III. ELECTRON AFFINITIES

Ab initio calculations for the electron affinities Ei(λi) in
presence of the external Gaussian field (11) were carried out by
using the CCSD-T [46,47] and FCI methods as implemented
in the MOLPRO 10 package of quantum-chemistry programs
[48]. The core of the basis set employs Dunning’s augmented
correlation-consistent basis of quadruple-zeta quality aug-cc-
pVQZ [49] for both atoms, Be and Mg. This basis set was
additionally extended in an even-tempered fashion by 2s-, 2d-,
2f -,and 2g-type functions and 6p-type functions.

Calculations for the neutral atoms and corresponding neg-
ative ions used the same basis sets and the same correlation
methods (CCSD-T or FCI). Typical dependence of the electron
affinities on the external field (11) is shown in Fig. 1 for both
negative ions, Be−, and Mg−, and in the range of energies
used for the present analytic continuation. Figure 1 yields the
following observations:

(1) As expected, the weaker perturbation potential with
γ = 0.035 requires a stronger scaling parameter λ to achieve
the same binding negative-ion energies as the perturbation with
γ = 0.025.

(2) Surprisingly, a larger scaling parameter (stronger per-
turbation) is necessary to bind the Mg− resonance that lies
closer to the zero when compared with the Be− resonance (as
will be seen below). Such behavior may be caused by the spatial
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FIG. 1. Electron affinities of Be− and Mg− ions under the influ-
ence of the perturbation potential (11). Full lines are shown for the
exponent γ = 0.025, while the broken lines are for γ = 0.035. Red
color (light gray) describes the Be− ion and the black color is for the
Mg−.

extent of the Mg−3p resonant wave function when compared
with the reach of the 2p wave function of the Be− ion.

(3) The lowest binding energies are not included in the
continuation input data because of the difficulties we en-
countered while using the quantum chemistry software. The
Hartree–Fock method is known to destabilize in very diffused
basis sets; however, low binding energies are inaccurate if a
more compact basis is used.

Most of the present results were obtained with the CCSD-
T method. However, once the the optimal exponent γ (see
Sec. IV) was found for the beryllium atom, the affinity curve
shown in Fig. 1 was also recomputed with the expensive FCI
method and the basis as described above.

IV. RESULTS

As discussed in Sec. II, our goal is to search for regions of
stable results with respect to the two optimization parameters.
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FIG. 2. Resonance energy (shown as circles) and width (displayed
as diamonds) calculated for Be− and Mg− as functions of the energy
extent defined by the maximal energy EM . The exponents γ are fixed
at γ = 0.035 for Be− and γ = 0.025 for Mg−.
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FIG. 3. Quality of the RAC fit for the resonance of Be− as a
function of the maximal energy. Exponents γ range from 0.033 to
0.039 bohr−2 and the increasing-weight set ε = i is used.

First is the range of the input electron affinities defined by
maximal affinity EM . The second parameter, the exponent γ in
Eq. (11), defines the shape of the perturbation potential. Typical
dependence of the resonance parameters on the maximal
energy is shown in Fig. 2 for the fixed γ parameters. It is clear
that the stability is little worse for the Be− ion when compared
with the Mg− ion. However, it is possible to narrow the spread
of the obtained resonance data by considering the value of χ2

defined by Eq. (6). Figure 3 shows the dependence of the χ2

quantity on the maximal energy EM for several exponents γ .
Each of the data sets exhibits a pronounced minimum just under
2 eV. This minimum allows the application of the condition of
the best fit. Such a restriction leads to a well-defined EM for
each choice of the perturbation parameter γ producing the data
sets shown in Fig. 4. For beryllium the resonance position and
width stabilize for γ > 0.02. Moreover, Fig. 3 suggests that the
best fit is obtained for γ = 0.035, resulting in Er = 0.323 eV
and � = 0.317 eV. To estimate the accuracy of the correlation
energy provided by the CCSD-T method we also recomputed
this final result with the FCI method. The FCI affinities yield
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FIG. 4. Resonance energy Er (circles connected by full lines)
and the resonance width � (diamonds connected by dashed lines)
as functions of γ parameter of the perturbation potential.

TABLE I. Comparison of available data for the resonance energy
Er and the resonance width � for the 3s2εp 2P state of atomic
magnesium.

Method Resonance energy Resonance width
Er (eV) � (eV)

Model potential [28] 0.37 0.10
Model potential [30] 0.161 0.160
Complex rotation [29] 0.08 0.17
Stabilization [50] 0.14 0.08
Stabilization [45] 0.22 0.24
Complex SCF [51] 0.50 0.54
Finite elements [52] 0.159 0.12
Experiment [31] 0.15 ± 0.03 ∼0.14
Recommended value [32] 0.15 0.16
Present RAC 0.19 0.16

Er = 0.282 eV and � = 0.316 eV. A detailed summary of
the available theoretical results for the Be− resonance was
presented in Table III of Ref. [43]. A comparison with the
most recent computations will be given in Sec. V.

