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We present a new explicit class of black holes in general quadratic gravity with a cosmological constant.
These spherically symmetric Schwarzschild–Bach–(anti-)de Sitter geometries, derived under the
assumption of constant scalar curvature, form a three-parameter family determined by the black-hole
horizon position, the value of the Bach invariant on the horizon, and the cosmological constant. Using a
conformal to Kundt metric ansatz, the fourth-order field equations simplify to a compact autonomous
system. Its solutions are found as power series, enabling us to directly set the Bach parameter and/or
cosmological constant equal to zero. To interpret these spacetimes, we analyze the metric functions.
In particular, we demonstrate that for a certain range of positive cosmological constant there are both black-
hole and cosmological horizons, with a static region between them. The tidal effects on free test particles
and basic thermodynamic quantities are also determined.
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Introduction.—Black holes, regions with very strong
gravity from which not even light can escape, are one of
the most fascinating theoretical predictions of Einstein’s
general relativity [1]. The first exact solution to this
theory was almost immediately found by Schwarzschild
[2], describing a static spherically symmetric spacetime.
However, it took several decades to fully understand its
black-hole nature. This initiated the “golden age” of black
hole studies, epitomized by the discovery of astrophysically
more relevant Kerr rotating solution [3]. Studies of various
aspects of these “collapsed objects,” such as influence on
matter and fields, the no-hair conjecture, thermodynamic
properties, or quantum evaporation, followed soon. More-
over, a great observational effort brought the direct evidence
of their existence in our universe when the Cygnus X-1
sourcewas identified as a black hole. Also, now it seems that
supermassive black holes reside in the nuclei of almost all
galaxies. Mergers of black-hole binaries have been recently
detected as the first gravitational wave signals.
Another remarkable interplay between Einstein’s theory

and observed astronomical phenomena is a concept of the
cosmological constant. The famous Λ term was introduced
by Einstein into his field equations to allow a static
cosmological model [4]. However, it was soon demon-
strated by de Sitter [5] that the cosmological constant
causes even an empty space to expand exponentially fast
[6]. Nowadays, this is employed for a phenomenological
description of the observed accelerated expansion of our
universe caused by “dark energy.” The de Sitter solution
also captures the main features of the inflationary epoch in
the very early Universe.

Despite all the great successes of Einstein’s gravity
theory, it also has its limits, in particular, the impossibility
to quantize it in the same way as other fundamental
interactions, and perhaps some open cosmological issues.
Various extensions of general relativity have thus been
considered, see Refs. [7–10] for reviews. In these modified
theories, the black hole solutions play a prominent role,
providing natural test beds for their comparison [11–14].
Assuming a constant scalar curvature, we derive a new

class of static spherically symmetric black hole solutions
with a cosmological constant Λ in quadratic gravity [15],
which includes the Einstein–Weyl theory [16,17]. It gen-
eralizes [18] to include higher-order gravity corrections,
and [14,19] to admit any Λ. In contrast with the black holes
of Refs. [14,19], the second (cosmological) horizon may
appear due to Λ > 0. On large scales, the higher-order
corrections considerably affect the asymptotic behavior
of the geometry, which, even in the case of Λ ¼ 0, is not
asymptotically flat (except for finely tuned parameters).
This additional freedom thus opens completely new and
more involved possibilities. Moreover, both the cosmo-
logical constant and higher-order corrections are of key
importance in quantum gravity models, e.g., Ref. [20].
Within this setting, the vacuum action of quadratic

gravity contains Λ, the Ricci scalar R, and a contraction
of the Weyl tensor Cabcd, namely,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½γðR − 2ΛÞ þ βR2 − αCabcdCabcd�; ð1Þ

where α, β, γ ¼ G−1 are constants. The corresponding field
equations read
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γ

�
Rab −

1

2
Rgab þ Λgab

�
− 4αBab

þ 2β

�
Rab −

1

4
Rgab þ gab□ −∇b∇a

�
R ¼ 0; ð2Þ

where Bab ≡ ð∇c∇d þ 1
2
RcdÞCacbd is the traceless, sym-

metric, and conserved Bach tensor. Assuming R ¼ const,
the last term in (2) simplifies and the trace of the field
equations implies R ¼ 4Λ, so that they become

