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We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes
in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a
parameter that encodes the value of the Bach tensor on the horizon. When this additional “non-
Schwarzschild parameter” is set to zero, the Bach tensor vanishes everywhere, and the “Schwa-Bach”
solution reduces to the standard Schwarzschild metric of general relativity. Compared with previous
studies, which were mainly based on numerical integration of a complicated form of field equations, the
new form of the metric enables us to easily investigate geometrical and physical properties of these black
holes, such as specific tidal effects on test particles, caused by the presence of the Bach tensor, as well as
fundamental thermodynamical quantities.
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I. INTRODUCTION

Einstein’s general relativity, formulated about a century
ago [1], is the most successful theory of gravity. By
predicting and correctly describing new fundamental phe-
nomena such as black holes [2], gravitational waves, and
cosmic expansion, it has become a cornerstone of modern
theoretical physics and astronomy. Most recently, its
predictions have been confirmed by the first direct detec-
tion of gravitational waves from a merger of two black
holes at cosmological distance.
Despite such enormous successes, it has its limitations.

As a classical field theory, it does not take quantum effects
into account. In order to understand them, with an ultimate
vision to unify general relativity with quantum theory, it is
necessary to go beyond the Einstein theory. In string and
other effective theories, Einstein’s gravity is extended by
higher-order terms in curvature that represent quantum
corrections at high energies. In particular, in quadratic
gravity theory, the usual Einstein-Hilbert action is gener-
alized to include the square of the Ricci scalar R and a
contraction of theWeyl tensorCabcd [3,4]. In the absence of
matter, such an action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðγRþ βR2 − αCabcdCabcdÞ; ð1:1Þ

where γ ¼ 1=G (G is the Newtonian constant) and α, β are
additional parameters. The Einstein-Weyl theory is obtained
by setting β ¼ 0. In this case, the field equations are
γðRab − 1

2
RgabÞ ¼ 4αBab, where Bab is the Bach tensor,

Bab ≡
�
∇c∇d þ 1

2
Rcd

�
Cacbd; ð1:2Þ

which is traceless, symmetric, and conserved (gabBab ¼ 0,
Bab ¼ Bba, Bab

;b ¼ 0). Taking the trace of the field equa-
tions, we obtain R ¼ 0, so that they reduce to

Rab ¼ 4kBab; ð1:3Þ

where k≡ αG. For k ¼ 0, vacuum Einstein’s equations are
immediately recovered. Interestingly, in the case of general
quadratic gravity (β ≠ 0), it can be observed from the
corresponding field equations (see, e.g., Eq. (2) in Ref. [5])
that all solutions to (1.3) are also solutions of (1.1) since the
trace of (1.3) implies R ¼ 0.
The field equations (1.3) form a highly complicated

system of fourth-order nonlinear PDEs. Only a few non-
trivial exact solutions are known. Surprisingly, a static
spherically symmetric non-Schwarzschild black hole has
been recently identified and discussed in Ref. [6]. Its metric
functions in standard coordinates are determined by an
involved system of ODEs which was analyzed, e.g., in
Refs. [7–9], mainly by numerical approaches.
In our contribution, we present an exact solution for

such black holes in the form of explicit infinite series.
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Instead of using usual coordinates, we express the metric
in a more convenient form conformal to type D direct-
product Kundt geometries [5]. Higher-order corrections
to the Einstein theory are represented here by the con-
formally well-behaved Bach tensor. This leads to a
remarkable simplification, providing us with two compact
field equations of which the solutions can be found in
terms of power series to any order around any value of a
radial coordinate. In addition to mass, these black holes
contain a further parameter determining the components
of the Bach tensor. By setting this additional parameter
to zero, the Schwarzschild metric is recovered. These
solutions in higher-derivative gravity can thus be called
Schwarzschild-Bach (or Schwa-Bach) black holes.

II. NEW CONVENIENT FORM OF
A BLACK HOLE METRIC

For static spherically symmetric black holes, the metric

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2ðdθ2 þ sin2θ dϕ2Þ ð2:1Þ

is commonly employed. The Schwarzschild solution [2] is
given by f ¼ h ¼ 1–2m=r̄. The metric (2.1) was also used
in Ref. [6] to investigate black holes in quadratic gravity.
It was demonstrated that such a class contains a further
non-Schwarzschild black hole for which f ≠ h.
However, in this paper, we are going to use an alternative

