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ABSTRACT
Shock revival in core-collapse supernovae (CCSNe) may be due to the neutrino mechanism.
While it is known that in a neutrino-powered CCSN, explosion begins when the neutrino
luminosity of the protoneutron star exceeds a critical value, the physics of this condition in
time-dependent, multidimensional simulations is not fully understood. Pejcha & Thompson
found that an ‘antesonic condition’ exists for time-steady spherically symmetric models,
potentially giving a physical explanation for the critical curve observed in simulations. In this
paper, we extend that analysis to time-dependent, spherically symmetric polytropic models.
We verify the critical antesonic condition in our simulations, showing that models exceeding
it drive transonic winds whereas models below it exhibit steady accretion. In addition, we
find that (1) high spatial resolution is needed for accurate determination of the antesonic
ratio and shock radius at the critical curve, and that low-resolution simulations systematically
underpredict these quantities, making explosion more difficult at lower resolution; (2) there
is an important physical connection between the critical mass accretion rate at explosion and
the mass-loss rate of the post-explosion wind: the two are directly proportional at criticality,
implying that, at criticality, the wind kinetic power is tied directly to the accretion power; (3)
the value of the post-shock adiabatic index � has a large effect on the length and time-scales
of the post-bounce evolution of the explosion, larger values of � result in a longer transition
from the accretion to wind phases.
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1 IN T RO D U C T I O N

When the iron core of a massive star collapses, the collapse is
halted as the core exceeds nuclear densities, driving a shock wave
into the infalling progenitor. This shock wave stalls, becoming a
standing accretion shock at scales r ∼ 200 km, and the progenitor
continues to accrete onto the protoneutron star (PNS) until the shock
is revived by neutrino heating, leading to explosion, or until a black
hole is formed (e.g. Bethe & Wilson 1985; Herant et al. 1994;
Burrows, Hayes & Fryxell 1995; Janka & Müller 1995). Much

� E-mail: raives.1@osu.edu

of supernova theory is focused on understanding the revival of
the stalled shock, especially in two-dimensional (2D) and three-
dimensional (3D; Couch 2013b; Dolence, Burrows & Zhang 2015;
O’Connor & Couch 2018).

The idea of a critical neutrino luminosity for supernovae was
first explored in Burrows & Goshy (1993, hereafter BG93). They
showed that for a spherical, time-steady accretion flow with opti-
cally thin neutrino heating and cooling, for a given accretion rate
Ṁacc there exists a critical core neutrino luminosity above which no
steady-state accretion solution can be found. This work has since
been extended to find 2D and 3D, as well as time-dependent critical
curves and critical surfaces (Murphy & Dolence 2017). Such stud-
ies have generally found that the 2D and 3D critical curves have
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a smaller normalization than the one-dimensional (1D) curve, i.e.
the critical luminosity for a given Ṁacc is smaller in 2D and 3D
than it is in 1D (but larger in 3D than in 2D; Murphy & Burrows
2008; Couch 2013b; Takiwaki, Kotake & Suwa 2014). Furthermore,
time-dependent studies have found radial (Fernández 2012; Gabay,
Balberg & Keshet 2015) and non-radial (Yamasaki & Yamada
2005, 2007) instabilities, such as the standing accretion shock
instability (Blondin, Mezzacappa & DeMarino 2003; Foglizzo,
Scheck & Janka 2006; Murphy & Burrows 2008; Fernández &
Thompson 2009; Fernández 2015) and neutrino-driven convection
(Murphy & Meakin 2011; Murphy, Dolence & Burrows 2013)
that may tend to lower the critical curve, potentially facilitating
explosions.

In an effort to explain the existence of the critical neutrino lu-
minosity of BG93, Pejcha & Thompson (2012, hereafter PT12)
investigated the critical condition for explosion using a time-steady
model, and with different levels of approximation for the post-
shock microphysics and thermodynamics. For the simple toy model
of pressureless free fall onto a standing shock wave and an isother-
mal post-shock medium, they found an analytic critical condition –
the ratio of the isothermal sound speed to the escape velocity at the
shock cannot exceed a critical threshold:

ξ iso
crit ≡ c2

T

v2
esc

∣∣∣∣
shock

= 3

16
. (1)

PT12 call this critical condition the ‘antesonic condition’, because
the condition is met at smaller radius than the sonic condition (in an
isothermal wind, c2

T/v2
esc = 1

4 ) is. We refer to the ratio of the sound
speed squared to the escape velocity squared as the ‘antesonic ratio’,
which we denote as ξ .

PT12 extended their analysis to both time-steady polytropic mod-
els and models with a general equation of state (EOS) and neutrino
heating and cooling (i.e. the BG93 problem), numerically deriv-
ing antesonic conditions for each case. For polytropic models, they
numerically derive ξ

poly
crit � 0.19�. In Appendix, we provide an an-

alytic derivation that shows that

ξ
poly
crit ≡ c2

s

v2
esc
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max

= 3

16
�. (2)

For the general case with neutrino heating and cooling, PT12 found
that

ξν
crit ≡ c2

s

v2
esc

∣∣∣∣
max

� 0.19. (3)

Here � is the adiabatic index, cs is the adiabatic sound speed,
and pressureless free fall upstream of the shock is assumed. In
these more general cases, the critical condition is on the maximum
value of the antesonic ratio, which may or may not be at the shock
radius. For models with neutrino heating and cooling, for exam-
ple, the antesonic ratio reaches its maximum near the ‘gain’ radius
(PT12), where neutrino heating balances cooling in the post-shock
flow.