Rab − Λgab ¼ 4kBab; with k≡ α

γ þ 8βΛ
; ð3Þ

see Ref. [21]. For k ¼ 0 vacuum Einstein’s equations with a
cosmological constant are obtained. For β ¼ 0 we get
Einstein–Weyl gravity. For γ þ 8βΛ ¼ 0 the conformal
Weyl theory is restored, in which the rotational curves
of galaxies were studied [22] within the spherically
symmetric setting. Our solution, as a unifying model,
may enable the analysis of relations between these theories
in such astrophysical situations.
The geometry.—A spherically symmetric metric is

usually written as

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2ðdθ2 þ sin2θdϕ2Þ: ð4Þ

However, in Refs. [19,23] it was shown that for inves-
tigation of such geometries in quadratic gravity, an alter-
native form is more convenient,

ds2 ¼ Ω2ðrÞ½dθ2 þ sin2θdϕ2 − 2dudrþHðrÞdu2�: ð5Þ

This is related to (4) via

r̄ ¼ ΩðrÞ; t ¼ u −
Z

HðrÞ−1dr; ð6Þ

and the metric functions Ω, H give f, h using

hðr̄Þ ¼ −Ω2H; fðr̄Þ ¼ −
�
Ω0

Ω

�
2

H ð7Þ

(prime denotes the derivative with respect to r). The new
metric (5) is conformal to a simple direct-product Kundt
“seed, ”ds2 ¼ Ω2ds2Kundt, which is of the algebraic type D,
see Refs. [21,24,25].
In the metric (5), the Killing horizons corresponding to

∂u ¼ ∂t are located at specific radii rh satisfying

Hjr¼rh ¼ 0: ð8Þ

Of course, via (7) this gives hðr̄hÞ ¼ 0 ¼ fðr̄hÞ. There is a
time-scaling freedom t → σ−1t of the metric (4) implying

h → σ2h, which can be used, e.g., to adjust appropriate
value of h at a chosen radius.
To uniquely characterize the geometries (5), we need the

Weyl and Bach scalar curvature invariants,

CabcdCabcd ¼ 1

3
Ω−4ðH00 þ 2Þ2; ð9Þ

BabBab ¼ 1

72
Ω−8½ðB1Þ2 þ 2ðB1 þ B2Þ2�; ð10Þ

where two independent Bach components are

B1 ≡HH0000; B2 ≡H0H000 −
1

2
H002 þ 2: ð11Þ

Interestingly, Bab ¼ 0 ⇔ BabBab ¼ 0. Thus, we distinguish
two geometrically different types of solutions in quadratic
gravity defined by Bab ¼ 0 and Bab ≠ 0, respectively.
The field equations.—Under conformal transformations,

the Bach tensor simply scales as Bab ¼ Ω−2BKundt
ab and

since higher-order corrections in (3) are represented by the
Bach tensor, using the metric (5) leads to a remarkable
simplification of the field equations. Explicit evaluation of
the field equations (3) for (5), using the Bianchi identities,
yields two simple ODEs for the metric functions ΩðrÞ
and HðrÞ, namely,

ΩΩ00 − 2Ω02 ¼ 1

3
kB1H−1; ð12Þ

ΩΩ0H0 þ 3Ω02Hþ Ω2 − ΛΩ4 ¼ 1

3
kB2; ð13Þ

see Ref. [26] for more details. It is also convenient to
express the trace of (3), namely, R ¼ 4Λ,

HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ ¼ 2

3
ΛΩ3: ð14Þ

In fact, it is the derivative of (13) minus H0 times (12).
The crucial point for further investigations is that Eqs. (12),
(13) do not explicitly depend on r. Solutions to such an
autonomous system can thus be found as a power series in r
expanded around any point r0

ΩðrÞ ¼ Δn
X∞
i¼0

aiΔi; HðrÞ ¼ Δp
X∞
i¼0

ciΔi; ð15Þ

where Δ≡ r − r0, n; p ∈ R, and a0, c0 ≠ 0.
Vanishing Bach tensor. For B1 ¼ 0 ¼ B2, we deal with

Einstein’s theory, and Eqs. (12), (13) can be directly
integrated. Using the gauge freedom r → λrþ ν, u →
λ−1u of the metric (5), this immediately implies
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ΩðrÞ ¼ r̄ ¼ −
1

r
; HðrÞ ¼ Λ

3
− r2 − 2mr3; ð16Þ

where the mass parameter m is fixed by (8); see Eq. (19).
These functions represent the Schwarzschild–(anti-)de
Sitter spacetime [18,24,25] which, expressed in the form
(4) using (7), reads f ¼ h ¼ 1–2mr̄−1 − 1

3
Λr̄2.