metric form, namely

ds2¼Ω2ðrÞ½dθ2þ sin2θdϕ2−2dudrþHðrÞdu2�: ð2:2Þ

This is related to the metric (2.1) via the transformation

r̄ ¼ ΩðrÞ; t ¼ u −
Z

HðrÞ−1dr; ð2:3Þ

and the new metric functions Ω, H are related to f, h as

hðr̄Þ ¼ −Ω2H; fðr̄Þ ¼ −ðΩ0=ΩÞ2H; ð2:4Þ

where Ω0 denotes the derivative of Ω with respect to r.
The Killing horizon associated with ∂t ¼ ∂u is located at

rh such that

Hjr¼rh ¼ 0; ð2:5Þ

and, due to (2.4), also hðr̄hÞ ¼ 0 ¼ fðr̄hÞ. This is unchanged
under the time-scaling freedom t → σ−1t implying h → σ2h,
which can be used, e.g., to set h ¼ 1 at spatial infinity for
asymptotically flat solutions.
The metric (2.2), written as ds2 ¼ Ω2ðrÞds2Kundt, is

conformal to ds2Kundt which belongs to the class of Kundt
geometries [10,11] (in fact, to a subclass that is the direct
product of two 2-spaces; see Ref. [11], Chap. 7).

III. FIELD EQUATIONS

The conformal approach to investigating black holes,
based on the metric (2.2), is very convenient since it
enables us to evaluate the Ricci and Bach tensors from
the corresponding tensors of the simpler metric ds2Kundt.
In particular, the Bach tensor is given by Bab ¼ Ω−2BKundt

ab .
A direct calculation yields three nontrivial components of
the field equations (1.3) for the metric functions ΩðrÞ and
HðrÞ. By employing the Bianchi identities, it can be shown
[12] that they reduce to two ODEs,

ΩΩ00 − 2Ω02 ¼ 1

3
kB1H−1; ð3:1Þ

ΩΩ0H0 þ 3Ω02Hþ Ω2 ¼ 1

3
kB2; ð3:2Þ

where two independent components of the Bach tensor are

B1 ≡HH0000; B2 ≡H0H000 −
1

2
H002 þ 2: ð3:3Þ

This system is considerably simpler than the previously
used equations for the metric (2.1); see, e.g., Ref. [9].
Moreover, Eqs. (3.1) and (3.2) form an autonomous system
(they do not explicitly depend on the variable r) which is
essential for finding their solution in the form (5.1) below.
Recall that the trace of (1.3) gives R ¼ 0, which reads

HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ ¼ 0: ð3:4Þ

In fact, this equation is obtained by subtracting (3.1)
multiplied by H0 from the derivative of (3.2).
For a geometrical/physical interpretation, let us evaluate

the Bach and Weyl scalar curvature invariants:

BabBab ¼ 1

72
Ω−8½ðB1Þ2 þ 2ðB1 þ B2Þ2�; ð3:5Þ

CabcdCabcd ¼ 1

3
Ω−4ðH00 þ 2Þ2: ð3:6Þ

In fact, Bab ¼ 0 if (and only if) BabBab ¼ 0. Moreover,
CabcdCabcd ¼ 0 implies Bab ¼ 0. Notice also from (3.3)
and (2.5) that B1 always vanishes on the horizon. Based on
the invariant (3.5), there are thus two geometrically distinct
classes of solutions to (3.1) and (3.2), depending on the
Bach tensor. The first corresponds to Bab ¼ 0, while the
involved second case arises when Bab ≠ 0.

IV. VANISHING BACH TENSOR: UNIQUENESS
OF SCHWARZSCHILD

In the case B1 ¼ 0 ¼ B2, using a coordinate freedom
r → λrþ ν, u → λ−1u of the metric (2.2), the complete
solution of Eqs. (3.1)–(3.3) is
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ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 − 2mr3: ð4:1Þ

This is the Schwarzschild solution, since (2.3) and (2.4)
give r ¼ −1=r̄, fðr̄Þ ¼ 1–2m=r̄ ¼ hðr̄Þ, where r̄ > 0 cor-
responds to r < 0 (r increases with r̄). The Schwarzschild
black hole is thus the only possible solution with a
vanishing Bach tensor, in accordance with Birkhoff’s
theorem.