As shown by PT12, for the isothermal, polytropic, or general EOS
with neutrino heating and cooling, or with any arbitrary changes to
the heating and cooling physics, the physics of the antesonic condi-
tion is the same: above the critical antesonic ratio, it is impossible to
simultaneously satisfy both the Rankine–Hugoniot shock jump con-
ditions and the spherically symmetric, time-steady Euler equations.
PT12 associate the antesonic condition with a dynamic transition
from steady spherical accretion to a transonic thermal wind, i.e. the
supernova explosion.

Although the antesonic condition of PT12 provides an explana-
tion for the critical curve, it has not been fully examined in time-
dependent or multidimensional simulations. However, the antesonic
condition has been used to predict outcomes for large suites of
massive star progenitors (Pejcha & Thompson 2015) in qualitative
agreement with 1D time-dependent simulations tuned to produce
explosions in 1987A-like progenitors (Ugliano et al. 2012; Ertl et al.
2016; Sukhbold et al. 2016). It has also been used to characterize
the results of multidimensional simulations (Couch 2013a; Dolence
et al. 2013; Couch & O’Connor 2014), suggesting a critical value of
ξν

crit ∼ 0.2–0.3 in 2D and 3D. Even so, there is not yet a study that
shows how the dynamical transition from accretion to explosion
actually occurs in a time-dependent system, in the context of the
antesonic condition.

In this paper, we take a step forward in understanding the nature
of the critical curve in idealized, but time-dependent simulations, in
order to better understand the nature of the transition from accretion
to explosion that occurs when the antesonic ratio is exceeded – how
this process behaves, how the structure of our model evolves – as a
guide for full-physics simulations and as a test of our understanding
of the physics in a simplified context. We adopt an approach similar
to the model problems explored in PT12. In particular, we adopt a
simplified, polytropic EOS in order to better understand the relevant
physics in the accretion region, but we extend the results of PT12
to time-dependent simulations.

This paper is organized as follows. In Section 2, we describe our
computational methodology. In Section 3, we present our results.
In Section 3.1, we establish the applicability of the time-steady
antesonic condition to our simulations, i.e. that models that exceed
ξ

poly
crit explode and that models that do not exceed ξ

poly
crit do not. In

Section 3.2, we show the resolution dependence of our simulations
– specifically, we show that low-resolution models underpredict
ξ

poly
crit and Rsh at the critical curve. In Section 3.3, we describe the

properties of the transonic wind – in particular, how the wind mass-
loss rate is determined by the accretion rate at explosion – which
establish an explicit connection between the accretion power at the
shock and the energy of the explosion. In Section 3.4, we describe
the emergence of a wind-driven shell as the wind sweeps up the
accreting matter. In Section 3.5, we explore the effects of time-
dependent perturbations to the simulations, i.e. whether a model
can explode when it only temporarily exceeds the critical curve. In
Section 4, we provide a brief conclusion.

2 ME T H O D O L O G Y

Our study consists of a set of 1D, spherically symmetric hydrody-
namics simulations. The time evolution of the system is governed
by the hydrodynamic equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) + ∇P − ρg = 0, (5)

where ρ is the gas density, vr = v · r̂ = |v| is the radial velocity,
P is the gas pressure, and g = −GM/r2 is the gravitational force,
where G is the gravitational constant and M = 1.4 M� is the mass
of the central PNS; we do not consider the self-gravity of the gas
in our simulations. We use a simple, polytropic EOS for the flow
downstream of the shock:

P = Kρ�, (6)
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where � is the adiabatic index and K is a normalization factor,
where ln (K)1 is proportional to the entropy (for an ideal gas). We
find that, in 1D supernova simulations taking the full microphysics,
heating, and cooling into account, � ranges from � ∼ 1.5 near the
PNS surface to � ∼ 1.2 outside the shock. Thus, our choice of
� = 1.1, 1.4 should be seen as limiting cases of the thermodynamic
properties of the accretion flow. K can be considered analogous
to the critical neutrino luminosity Lν, crit considered in other studies
(PT12). However, the connection between K and Lν, crit has not been
examined in detail, and a full treatment of such is outside the scope
of this paper.

We solve the hydrodynamics equations with the FLASH2 code
(Fryxell et al. 2000). Our fiducial simulations use the direction-
ally unsplit hydrodynamics solver, third-order piecewise parabolic
spatial reconstruction, the ‘hybrid’ slope limiter, and the LLF Rie-
mann solver (we discuss alternate hydro solvers in Section 3.2).
The fiducial simulations were run on a grid with inner radius
xmin = rν = 30 km and outer radius xmax = 5000 km, with a min-
imum grid spacing δx ≈ 0.607 km, obtained using a maximum
of eight adaptive mesh refinement (AMR) refinement levels. The
level of refinement decreases outward with radius in an approxi-
mately logarithmic manner. The initial shock is completely con-
tained within the highest level of refinement. The number of zones
behind the shock (at a given resolution) is a function of the initial
shock radius, and thus the EOS parameter K and the mass accretion
rate Ṁacc. For � = 1.1, the number of zones ranges from about 60 to
250, and for � = 1.4, the number of zones ranges from about 60 to
4500. The number of zones is maximized for small Ṁacc and K close
to the critical value. In the case of successful explosions, the shock
moves outward and into regions of lower refinement. Special care is
taken when the shock encounters forced decrements in refinement
to avoid under/overshooting in the interpolation and to guarantee
conservation. The effects of numerical resolution on our results are
explored in more detail in Section 3.2.