It is well known [25] that for 0 < 9Λm2 < 1 there are
two horizons determined by Eq. (8), namely, the black-hole
event horizon at rh and the cosmological horizon at
rc > rh (they degenerate to r̄h ¼ r̄c ¼ 3m ¼ 1=

ffiffiffiffi
Λ

p
when

9Λm2 ¼ 1; Λ < 0 admits only the black hole horizon).
Nonvanishing Bach tensor. In a generic case

(B1;B2 ≠ 0), the system (12), (13) becomes nontrivially
coupled but its solutions can be found in the form (15).
Substituting these series into the field equations, we obtain
polynomial expressions where the dominant (lowest)
powers of Δ immediately put specific restrictions on the
parameters ½n; p� and the possible value of Λ; see Table I
and Ref. [26]. In the next section, we will discuss the most
interesting case [0, 1] corresponding to a single root r0
of (8).
Explicit black holes.—In the case n ¼ 0, p ¼ 1, the root

of H representing the nondegenerate Killing horizon (8) is
explicitly given by r0 ≡ rh. The field equations (12), (13),
with (14), then restrict the coefficients in the expansions
(15) as

a1 ¼
1

3c0
½2Λa30 − a0ð1þ c1Þ�;

c2 ¼
1

6kc0
½a20ð2 − c1 − Λa20Þ þ 2kðc21 − 1Þ�;

al ¼
1

l2c0

�
2

3
Λ
Xl−1
j¼0

Xj

i¼0

aiaj−ial−1−j −
1

3
al−1

−
Xl

i¼1

cial−i

�
lðl − iÞ þ 1

6
iðiþ 1Þ

��
;

clþ1 ¼
3

kðlþ 2Þðlþ 1Þlðl − 1Þ

×
Xl−1
i¼0

aial−iðl − iÞðl − 1 − 3iÞ; for l ≥ 2; ð17Þ

with three free parameters a0, c0, c1.

To identify the Schwarzschild–(anti-)de Sitter spacetime
(16) in the form (15) with (17), first we evaluate the Bach
tensor (11) on the horizon, yielding B1ðrhÞ ¼ 0, B2ðrhÞ ¼
−ð3=kÞa20b, where b≡ 1

3
ðc1 − 2þ Λa20Þ. Interestingly, by

setting b ¼ 0 (i.e., for c1 ¼ 2 − Λa20), the Bach tensor
vanishes everywhere. Employing the gauge freedom of (5),
we may also set

a0 ¼ −
1

rh
; c0 ¼ rh −

Λ
rh

: ð18Þ

The explicit solution (15), (17) for b ¼ 0 then becomes

ΩðrÞ ¼ −
1

r
; HðrÞ ¼ Λ

3
− r2 −

�
Λ
3
− r2h

�
r3

r3h
; ð19Þ

where the expansions (15) were summed up as geometric
series. This is exactly the Schwarzschild–(anti-)de Sitter
black hole (16) since ðΛ=3Þ − r2h ¼ 2mr3h.
In the case b ≠ 0, we may now separate the “Bach

contribution” in the coefficients (17) proportional to b by
introducing αi, γi. With the same gauge choice (18), we
obtain a one-parameter extension of the Schwarzschild–
(anti-)de Sitter spacetime in quadratic gravity,

ΩðrÞ ¼ −
1

r
−

b
rh

X∞
i¼1

αi

�
rh − r
ρrh

�
i
; ð20Þ

HðrÞ ¼ ðr − rhÞ
�
r2

rh
−

Λ
3r3h

ðr2 þ rrh þ r2hÞ

þ 3bρrh
X∞
i¼1

γi

�
r − rh
ρrh

�
i
�
; ð21Þ

where

ρ≡ 1 −
Λ
r2h

; α1 ≡ 1; γ1 ¼ 1;

γ2 ¼
1

3

�
4 −

1

r2h

�
2Λþ 1

2k

�
þ 3b

�
; ð22Þ

and αl, γlþ1 are (with α0 ≡ 0) recursively given by

TABLE I. The only admitted parameters ½n; p� in (15), and the cosmological constant Λ, restricted by dominant
powers of Δ in the field equations (12), (13), and the trace (14). Note that in the last column, n ≠ −1;−1=2.