In the case of the magnesium ion, the resonance energy
is very stable over the whole range of examined perturbation
parameters γ . However, the width exhibits a weak dependence
on the exponent γ . This feature may indicate that the low-
order RAC method is inadequate for the Mg− resonance.
Nonetheless, after applying similar procedure as in the case
of beryllium, we found that the best fit is obtained for γ =
0.025, giving Er = 0.188 eV and � = 0.167 eV. The available
data for the Mg− resonance are summarized in Table I. The
presently computed resonance energy is about 40 meV higher
that the experimental value of Burrow et al. [31,53]. Such a
discrepancy may have several possible reasons:

(1) The experimental resolution is about 30–40 meV [31].
(2) The discrepancy between the correlation energies of the

CCSD-T and FCI methods and the present basis set is about
41 meV for the electron affinity of the beryllium atom. Similar
difference can also be expected for the magnesium. Moreover,
weaker stability of � with respect to the perturbation potential
(shown in Fig. 4) indicates that higher-order continuation may
be necessary.

(3) The experimental resonance energy [31] was deter-
mined from the minimum of the transmitted current, whereas
present method defines the resonance energy from a pole of the
S matrix. The two definitions give similar results for a narrow
resonance (� < Er ), but for for a broader resonance (� � Er ),
as in the present case, the results may differ. For example, the
minimum of the transmitted current on the rising background
[31] is shifted to lower energies. On the other hand, in the
case of the Be− resonance, the maxima of the computed cross
sections are slightly shifted to the higher energies because of
the rising background contributions [44].

V. CONCLUSIONS

The method of regularized analytic continuation (RAC)
was applied to the lowest shape resonances of beryllium and
magnesium atoms. The technique is based on the analytic con-
tinuation of the electron affinities and, therefore, is capable of
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providing the resonance parameters for the highest correlation
treatment that is computationally feasible in the bound-state
calculations of the corresponding negative ions. On the other
hand, the RAC method, being essentially a low-energy method,
is not well suited to describe resonances for higher collision
energies (above ∼5 eV). However, this energy restriction
should not affect current considerations because both exam-
ined resonances are very close to the elastic thresholds.

The present study confirms the observations of White et al.
[21], in which the authors state that the Gaussian perturbation
potential is more difficult to apply than potentials possessing
the Coulomb singularity. It has been shown in the case of a
model potential [21] that the trajectory of the resonant pole is
more complicated for the Gaussian perturbation. In the present
study we have shown that, in order to obtain stable results, the
RAC method must be restricted to fairly low electron affinities
and a careful analysis of the results with respect to the width
of the perturbation potential must be carried out.

This procedure allowed us to apply the RAC method to
one of the remaining enigmas among shape resonances of
small atoms; the 2s2εp 2P resonance of Be−. To the best of
our knowledge no experimental data are available for this
resonance. The important role of the correlation energy in this
system creates a challenging task for the theory, albeit the fact
that Be− possess only five electrons. Consequently, about two
dozen theoretical predictions (found in Refs. [33–44]) do not
result in any kind of a consensus. Two methods with a high level
of correlation descriptions, the CCSD-T and FCI methods,
were applied in the present study. While the position of the
resonance shifts to the lower energies by about 41 meV for the

more accurate FCI method, the resonance width was found to
be insensitive to the correlation treatment. Presently calculated
FCI resonant energy Er = 0.282 eV and width � = 0.316
eV are in a good agreement with older complex CI results
of McNutt and McCurdy [37] that predict Er = 0.323 eV
and � = 0.296 eV, and recent stabilization calculations of
Falcetta et al. [45] claiming Er = 0.33 eV and � = 0.40 eV.
Moreover, the scattering calculations of Zatsarinny et al. [44]
determined the resonance with Er = 0.31 ± 0.04 eV and � =
0.40 ± 0.06 eV, again in good agreement with the present
results. However, another set of recent calculations by Tsednee
et al. [43] place the resonance at Er = 0.756 eV and � =
0.874 eV. These calculations employ the multiconfiguration
self-consistent field (MCSCF) method to describe the elec-
tronic correlation, while the resonant state is confined by the
complex scaling technique.

In case of the 2s2εp 2P resonance of Mg−, a comparison
with experiment is available. Although the present calcula-
tions determine the resonance about 40 meV higher than the
experiment [31], they still exhibit the best agreement with the
experimental data among the ab initio methods.
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