Inside the shock radius, the gas is initialized to the steady-state
velocity and density profiles determined in PT12. These profiles are
defined by K, �, and the mass accretion rate Ṁacc. The conditions
at the shock are described by the Rankine–Hugoniot shock jump
conditions:

ρ−v− = ρ+v+, (7)

ρ−v2
− + P− = ρ+v2

+ + P+, (8)

where ‘+’ and ‘−’ denote quantities just upstream and just down-
stream of the shock, respectively. We use just these two conditions,
neglecting the enthalpy condition, because our choice of K both
upstream and downstream of the shock (see below) fixes the com-
pressibility and entropy of the post-shock medium, rendering the
enthalpy condition moot. In a self-consistent calculation with neu-
trino heating and cooling, the enthalpy of the immediate post-shock
medium would be determined by the full set of shock jump con-
ditions. Our use of a polytropic EOS with prescribed post-shock
K obviates the need for the third shock jump condition and allows
us to control the thermal properties of the accreting material by
hand.

1Throughout this paper, we use ‘ln’ to denote the natural logarithm and
‘log ’ to denote the base 10 logarithm.
2Available for download at www.flash.uchicago.edu

Outside the shock radius, the density and velocity of the gas are
set by the equations of pressureless free fall:

v+(r) =
√

2GM

r
, (9)

ρ+(r) = Ṁacc

4πr2v(r)
= Ṁacc

4πr3/2

1√
2GM

. (10)

For numerical reasons, instead of using P+ = 0, we switch from
a small but finite K upstream of the shock to a large, specified, K
downstream of the shock. The relevant solution to the shock jump
conditions (assuming P+ = 0) is then

M− ≡ v−
cs

= 1

2

(√
1

ξ
− 4

�
−

√
1

ξ

)
, (11)

where all quantities are evaluated just downstream of the shock.
Here, ξ is the local antesonic ratio,

ξ = c2
s

v2
esc

= K�ρ�−1r

2GM
, (12)

as opposed to the critical antesonic ratio ξ crit, which is the maximum
value of the antesonic ratio (see equation 2).

We choose boundary conditions such that, at the outer boundary,
the velocity and density profiles are consistent with free fall and a
constant mass accretion rate. For other variables, zero-gradient or
‘outflow’ boundary conditions are enforced. For the inner boundary,
we use a fixed boundary condition that is constant in time and taken
from the initial conditions at the inner radius determined by the
starting PT12 profile.

We show the time-steady solutions to this problem (equations 4
and 5 with � = 1.1, 1.4) in Fig. 1. The solid blue lines correspond
to different values of K in the post-shock medium, and the solid
orange line is the Mach number just downstream of the shock,
given in equation (11). For a given profile, the shock exists at the
intersection between the blue and orange curves. For cases where
two points of intersection exist, the shock is located at the interior
one, i.e. at smaller ξ , and thus smaller r at fixed K (PT12).

In all of our simulations, we begin by specifying K, Ṁacc from a
grid of values spaced linearly in K and logarithmically in Ṁacc, in the
interval 0.1 ≤ Ṁacc ≤ 1.06 M� s−1. This choice defines the initial,
time-steady, density and velocity profiles. We allow the system to
equilibrate for 0.1 s, then decrease the mass accretion rate by a
factor fṀ (which may be equal to 1) for a time �tṀ (which may be
equal to the total simulation length). The full simulation length is
2.0 s.

3 R ESULTS

3.1 The antesonic condition

We first reproduce an approximation of the PT12 critical curve,
as shown in Fig. 2. We start the simulations at some stable accre-
tion rate Ṁacc,0, which we then decrease by constant factors fṀ

at the outer boundary. For (Ṁ, K) configurations that lie below
the critical curve, the simulations maintain the initial conditions,
displaying time-steady accretion solutions. As we move the simula-
tions to configurations that lie above the critical curve by decreasing
Ṁacc, they undergo dynamical transformations to time-steady wind
solutions. We identify the wind solutions with successful supernova
explosions.
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Figure 1. Solutions to the time-steady Euler equations, plotted as the Mach number M versus the antesonic ratio ξ , for � = 1.1 (left) and � = 1.4 (right). The
dashed grey curve shows the neutrinosphere radius rν . The blue curves correspond to configurations with different choices of K at fixed Ṁacc. For � = 1.1, we
show profiles of |δK| (the fractional separation from the critical curve, see equation 14) from 0 to 10−1, with step sizes of 10−2. For � = 1.4, we show |δK|
from 0 to 6 × 10−2, in steps of 3 × 10−3 from 0 to 1.2 × 10−2, then in steps of 1.2 × 10−2 up to 6 × 10−2. The orange curve shows the Mach number M−
immediately downstream of the shock (equation 11); the shock is located where the blue and orange curves intersect. The critical K for a given Ṁacc is the K
such that the resultant velocity profile is tangent to the post-shock Mach number curve at the point of intersection. Velocity profiles that do no intersect the
M− curve do not have an accretion shock, and thus are not considered here. Some profiles have two points of intersection with the M− curve; in these cases,
the shock is located at the first intersection (i.e. the intersection at smaller ξ , and therefore r).

For the unstable configurations, we investigate the time required
for explosion. As there is no unique, well-defined way to identify
the time for the onset of explosion, we consider three such defini-
tions: tante is defined to be the first time for which ξ > ξ

poly
crit (see

equation 2), we use this time-scale as a physically motivated defi-
nition of t = 0; twind is defined as the first time for which the fluid
velocity immediately downstream of the shock is positive; t400 is
defined to be the time at which the shock reaches a fixed radius
r = 400 km. Though the third definition is more arbitrary than the
other two, it mirrors definitions used in the literature (e.g. Couch
2013b). For comparison, we also consider tsonic, the time at which
the wind first achieves M = 1.

We plot the velocity profiles of the simulation at these times in
Fig. 3. Though the � = 1.4 case is larger in physical extent than
the � = 1.1 case, the velocity profiles are otherwise similar. The
t400 profile is not shown for the � = 1.4 case, as it coincidentally
overlaps with the tante profile.