n 0 0 1 −1 −1 0 0 < 0
p 1 0 0 2 0 2 ≥ 2 2nþ 2
Λ any any any 0 ≠ 0 ≠ 0 3=8k ð3=8kÞð11n2 þ 6nþ 1Þ=ð1 − 4n2Þ
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αl ¼
1

l2

�
−
2Λ
3r2h

Xl−1
j¼0

Xj

i¼0

fαl−1−j ρj þ ð ρl−1−j þ bαl−1−jÞ½αi ρj−i þ αj−ið ρi þ bαiÞ�g −
1

3
αl−2ð2þ ρÞ ρðl − 1Þ2

þ αl−1

�
1

3
þ ð1þ ρÞ

�
lðl − 1Þ þ 1

3

��
− 3

Xl

i¼1

ð−1Þiγið ρl−i þ bαl−iÞ
�
lðl − iÞ þ 1

6
iðiþ 1Þ

��
;

γlþ1 ¼
ð−1Þl

kr2hðlþ 2Þðlþ 1Þlðl − 1Þ
Xl−1
i¼0

½αi ρl−i þ αl−ið ρi þ bαiÞ�ðl − iÞðl − 1 − 3iÞ; for l ≥ 2: ð23Þ

All these solutions form a three-parameter family of
spherically symmetric black holes (with static regions).
In particular: (i) The radius r ¼ rh determines the Killing
horizon since HðrhÞ ¼ 0; see Eqs. (21), (8). (ii) The
parameter Λ ¼ R=4 is the cosmological constant. It can
be zero, recovering the results of Ref. [19]. (iii) The Bach
parameter b determines the Bach tensor contribution. For
b ¼ 0, this Schwarzschild–Bach–(anti-)de Sitter black hole
(20), (21) reduces to (19).
In terms of these three physical parameters, the scalar

invariants (9), (10) on the horizon are

CabcdCabcdðrhÞ ¼ 12

�
ð1þ bÞr2h −

Λ
3

�
2

; ð24Þ

BabBabðrhÞ ¼
r4h
4k2

b2: ð25Þ

In Fig. 1, convergence of the series in (20), (21) is
examined using the d’Alembert ratio test for two different
sets of parameters. It clearly indicates that, with n growing,
the ratio between two subsequent terms approaches a
specific constant. The series thus asymptotically behave
as geometric series. This enables us to estimate the radius of
convergence.
Typical behavior of the metric functionHðrÞ outside the

black-hole horizon is plotted in Fig. 2. There is a significant
qualitative difference between Λ < 0 and Λ > 0. In both

cases, the black-hole horizon separates static (r > rh) and
non-static (r < rh) regions of the spacetime. However, for
Λ > 0 an outer boundary of this static region appears,
which corresponds to the cosmological horizon given by
the second root of H (as in the classic Schwarzschild–de
Sitter black hole). This is also demonstrated in Fig. 3 by
plotting the function fðr̄Þ of the common metric (4).
Specific tidal effects.—The two independent parts (11) of

the Bach tensor B1, B2 can be observed via a specific
relative motion of free test particles described by the
equation of geodesic deviation [27]. For an invariant
description, we employ an orthonormal frame associated
with initially static observer (_r ¼ _θ ¼ _ϕ ¼ 0) with velocity
u ¼ _u∂u ≡ eð0Þ, namely, eð1Þ ¼ − _uð∂u þH∂rÞ, eð2Þ ¼
Ω−1∂θ, and eð3Þ ¼ ðΩ sin θÞ−1∂ϕ. Projection of the equa-
tion of geodesic deviation onto this frame gives