V. NONVANISHING BACH TENSOR: GENERAL
SCHWARZSCHILD-BACH

With B1, B2 ≠ 0, the system (3.1) and (3.2) of nonlinear
field equations is coupled in a nontrivial way. However, it is
autonomous, so that its solutions can be found as expan-
sions in the powers of r around any fixed value r0,

ΩðrÞ ¼ Δn
X∞
i¼0

aiΔi; HðrÞ ¼ Δp
X∞
i¼0

ciΔi; ð5:1Þ

where Δ≡ r − r0. Inserting the series (5.1) with n, p ∈ R
into Eqs. (3.1), (3.2), and (3.4), it can be shown [12] that the
dominant powers of Δ imply specific restrictions such that
only four classes of solutions of the form (5.1) are allowed,
namely ½n; p� ¼ ½−1; 2�, [0, 1], [0, 0], and [1, 0]. We have
proven [12] that the only solution in the class ½−1; 2� is the
Schwarzschild black hole (4.1), while the class [1, 0] is
equivalent to the peculiar ðs; tÞ ¼ ð2; 2Þ class of [7,13]. The
Schwarzschild-Bach black hole is contained in the classes
[0, 1] and [0, 0].

A. Class [0, 1]: Schwa-Bach black hole expressed
around the horizon rh

In general, r0 in Δ of expansions (5.1) can be any
constant. However, in the [0, 1] class, r0 is the root of H
and thus the horizon rh; see Eq. (2.5). A lengthy analysis
shows [12] that this class of solutions of the Einstein-Weyl/
quadratic gravity includes non-Schwarzschild black holes
with Bab ≠ 0. Their explicit form (5.1) is

ΩðrÞ ¼ −
1

r
−

b
rh

X∞
i¼1

αi

�
1 −

r
rh

�
i
; ð5:2Þ

HðrÞ ¼ ðr − rhÞ
�
r2

rh
þ 3brh

X∞
i¼1

γi

�
r
rh

− 1

�
i
�
; ð5:3Þ

where the initial coefficients are

α1 ¼ 1; γ1 ¼ 1; γ2 ¼
1

3

�
4 −

1

2kr2h
þ 3b

�
; ð5:4Þ

and αl, γlþ1 for l ≥ 2 are given by the recurrent
relations

αl ¼
1

l2

�
αl−1ð2l2 − 2lþ 1Þ − αl−2ðl − 1Þ2

− 3
Xl

i¼1

ð−1Þiγið1þ bαl−iÞ
�
lðl − iÞ þ 1

6
iðiþ 1Þ

��
;

γlþ1 ¼
ð−1Þl

kr2hðlþ 2Þðlþ 1Þlðl − 1Þ

×
Xl−1
i¼0

ðαi þ αl−ið1þ bαiÞÞðl − iÞðl − 1 − 3iÞ;

ð5:5Þ

(with α0 ≡ 0) so that α2 ¼ 2þ 1
8kr2h

þ b, γ3 ¼ 1
96k2r4h

, etc.

This family of spherically symmetric black holes
depends on two parameters with a clear interpretation:

(i) The parameter rh identifies the horizon position.
Clearly, r ¼ rh is the root of H given by (5.3).

(ii) The dimensionless Bach parameter b distinguishes
the Schwarzschild solution (b ¼ 0) from the more
general non-Schwarzschild (Schwa-Bach) black
hole with nonzero Bach tensor (b ≠ 0).

Indeed, setting b ¼ 0, the solution (5.2) and (5.3) reduces
to (4.1), the Schwarzschild solution (its horizon is given by
rh ¼ − 1

2m, where m is the black hole mass). Moreover, we
have chosen the new parameter b to determine the value of
the Bach tensor (3.3) on the horizon rh, namely

B1ðrhÞ ¼ 0; B2ðrhÞ ¼ −
3

kr2h
b: ð5:6Þ

The invariants (3.5) and (3.6) are BabBabðrhÞ ¼ r4h
4k2 b

2 and
CabcdCabcdðrhÞ ¼ 12r4hð1þ bÞ2, respectively.
The behavior of the metric functions H and Ω given by

(5.2)–(5.5) is shown inFig. 1 for a special value ofbwhen the

FIG. 1. The functionsHðrÞ and ΩðrÞ for the Schwa-Bach black
hole in the form (2.2). The first 20 terms in (5.3) forH agree with
a numerical solution with precision 10−4, and the first 40 terms in
(5.2) for Ω agree with precision 10−5 on ½−1;−0.5�. The horizon
is at rh ¼ −1, and k ¼ 0.5, b ¼ 0.3633018769168, which are the
same values as in Ref. [6].
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Bach tensor approaches zero for large r̄≡ΩðrÞ; see Fig. 3.
Close to the horizon, the series rapidly converge to the
numerical solution of Ref. [6]. This can be seen in Fig. 2,
where, using the parametric plot and (2.4), the function hðr̄Þ
of the metric (2.1) is expressed from Ω and H.