Finally, we also plot the (maximum) value of the antesonic ratio
as a function of time in Fig. 4.3 We include markers at the three
time-scales (t400, twind, and tsonic) identified above. Not only does the
explosion evolve much more slowly for � = 1.4 than � = 1.1, but
also it does not reach as large of an antesonic ratio as the � = 1.1
explosion does.

Figs 3 and 4 together indicate that rapid expansion of the shock
coincides with rapid growth of the antesonic ratio, and that this

3The slight decrease in max (ξ ) at t ∼ −0.03 is due to the shock colliding
with the trailing end of the fṀ perturbation, which spreads out over many
radial zones, and is steeper than the leading end. The sharp change in Ṁ

manifests as a sharp change in ρ, which is visible in ξ as ξ ∝ ρ� − 1.

phase of rapid evolution begins at tante, or, at least, before twind or
t400. Thus, we choose t = tante as a marker for the onset of explosion.

3.2 Resolution dependence

Here we investigate the effect of increasing resolution on our ability
to resolve the shock radius, the antesonic ratio, and the critical
curve. We measure the resolution of the study with the minimum
grid spacing, δx, which can be decreased by either changing the
linear or adaptive refinement:

δx = xmax − xmin

b × n × 2	−1
= 621.25 km

n × 2	
, (13)

where n is the level of linear refinement, b = 16 is the block size,
and 	 is the maximum number of AMR refinement levels.

In Fig. 5, we show the effect of increasing resolution (decreasing
δx) on the fidelity of our simulations, as measured by the accuracy
of the shock radius Rsh and the critical antesonic ratio relative to
the value found by PT12. We also show how this effect changes at
various distances from the critical curve, defined as

δK ≡ 1 − K

Kc
, (14)

where Kc is the critical value of K for the specified Ṁacc. Thus,
positive δK (i.e. K < Kc) corresponds to solutions below the crit-
ical curve (i.e. steady accretion solutions), while negative δK (i.e.
K > Kc) corresponds to solutions above the critical curve (i.e. wind
solutions).

We find that underresolved simulations systematically underpre-
dict Rsh and ξ sh and overestimate the critical curve, compared to the
semi-analytic PT12 result. Within the context of our simulations,
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Figure 2. The critical curve for our parametrized supernova model, for
� = 1.1 (top) and � = 1.4 (bottom), run at the fiducial resolution (with
minimum grid spacing δx = 0.607 km). Green lines show curves of constant
δK = 0 (solid; i.e. the critical curve), δK =±10−2 (dashed), and δK =±10−3

(dotted; � = 1.4 only); green triangles show the PT12 profiles themselves.
Blue dots and orange Xs represent accretion and wind solutions, respectively.
For a given accretion rate Ṁacc, values of K above a certain critical value
result in a wind solution we identify with a supernova. We note that, for
� = 1.4, some configurations that lie above the critical curve do not explode;
we attribute this to the resolution dependence of the critical curve (see
Section 3.2 for more details).

this means that less well-resolved calculations will be more stable
(less susceptible to explosion) than more highly resolved simula-
tions. Furthermore, simulations near the critical curve require higher
resolution in order to calculate the shock radius to a given accuracy.
That is to say, at fixed physical resolution, configurations closer to
the critical curve are less well resolved than configurations further
away from the critical curve.

For example, a simulation on the critical curve (δK � 0) with
resolution δx = 0.607 km measures the antesonic ratio to about
15 per cent accuracy and the shock radius to about 20 per cent ac-
curacy for � = 1.1. For � = 1.4, δx = 0.607 km yields an accu-
racy of about 45 per cent in Rsh and 15 per cent in ξ sh. Whereas, a
simulation of the same resolution but displaced from the critical
curve by δK = 7.7 × 10−2 measures the antesonic ratio to about
5 per cent accuracy and the shock radius to better than 1 per cent
accuracy.

Some high-resolution simulations are missing from the � = 1.1
panels in this figure for small δK. These simulations exploded at
these resolutions. Though this is prima facie inconsistent with PT12,
careful examination of the time dependence of these calculations
indicates that small time-dependent fluctuations in the solution (as
is common with some Eulerian hydro schemes) instigate explosion
in profiles very close to the critical curve.

In Fig. 6, we show the effect of resolution on the critical curve
itself (compare to Fig. 2). We see that, at low resolution, configura-
tions can be above the PT12 critical curve but still yield accretion
solutions, whereas at high resolution, these configurations yield
wind solutions as expected. This potentially explains why we see
accretion solutions above the critical curve in Fig. 2 for � = 1.4.

Taken together, our results indicate that changes in resolution
have a small (few per cent for � = 1.1, few tens of a per cent for
� = 1.4) effect on the location of the critical curve itself, i.e. on the
critical K for a given Ṁ (Fig. 6), but a larger effect (greater than
10 per cent) on our ability to accurately measure the properties of
simulations at fixed δK (Fig. 5).

We perform a more limited version (specifically, � = 1.1 only,
and with fewer choices of δx) of this analysis for the HLL and
HLLC hydro solvers, to ensure that our choice of solver does not
unduly affect our results. We find that these solvers yield statistically
equivalent values of Rsh/Rsh, 0 and ξ sh/ξ sh, 0 at δx � 1.2 km. At δx �
1.2 km, the LLF solver yields higher accuracy in Rsh/Rsh, 0 and
ξ sh/ξ sh, 0 by factors of approximately 1.5 and 2, respectively. The
critical curves produced with these solvers (i.e. in figures analogous
to Fig. 6) are identical at (a given δx) under all three solvers. We
also perform a limited (� = 1.1 only) version of this analysis using
uniform resolution rather than AMR; the analogue of Fig. 5 made
using these simulations is qualitatively identical to the one presented
here.