Z̈ð1Þ ¼ Λ
3
Zð1Þ þ 1

6

H00 þ 2

Ω2
Zð1Þ −

k
3

B1 þ B2

Ω4
Zð1Þ; ð26Þ

Z̈ðiÞ ¼ Λ
3
ZðiÞ −

1

12

H00 þ 2

Ω2
ZðiÞ −

k
6

B1

Ω4
ZðiÞ; ð27Þ

1.55

1.60

50 100 150 200 250 300

3.25

3.30

FIG. 1. The convergence radius can be estimated from the
ratio convergence test for solutions (20), (21), here given by
rh ¼ −1; k ¼ 0.5 with b ¼ 0.3;Λ ¼ 0.2 (bottom) and b ¼ 0.2;
Λ ¼ −2 (top).
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FIG. 2. The function HðrÞ given by Eq. (21) for two values of
the cosmological constant Λ (with the same parameters as in
Fig. 1). Both plots start on the black-hole horizon rh ¼ −1 and
are reliable up to the vertical dashed lines indicating the radii of
the convergence. For Λ > 0 the function HðrÞ seems to have
another root corresponding to the cosmological horizon, while for
Λ < 0 it remains nonvanishing. First 50 (red), 100 (orange), 200
(green), 300 (blue) terms in the expansions are used. The results
fully agree with the numerical solutions up to the dashed lines,
where such simulations also fail.
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where i ¼ 2, 3, ZðaÞ ≡ eðaÞμZμ denotes the relative position
of two particles, and Z̈ðaÞ ≡ eðaÞμðD2Zμ=dτ2Þ their mutual
acceleration. In (26), (27), we easily identify classic parts
corresponding to the isotropic influence of the cosmologi-
cal constant Λ and the Newtonian tidal effect caused by the
Weyl tensor proportional to the square root of (9).
Moreover, the theory satisfying (3) admits two additional
effects encoded in the nontrivial Bach tensor components
B1, B2. The first of them affects particles in the transverse
directions ∂θ, ∂ϕ, see Eq. (27), while the second one
induces their radial acceleration along ∂ r̄ via (26). Since
B1ðrhÞ ¼ 0, on any horizon there is only the radial effect
caused by B2ðrhÞ.
Thermodynamic quantities: horizon area, temperature,

entropy.—Let us also determine main thermodynamic
properties of this explicit family of spherically symmetric
Schwarzschild–Bach–(anti-)de Sitter black holes. The
horizon is generated by the (rescaled) null Killing vector
l≡ σ∂u ¼ σ∂t and thus is located at r ¼ rh whereH ¼ 0,
cf. (8), (21). Its area is, using (5), (20),

A ¼ 4πr−2h ¼ 4πr̄2h; ð28Þ

while its surface gravity (κ2 ≡ − 1
2
lμ;νlμ;ν) reads

κ=σ ¼ −
1

2
H0ðrhÞ ¼ −

1

2
ρrh ¼

1

2
r̄−1h ð1 − Λr̄2hÞ: ð29Þ

It is the same expression as in the Schwarzschild–(anti-)de
Sitter case, independent of the Bach parameter b. The
black-hole horizon temperature T ¼ ð1=2πÞκ is thus

T=σ ¼ −
1

4π
ρrh ¼

1

4π
r̄−1h ð1 − Λr̄2hÞ: ð30Þ

This is zero for r̄h ¼ 1=
ffiffiffiffi
Λ

p
corresponding to the case of

extreme Schwarzschild–de Sitter black hole for which the
black-hole and cosmological horizons coincide at r̄h ¼ r̄c.

However, in higher-derivative theories, we must apply
the generalized definition of entropy S ¼ ð2π=κÞ H Q,
see Ref. [28], where the Noether charge 2-form on the
horizon is

Q ¼ −
Ω2H0

16π

�
γ þ 4

3
Λðαþ 6βÞ þ 4

3
kα

B1 þ B2

Ω4

�				
r¼rh

× sin θ dθ ∧ dϕ: ð31Þ

Evaluating the integral, using (28), (29), (25), and rh ¼
−1=r̄h, we get

S ¼ 1

4
A
�
γ þ 4

3
Λðαþ 6βÞ − 4α

b
r̄2h

�
: ð32Þ

For the Schwarzschild black hole (b ¼ 0;Λ ¼ 0) or in
the Einstein theory (α ¼ 0, β ¼ 0), this reduces to the
standard expression S ¼ ð1=4GÞA. For Λ ¼ 0, the results
of Refs. [14,19] are recovered. For the Schwarzschild–
(anti-)de Sitter black hole (b ¼ 0) in Einstein–Weyl gravity
(β ¼ 0), we obtain S ¼ ð1=4GÞAð1þ 4

3
kΛÞ, which agrees

with the results of [29]. In critical gravity, defined by β ¼ 0,
α ¼ kγ, Λ ¼ −ð3=4kÞ < 0, the entropy is zero. Our for-
mula (32) for entropy generalizes all these expressions to
the case of Schwarzschild–Bach–(anti-)de Sitter black
holes when the Bach tensor is nonvanishing, parametrized
by b ≠ 0. In this case, the entropy is nonzero even in critical
gravity. For smaller black holes, the deviations from S ¼
1
4
A½ γ þ 4

3
Λðαþ 6βÞ� are larger.

By replacing the root rh by rc in (20), (21), the solution is
expanded around the cosmological horizon. Its temperature
and entropy are thus given by (30) and (32), respectively, in
which r̄h is simply replaced by r̄c.
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