B. Class [0, 0]: Schwa-Bach black hole expressed
around any point r0 ≠ rh

In this case, the solution to Eqs. (3.1) and (3.2) of the
form (5.1) with n ¼ 0 ¼ p is given by the Taylor expan-
sions, where a0, a1, c0, c1, c2 are five free parameters,

c3 ¼
1

6kc1
½3a0ða0þa1c1Þþ 9a21c0þ 2kðc22− 1Þ�;

alþ1 ¼
−1

lðlþ 1Þc0

×

�
1

3
al−1þ

Xlþ1

i¼1

cialþ1−i

�
lðlþ 1− iÞþ 1

6
iði− 1Þ

��
;

clþ3 ¼
3

kðlþ 3Þðlþ 2Þðlþ 1Þl

×
Xl

i¼0

aialþ1−iðlþ 1− iÞðl− 3iÞ; ð5:7Þ

for any l ≥ 1; see Ref. [12]. This is a large class of solutions
with nontrivial Bach tensor. To identify the Schwa-Bach
black hole (5.2), (5.3), previously expressed around the
horizon rh in the class [0, 1], we have to uniquely determine
the five free parameters by evaluating the functions (5.2) and
(5.3) and their derivatives at r ¼ r0. Interestingly, for b ¼ 0,
the coefficients ai form a geometrical series, r0 disappears,
and the metric functions simplify to the Schwarzschild
solution in the form (4.1) with 2m ¼ −1=rh. For Bab ¼ 0,
both classes [0, 0] and [0, 1] thus reduce to the Schwarzchild

black hole. Recall that the parameter r0 in the class [0, 1]
equals rh, while r0 ≠ rh can be chosen arbitrarily in the
class [0, 0].
Since, in general, B1ðr0Þ, B2ðr0Þ are independent, the

[0, 0] class admits one more parameter than the Schwa-
Bach black hole, and thus it is a larger family of solutions.
Moreover, the power series (5.1) with integer exponents
transforms in some cases to series with noninteger expo-
nents in the usual coordinate r̄. For example, a new class
ðw; tÞ ¼ ð4=3; 0Þ in the notation of Ref. [7] also belongs to
our [0, 0] class; see Ref. [12].

VI. OBSERVABLE EFFECTS CAUSED BY
THE SCHWA-BACH BLACK HOLE

The two independent parts B1, B2 of the Bach invariant
(3.5) can be observed via a specific influence on test
particles, namely their relative motion described by the
equation of geodesic deviation [14]. To obtain measurable
information, we project it onto an orthonormal frame
associated with an initially static observer (_r ¼ 0, _θ ¼
0 ¼ _ϕ), namely eð0Þ ¼ u ¼ _u∂u, eð1Þ ¼ − _uð∂u þH∂rÞ ¼
−HΩ0 _u∂ r̄, eð2Þ ¼ Ω−1∂θ, eð3Þ ¼ ðΩ sin θÞ−1∂ϕ. Indeed,
eðaÞ · eðbÞ ¼ ηab, and the normalization of the observer’s
velocity u implies Ω2H _u2 ¼ −1. Denoting the relative
position of two particles as ZðaÞ ≡ eðaÞμZμ and their

mutual acceleration as Z̈ðaÞ ≡ eðaÞμ D2Zμ

dτ2 , we obtain

Z̈ð1Þ ¼ 1

6

H00 þ 2

Ω2
Zð1Þ −

k
3

B1 þ B2

Ω4
Zð1Þ; ð6:1Þ

Z̈ðiÞ ¼ −
1

12

H00 þ 2

Ω2
ZðiÞ −

k
6

B1

Ω4
ZðiÞ; ð6:2Þ

where i ¼ 2, 3. There is the classical Newtonian tidal
deformation caused by the Weyl curvature proportional to
ðH00 þ 2ÞΩ−2, i.e., the square root of the invariant (3.6).
The Schwa-Bach black hole causes two additional effects
due to the Bach tensor. The first is observed in the
transverse components of the acceleration (6.2) along
∂θ, ∂ϕ, while the second occurs in the radial component
(6.1) along ∂ r̄. Their amplitudes are given by B1, B2

defined in (3.3). Interestingly, on the horizon, there is only
the radial effect caused by B2 since B1ðrhÞ ¼ 0; see (5.6).
It can also be proven [12] that B1, B2 cannot mimic the
Newtonian tidal effect, i.e., cannot be “incorporated” into
the first terms in (6.1) and (6.2). Therefore, by detecting
free fall of a set of test particles, it is possible to
distinguish the pure Schwarzschild from the general
Schwa-Bach geometry.
In Fig. 3, the dependence of the physically relevant

functions ðB1 þ B2ÞΩ−4 and B1Ω−4 on r̄ is plotted. Intere-
stingly, while the former approaches zeromonotonously, the