For context, we compare these results to the resolutions used in
recent 3D simulations. Takiwaki, Kotake & Suwa (2012) use loga-
rithmically spaced zones, with a fractional resolution of δx

x
� 0.02

(this corresponds to a linear resolution δx = 2 km at a radius of
100 km). Lentz et al. (2015) and Fernández (2015) use smaller
fractional resolutions, δx

x
� 0.014 and �0.0045, respectively (cor-

responding to linear resolutions 1.4 and 0.45 km, respectively, at
a radius of 100 km). Couch & Ott (2013) use a maximum reso-
lution of 0.49 km, and Radice et al. (2016) perform a resolution
study for resolutions up to 0.191 km (though they do not run a
full simulation at this resolution due to the high computational
cost). While not an exhaustive list of the past decade of super-
nova simulations, these selected studies indicate that 3D supernova
simulations are typically not run at resolutions fine enough for con-
vergence of Rsh or max(ξ poly

crit ) to 10 per cent near the critical curve.
We note that, while no specific resolution threshold we can provide
is directly translatable to multidimensional studies [especially those
including turbulence, standing accretion shock instability (SASI),
and convection], we see no reason that such models would con-
verge significantly faster, or at significantly lower resolutions, than
ours.

MNRAS 481, 3293–3304 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/3/3293/5092619 by U
niverzita Karlova v Praze, M

atem
aticko-fyzikalni fakulta user on 15 O

ctober 2018



3298 M. J. Raives et al.

Figure 3. Mach number profiles for Ṁacc,0 = 1.06 M� s−1, with � = 1.1 (left) and � = 1.4 (right) cases, with the profiles corresponding to twind, tante, and
t400 highlighted. Output profiles are separated in time by 1 ms in the � = 1.1 case, and 20 ms in the � = 1.4 case. The profile at t = t400 is not shown for
� = 1.4, as the initial shock radius is near 400 km. For � = 1.1, see Fig. 9 and Section 3.3; see Section 3.4 for further evolution of the wind.

Figure 4. The maximum antesonic ratio versus time for a configuration
with Ṁacc,0 = 1.06 M� s−1, for both � = 1.1 and � = 1.4. For comparison,
the time-scales t400, twind, and tsonic are also shown for each configuration.
The time-scale is normalized such that tante = 0; the left-hand panel shows
t < 0, while the right-hand panel shows t > 0. Both curves start at the point
where the mass accretion rate is first reduced – the period of constant ξ

at the beginning of the curves marks the time before this change in Ṁacc

has reached the shock. The growth of the antesonic ratio starts out slow
in both cases, but quickly increases after the antesonic condition is met.
The � = 1.1 simulation shows both a faster increase in ξ /ξ crit and a larger
maximum ξ /ξ crit.

3.3 The transonic wind

Once the accretion flow exceeds the antesonic limit, it begins a time-
dependent transition to a transonic wind, shown by the profiles in
between the blue and green curves in Fig. 3. In Fig. 7, we plot the
wind mass-loss rate Ṁwind against the mass accretion rate Ṁacc at
the onset of explosion (i.e. at t = tante), and the kinetic power of
the wind (as measured at the sonic point) Ėwind = 1

2 Ṁwindv(Rsonic)2

against the kinetic power of accretion (as measured just in front of
the shock, at the onset of explosion) Ėacc = 1

2 Ṁaccv(Rsh)2. We find
that for configurations corresponding to initial conditions on the
critical curve, Ṁwind and Ṁacc,0 are tightly correlated – their ratio is
very nearly constant. Furthermore, simulations with the same initial
accretion rate Ṁacc,0, but different decreases in Ṁacc, specified by
fṀ , yield winds with the same Ṁwind, and have the same value of
Ṁacc at the onset of explosion.

Naively, one might not expect such a tight correspondence be-
tween Ṁwind and Ṁacc. To see where this relationship comes from,
note that the steady-state wind mass-loss rate can be written as

Ṁwind = 4πR2
soniccs(Rsonic)ρ(Rsonic) = constant, (15)

where

Rsonic = GM

2c2
s (Rsonic)

(16)

is the radius of the sonic point. Using this relation, and the EOS, we
can write

Ṁwind = πG2M2

(K�)3/2
ρ(Rsonic)(5−3�)/2. (17)

Similarly, we can write the mass accretion rate (which is constant
everywhere) as

Ṁacc = 4πR2
shv(Rsh)ρ(Rsh), (18)
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The antesonic condition I 3299

Figure 5. Shock radius (top) and antesonic ratio at the shock (bottom), relative to the PT12 value, for stable simulations at various distances from the critical
curve, for � = 1.1 (left) and � = 1.4 (right), and with fixed Ṁ = 0.37 M�. The points show the mean value of the shock radius and antesonic ratio over the
whole simulation time; error bars show the error on the mean. We see that simulations close to the critical curve require higher resolution to converge to the
same accuracy compared to those further away. Furthermore, � = 1.4 simulations require higher resolution to achieve a similar accuracy in Rsh to � = 1.1
simulations. High-resolution simulations for the smallest δK cases exploded and are not plotted here; see the main text for our explanation of this behaviour.

where we can use the critical condition to write the shock radius Rsh

as

Rsh = 3GM�

8c2
s (Rsh)

. (19)

Since the flow in front of the shock is in free fall, the velocity just
in front of the shock is given by

v(Rsh) = −
√

2GM

Rsh
= − 4√

3�
cs(Rsh), (20)

we can write

Ṁacc = −3
√

3π

4

G2M2�3/2

(K�)3/2
ρ(Rsh)(5−3�)/2. (21)

Thus the ratio of the mass-loss rate to the mass accretion rate is

∣∣∣∣Ṁwind

Ṁacc

∣∣∣∣ = 4

3
√

3

1

�3/2

(
ρ(Rsonic)

ρ(Rsh)

)(5−3�)/2

. (22)
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3300 M. J. Raives et al.

Figure 6. The critical curve at two different resolutions (left: below the fiducial resolution; right: above the fiducial resolution), for � = 1.1 (top) and � = 1.4
(bottom). The simulations shown here are the same as in Fig. 2 (there run at the fiducial resolution). Green lines show curves of constant δK = 0 (solid),
δK = ±10−2 (dashed), and δK = ±10−3 (dotted). We see that underresolved simulations have a critical curve that has a larger normalization than the PT12
result; as resolution increases the critical curve normalization approaches the PT12 value. This effect is more extreme in the � = 1.4 case, with all of the
simulations run at the fiducial resolution yielding accretion solutions at low resolution.

For � = 1.1, this is approximately equal to∣∣∣∣Ṁwind

Ṁacc

∣∣∣∣ � 0.667

(
ρ(Rsonic)

ρ(Rsh)

)0.85

, (23)

and, for � = 1.4,∣∣∣∣Ṁwind

Ṁacc

∣∣∣∣ � 0.465

(
ρ(Rsonic)

ρ(Rsh)

)0.4

. (24)

That is to say, we should expect the ratio of the wind mass-loss rate
to the accretion rate to be constant. We see in Fig. 7 that this is

nearly true, with a small discrepancy due to the fact that ρ(Rsh) and
ρ(Rsonic) have slight K dependences.

The implication of this result is that, when the antesonic condition
is met, the kinetic power of the resulting wind is proportional to
the accretion luminosity at the shock at the onset of explosion.
Specifically, we expect

∣∣∣∣ Ėwind

Ėacc

∣∣∣∣ = v(Rsonic)2

v(Rsh)2

∣∣∣∣Ṁwind

Ṁacc

∣∣∣∣ , (25)
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The antesonic condition I 3301

Figure 7. Left: the wind mass-loss rate Ṁwind of the post-explosion transonic wind as a function of the measured accretion rate Ṁacc, for � = 1.1. Right:
the kinetic power Ė = 1

2 Ṁv2 of the transonic wind, measured at the sonic point, versus that of the accretion flow, measured just in front of the shock at
the onset of explosion. The simulations here all have initial conditions on the critical curve, and have fṀ = 0.8 and 0.9, indicated by blue filled and orange
unfilled diamonds, respectively. The green line is the analytic prediction obtained in equations (23) and (27), using the mean value of ρ(Rsonic)/ρ(Rsh) across
all simulations. We see that the wind mass-loss rate and kinetic power do not depend on fṀ – each pair of simulations with the same Ṁacc,0 but differing
fṀ has the same Ṁwind and Ėwind. We also note that simulations with differing fṀ have nearly the same measured Ṁacc and Ėacc. Finally, we note that the
simulations deviate slightly from our linear fit, implying that ρ(Rsonic)/ρ(Rsh) has a small dependence on the accretion rate. In actuality, the density ratio is a
function of K, but K and Ṁacc are connected by the critical curve.

∣∣∣∣ Ėwind

Ėacc

∣∣∣∣ = 1

4
√

3�

(
ρ(Rsonic)

ρ(Rsh)

)(3−�)/2

. (26)

That is, for � = 1.1,∣∣∣∣ Ėwind

Ėacc

∣∣∣∣ � 0.138

(
ρ(Rsonic)

ρ(Rsh)

)0.95

, (27)

and, for � = 1.4,∣∣∣∣ Ėwind

Ėacc

∣∣∣∣ � 0.122

(
ρ(Rsonic)

ρ(Rsh)

)0.8

. (28)

We see again that the ratio of Ėwind to Ėacc is very nearly constant,
with a slight discrepancy due to the K dependences of Ėwind and Ėacc.
This discrepancy is naturally larger than in the wind mass loss/mass
accretion case, as the exponent on ρ(Rsh)/ρ(Rsonic) is larger in this
case.

In real supernovae, these relations only set the initial conditions
for subsequent time evolution of the wind, which decreases in power
as the PNS core cools. However, such cooling is not considered in
this paper.

The explanation for our observation that simulations with the
same initial mass accretion rate, but differing fṀ , have the same
measured accretion rate at the onset of explosion, is more subtle.
Though we initially specify a discontinuous jump in Ṁacc, this jump
spreads out in radius as it propagates inwards, becoming a steep, but
smooth, change in density when it encounters the shock. Though
the size and slope of this perturbation may change with fṀ , the flow
will encounter the antesonic condition at the same Ṁacc regardless
of the choice of fṀ , because the simulations are using the same
value of K, and thus the same critical Ṁacc.

This is also true of our observation that fṀ has no effect on Ṁwind.
In a real supernova, the collapsing star traces out a trajectory in the
(Ṁacc, K) space [in reality, the (Ṁacc, Lν) space] of Fig. 2, starting
below the critical curve at high Ṁacc, K, and moving down as both
Ṁacc and K decrease with time. Shock revival occurs if and when
the critical curve is crossed. Should the accretion flow hit a steep
density jump, such as the density jumps between shell interfaces
(Pejcha & Thompson 2015; Summa et al. 2016; Ott et al. 2017)
(or the smoothed fṀ jump in our simulation), then the slope of
this trajectory will become more shallow, leading to an intersection
(and thus explosion) at higher Ṁacc and K. Conversely, should the
accretion flow fail to hit such a density jump, then the explosion,
if it occurs at all, will happen at lower Ṁacc, K. In our simulations,
then, since we keep constant K, the effect of fṀ on the evolution of
the accretion flow does not affect the mass accretion rate at which
the flow reaches criticality.