FIG. 2. To demonstrate the rapid convergence in the near-
horizon region, we plot the function hðr̄Þ of the metric (2.1)
expressed using (2.4). The first 20 (red), 40 (orange), 60 (green),
80 (blue), and 100 (violet) terms in the series are compared with
the numerical solution of Ref. [6] (black). The horizon is located
at r̄h ¼ 1 (that is rh ¼ −1). The scaling freedom with σ2 ≈ 2.18
has been used to obtain h → 1 asymptotically.
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latter has its extreme at a specific distance outside the
horizon r̄h. At this radius, the transverse Bachian tidal effect
(6.2) is maximal.

VII. THERMODYNAMICAL PROPERTIES:
HORIZON AREA, TEMPERATURE,

AND ENTROPY

It is also important to determine the main physical
properties of the family of Schwarzschild-Bach black
holes. The horizon in these spherically symmetric space-
times is generated by the (rescaled) null Killing vector l≡
σ∂t ¼ σ∂u and thus is located at H ¼ 0, i.e., at r ¼ rh; see
(2.5) and (5.3). Its area is, using (5.2),

A ¼ 4πr̄2h ¼ 4πΩ2ðrhÞ ¼ 4πr−2h : ð7:1Þ

Nonzero derivatives of l are lu;r ¼ −lr;u ¼ 1
2
σðΩ2HÞ0.

The surface gravity, given by κ2 ≡ − 1
2
lμ;νlμ;ν on the

horizon [15], is thus

κ=σ ¼ −
1

2
H0ðrhÞ ¼ −

1

2
rh ¼

1

2
r̄−1h : ð7:2Þ

It is the same expression as in the Schwarzschild case
(σ ¼ 1, κ ¼ 1

4m), independent of the Bach parameter b.
The value of the scaling factor σ is fixed by the condition
that h ¼ −Ω2H → 1 asymptotically as r̄ ¼ ΩðrÞ → ∞.
The black-hole horizon temperature is thus

T=σ ¼ 1

2π
κ=σ ¼ −

1

4π
rh ¼

1

4π
r̄−1h : ð7:3Þ

However, in higher-derivative theories, we have to apply
the generalized definition of entropy S ¼ ð2π=κÞ H Q,
see Ref. [16], where the Noether charge 2-form on the
horizon is

Q ¼ −
Ω2H0

16π

�
1þ 4

3
k2

B1 þ B2

Ω4

�����
r¼rh

sin θ dθ ∧ dϕ: ð7:4Þ

Evaluating the integral, using (7.1), (7.2), and (5.6),
we get

S ¼ 1

4
Að1 − 4kr2hbÞ ¼

1

4
Að1 − 4kr̄−2h bÞ: ð7:5Þ

This explicit formula for the Schwa-Bach black hole
entropy agrees with the results of Ref. [6], with the
identification k ¼ α, b ¼ δ�. In fact, it gives a geometric
interpretation of the “non-Schwarzschild parameter” δ as
the parameter b determining the value of the Bach tensor on
the horizon; see (5.6). For the Schwarzschild black hole
(b ¼ 0) or in Einstein’s theory (k ¼ 0), we recover the
standard expression. For smaller Schwa-Bach black holes
(smaller r̄h), the deviations from S ¼ 1

4
A are larger,

analogously to Ref. [17]. To retain S > 0, it is necessary
to have 4kb < r̄2h, restricting the theory parameters if
r̄h → 0.
Combining expressions (7.3), (7.5), and (7.1), the exact

relation between the temperature and the entropy is
obtained,

T ¼ 1

4
σðπSþ 4π2kbÞ−1=2; ð7:6Þ

generalizing T ¼ 1
4
ðπSÞ−1=2 of the Schwarzschild case.

For the parameters of Fig. 1, the values of S and T agree
with those given by Eq. (11) in Ref. [6]. From the behavior
of the metric functions for large r̄, we were also able to
estimate the mass of this Schwa-Bach black hole as
2M ≈ 0.55, also in full agreement with Ref. [6]. In fact,
in Ref. [6], the mass for this whole family of black holes
was studied numerically, and the first law of thermody-
namics was confirmed.
Our current research topics are Schwarzschild-Bach

black holes with a cosmological constant and the study
of specific astrophysical consequences (e.g., pericenter
precession or gravitational lensing).
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FIG. 3. The Bach tensor components (3.3), entering (6.1) and
(6.2), as functions of r̄. For the special value of b as in Fig. 1, they
approach zero for large r̄.
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