We stress that K, not Ṁacc, is the important factor in determining
the evolution of the transonic wind. The tight Ṁwind–Ṁacc correla-
tion is a consequence of the critical curve – the existence of the
critical curve enforces a direct correspondence between Ṁacc and
K at the onset of explosion. Because our simulations do not have
time-varying K, configurations of the same Ṁacc,0 but different fṀ

explode with the same K, and thus naturally have the same transonic
wind properties.

This point is made clear when we look at initial conditions that
lie significantly below the critical curve (i.e. configurations with the
same Ṁacc,0, but a smaller K, that are driven to explosion with larger
perturbations, i.e. smaller fṀ ). These configurations are displaced
from the Ṁwind–Ṁacc correlation of the higher K configurations
– they have significantly smaller wind mass-loss rates than the
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3302 M. J. Raives et al.

Figure 8. The radii of the forward and reverse shocks as a function of time, for � = 1.1 (left) and � = 1.4 (right), for Ṁacc,0 = 1.06 M� s−1. Dashed lines
show linear fits to the later t points; we see that the shock expansion is linear at these times, i.e. that the shock velocity is constant.

higher K configurations of the same Ṁacc,0 do. However, when we
investigate how the wind mass-loss rate depends on K, we find
that both the high K and low K configurations lie along the same
relation. That is to say, the properties of the wind are determined by
the thermal properties of the model (i.e. the EOS parameters K and
�) rather than the accretion rate as specified by Ṁacc.

3.4 The wind-driven shell

As the wind moves outward, it sweeps up the accreting gas, forming
a high-density peak significantly downstream of the forward shock,
as seen in Fig. 9. This peak steepens with time and eventually forms
a secondary, reverse shock. We refer to the region in between the
two shocks as the wind-driven shell.

Fig. 8 shows the radius of the forward and reverse shocks as
a function of time. We see that the shocks quickly approach a
constant velocity, and that the reverse shock moves more slowly
than the forward shock – the wind-driven shell grows larger over
time. This behaviour is qualitatively similar to wind emergence
seen in supernova models such as Burrows et al. (1995) and Janka
& Müller (1996).

3.5 Time-dependent perturbations

Here we investigate the stability of various configurations to time-
dependent perturbations of Ṁacc. We take initially stable configu-
rations near, but below the critical curve, and reduce the mass ac-
cretion rate by a factor fṀ for a short time �tṀ . We find that there
is a threshold for the duration of this perturbation, below which
no explosion is produced despite the fact that the configuration is
unstable for finite time. Our results are summarized in Fig. 10. We
see that the critical �tṀ changes quickly towards larger fṀ (smaller
perturbations), and changes more slowly towards smaller fṀ (larger
perturbations).

These perturbations can be viewed as analogous to perturbations
caused by asphericities in the Si/O burning layers found in 2D and

3D progenitor models (Arnett & Meakin 2011; Couch & Ott 2013;
Couch et al. 2015). These papers suggest characteristic perturbation
magnitudes of 20 per cent in velocity, corresponding to an equal size
perturbation in Ṁ in our model (i.e. fṀ = 0.8). The exact magnitude
of these perturbations should not be overly stressed; Müller & Janka
(2015) and Müller et al. (2016) show that these perturbations are
multidimensional and highly progenitor dependent. Furthermore,
pre-collapse perturbations are not expected in all progenitors. As
such, their overall impact on the general supernova problem is still
unclear.

Figure 9. Mach number profiles for the Ṁacc,0 = 1.06 M� s−1 and � = 1.1
model, as per Fig. 3, but showing t � tsonic instead. As before, the profile
highlighted in green corresponds to t = tsonic.
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The antesonic condition I 3303

Figure 10. Stability of the simulation against transient perturbations, for
an initial accretion rate Ṁacc,0 = 1.06 M� s−1. The initial conditions corre-
spond to a configuration on the critical curve. We see that for larger decreases
in accretion rate (i.e. for smaller fṀ ), the maximum stable perturbation time
is smaller.

These results can also be interpreted in the context of pre-shock
turbulence. Our results suggest that the perturbation to Ṁacc required
for explosion is dependent on the scale of the perturbations. Larger
scale perturbations (lasting for a longer length of time) can lead
to explosion for smaller total density perturbation, whereas smaller
scale perturbations (lasting for a shorter length of time) require a
larger decrease in density.

We find no evidence for oscillatory solutions, whether stable
(i.e. remaining constant in amplitude) or unstable (i.e. increasing in
amplitude until the critical curve is crossed), such as those found
in Gabay et al. (2015) and Fernández (2012). However, as our
polytropic EOS does not have any radially dependent heating or
cooling terms, our lack of evidence is not in conflict with the Gabay
et al. (2015) or Fernández (2012) results.

4 C O N C L U S I O N

We perform simulations of simple supernova models with a poly-
tropic EOS in an effort to extend the findings of PT12 to time-
dependent models. Our findings are as follows.

(i) We extend the analytic results of PT12 to derive a critical
condition for a polytropic EOS (equation 2, Fig. 1, and Appendix).

(ii) We verify the existence of the antesonic condition in time-
dependent simulations, and that it is the same as the time-steady
antesonic condition (Section 3.1; Figs 2 and 6). In particular, when
the antesonic condition is exceeded, we observe a time-dependent
evolution from accretion to a thermally driven wind (Sections 3.3
and 3.4; Figs 3 and 9).

(iii) The value of the adiabatic index � has a strong effect on the
length and time-scales of the evolution of the explosion. Simulations
using � = 1.4 have significantly larger critical shock radii than
simulations with � = 1.1 do, and evolve more slowly (Section 3.1;
Fig. 4).

(iv) High resolution is required to fully capture the nature of
the critical condition for explosion. At low resolutions, the critical

curve is shifted to higher K. Configurations that explode at high
resolution fail to do so at lower resolution. Only the highest reso-
lutions found in the literature would yield accuracy �10 per cent in
the antesonic ratio or shock radius at the critical curve, under our
model (Section 3.2; Figs 5 and 6).

(v) There is an important physical connection between the post-
explosion wind and the pre-explosion accretion flow. In particular,
the mass-loss rate of the transonic wind is (nearly) proportional
to the initial accretion rate of the PNS, and the kinetic power of
the wind is (nearly) proportional to the kinetic power of accretion
immediately before explosion (Fig. 7). This relationship is a conse-
quence of the relationship between the mass accretion rate and the
EOS parameter K (itself directly related to the post-shock entropy)
imposed by the critical curve – the wind properties are set by K,
the value of which implies a certain Ṁacc due to the constraint of
the critical condition. This result implies that a higher accretion rate
at the onset of explosion leads to an explosion with a larger wind
mass-loss rate and thus more kinetic power in the wind (Section 3.3).

(vi) Our model supernovae are sensitive to time-dependent per-
turbations. We find that temporary decreases in the mass accretion
rate can lead to explosion, even when the length of the perturba-
tion is much smaller than the time required for the supernova to
transition to the wind phase (Section 3.5; Fig. 10).

The analysis of the antesonic condition performed in this paper
is fundamentally limited to 1D. While we can compare to 2D and
3D results (as in Section 3.2), any comparisons made therein re-
main speculative. Ultimately, we lack a full theory of the antesonic
condition in multiple dimensions and with more realistic physics.
How the antesonic condition might respond to turbulence driven
by SASI or convection, for example, is unknown. Our simulations
merely provide a hint of the effect of resolution on the ability to
perform accurate simulations of supernovae (Section 3.2), and of
the relationship between the initial progenitor properties and the
properties of the explosion and remnant (Section 3.3). Both of these
are of relevance to full physics, multidimensional supernova mod-
elling. However, future work explicitly investigating the antesonic
condition with a more realistic physical set-up is needed.
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APPENDIX: THE POLYTRO PIC ANTESONI C
C O N D I T I O N

An analytic expression for the antesonic condition can only be
found for an isothermal EOS. Even with a simple, polytropic EOS,
the equations become intractable.

However, consider a ‘graphical’ solution to the problem. When
the velocity accretion profiles are plotted in the ξ–M space (such as
in Fig. 1), they must intersect the curveM− (defined in equation 11)
if they have a shock. It stands to reason then that there must be a
‘last’ solution – a solution where any increase in K yields a solution
that does not intersect M− – i.e. a solution that does not have
a shock, and, according to PT12, represents a configuration that
must undergo a dynamical transition to a wind (i.e. a supernova
explosion). By definition, the M profile of this solution must be
tangent to M− at the point of intersection. Thus, we can find the
critical antesonic ratio by determining the antesonic ratio for which
∂M
∂ξ

= ∂M−
∂ξ

.

We can write ∂M
∂ξ

as

∂M
∂ξ

= ∂M
∂r

∂r

∂ξ
= 1

cs

(
∂v

∂r
− M∂cs

∂r

)
∂r

∂ξ
, (A1)

where ξ is the antesonic ratio:

ξ = c2
s r

2GM
. (A2)

Thus we can write

∂ξ

∂r
= c2

s r

2GM

(
1

r
+ 2

cs

∂cs

∂r

)
, (A3)

∂r

∂ξ
=

(
∂ξ

∂r

)−1

= 1

ξ

(
1

r
+ 2

cs

∂cs

∂r

)−1

, (A4)

∂r

∂ξ
= csr

ξ

(
cs + 2r

∂cs

∂r

)−1

, (A5)

and thus

∂M
∂ξ

= r

ξ

∂v
∂r

− M∂cs
∂r

cs + 2r ∂cs
∂r

. (A6)

From equation (11), we can determine

∂M−
∂ξ

=
1 −

√
�

�−4ξ

4ξ 3/2
. (A7)

Thus, the critical condition can be written as

∂M
∂ξ

− ∂M−
∂ξ

= 0, (A8)

r

ξ

∂v
∂r

− M∂cs
∂r

cs + 2r ∂cs
∂r

−
1 −

√
�

�−4ξ

4ξ 3/2
= 0. (A9)

For convenience, we rewrite the Euler equations (equations 4 and 5)
in the form

∂ρ

∂r
= − ρ

2r

ξ−1 − 4M2

1 − M2 , (A10)

∂vr

∂r
= vr

2r

ξ−1 − 4

1 − M2 . (A11)

Assuming a polytropic EOS, the sound speed is

c2
s = ∂P

∂ρ
= ∂

∂ρ
(Kρ�) = K�ρ�−1, (A12)

and thus we have

∂cs

∂r
= ∂

∂r

(√
K�ρ�−1

)
, (A13)

∂cs

∂r
= � − 1

2

cs

ρ

∂ρ

∂r
, (A14)

∂cs

∂r
= � − 1

4

cs

r

ξ−1 − 4M2

1 − M2 . (A15)

The critical condition (equation A9) is thus exactly given by

M−
ξ

�+1
4ξ

− 2 − M2
−(� − 1)

M2
−(2� − 3) + 1 − �−1

2ξ

−
1 −

√
�

�−4ξ

4ξ 3/2
= 0. (A16)

We find the solution to the equation to be exactly

ξ
poly
crit = 3

16
�. (A17)
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