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The scalar-tensor theories have become popular recently in particular in connection
with attempts to explain present accelerated expansion of the universe, but they have
been considered as a natural extension of general relativity long time ago. The Horn-
deski scalar-tensor theory involving four invariantly defined Lagrangians is a natural
choice since it implies field equations involving at most second derivatives. Follow-
ing the formalisms of defining covariant global quantities and conservation laws for
perturbations of spacetimes in standard general relativity, we extend these methods
to the general Horndeski theory and find the covariant conserved currents for all four
Lagrangians. The current is also constructed in the case of linear perturbations involv-
ing both metric and scalar fields. As a specific illustration, we derive a superpotential
that leads to the covariantly conserved current in the Branse-Dicke theory. Published
by AIP Publishing. https://doi.org/10.1063/1.5003190

I. INTRODUCTION

The modifications and generalizations of Einstein’s theory of gravitation have been studied very
actively in recent decades primarily in cosmological contexts with an attempt to explain the present
accelerated expansions of the universe (for reviews, see, e.g., Refs. 1-3). The motivation for such
studies is also coming from observations on galactic scales related to galaxy rotation curves and the
corresponding problem of dark matter. Most recently, in addition, the detection of gravitational waves
from black hole mergers gives prospects to investigate the possible deviations from Einstein’s theory
in local strong-gravity regimes.

The modification of Einstein’s theory by introducing a scalar field together with metric for the
description of gravity appears to be most natural and most widely discussed.

The purpose of the present work is to develop the formalism for derivation of covariant
conserved currents in the general case of the scalar-tensor Horndeski theory.* Our formalism is
inspired by the original method of derivation of covariant currents in the classical general relativ-
ity by Katz, Bi¢dk, and Lynden-Bell (KBL).> This method of formulation of conservation laws
with respect to (w.r.t.) general curved backgrounds was developed in order to understand how
Mach’s principle can be formulated within cosmological perturbation theory. The resulting super-
potential, from which the conserved quantities for arbitrarily large perturbations can be expressed
as surface integrals, was found after applying certain natural criteria. It is commonly called the
“KBL superpotential” as first designated by Julia and Silva.” It is unambiguous and satisfac-
tory in spacetimes with or without a cosmological constant in any spacetime dimension D > 3
(see Refs. 6 and 7). It was applied in a number of situations, for example, in the studies of

DElectronic mail: schmijos @fjfi.cvut.cz

Electronic mail: Jiri.Bicak @ mff.cuni.cz
C)Also at Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Miihlenberg 1, D-14476 Golm,
Germany.

0022-2488/2018/59(4)/042501/22/$30.00 59, 042501-1 Published by AIP Publishing.

@ CrossMark
eclinkte


https://doi.org/10.1063/1.5003190
https://doi.org/10.1063/1.5003190
https://doi.org/10.1063/1.5003190
mailto:schmijos@fjfi.cvut.cz
mailto:Jiri.Bicak@mff.cuni.cz
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5003190&domain=pdf&date_stamp=2018-04-03

042501-2 J. Schmidt and J. Bi¢dk J. Math. Phys. 59, 042501 (2018)

the causal generation of cosmological perturbations determining large-scale structure formation
and in the problem of the backreaction in slow-roll inflation; see Refs. 8 and 9 and references
therein.

In the KBL formalism, a strong conservation law in spacetime M with metric g, is derived with
respect to a background spacetime M with metric g,,,,; for details, see Refs. 5 and 10. The background
(auxiliary) metric enables one to define covariantly global quantities at infinity (asymptotically flat,
de Sitter, anti de Sitter, etc.). The background metric is then to be considered only at the “boundary.”
When perturbations of a given spacetime are studied, the background metric plays a role in the
“interior” as well.

Before we turn to the characterization of the Horndeski theory and the construction of the
conserved currents, we briefly recall the KBL formalism. The spacetimes M and M are connected
via diffeomorphism ¢; once this is fixed, we can consider both metrics to be on M (the pullback
¢" 8.y is denoted just by g, ). Correspondingly, the covariant derivatives, the Christoffel symbols,
and the curvature tensors are denoted by V,, I“;}V, R, and by Y, I_“;}V, R o the differences of
the Christoffel symbols will be denoted by A//}v = Fﬁv - l_"l/}v. Following KBL, the Lagrangian density
for (not necessarily small) perturbations is written as

.

Lo=L-L, L

—%{ (R+9,k"), L=-3R. (1)

where R = \/=gR is the scalar density curvature of spacetime M, R= +/—3zR that of M, kM is a vector
density the divergence of which removes the second derivatives of g,,,, from L,

=g (8000, ~ gAY )

The conserved vectors and superpotentials can then be derived by applying Noether’s method to
L. One considers an arbitrary displacement vector field €, expresses the Lie derivative Eg,/:’(; as
6,,(Zigf”). Assuming then that Einstein’s equations and contracted Bianchi identities are satisfied,
one finds by straightforward though not short calculations that there exists a conserved vector density
I equal to the divergence of a superpotential JoB fo = Gﬁf af where

jaﬁzl(Vlaé?ﬁl_ﬁ[aé?ﬁl_’_g[w(/}m_f{ﬁl))’ 3)
K
where overbar represents replacing g, by g, €.g., k® = \/=gk® (here, in the background k =0).
This is the KBL superpotential (see Refs. 5 and 10 for details). For the purpose of our work dealing
with conservation laws in theories involving not only metric but also scalar fields, we shall follow
the formalism of Ref. 5 but generalized for arbitrary field variables by Petrov and Lompay.'' For a
comprehensive review of nonlinear perturbations and conservation laws on curved background in
general relativity and other metric theories, see Ref. 12.

As mentioned above, we shall analyze the covariant conserved currents in the scalar-tensor
Horndeski theory. This is the most general scalar tensor theory leading to the covariant second order
equations of motion for the scalar and metric field. It was used recently in series of papers.!3~13 It
propagates at most three degrees of freedom. Intriguingly, it is conceivable that more general scalar
tensor theories exist, whose equations of motion are higher order but at the same time are characterized
by constraints that remove additional, undesired, degrees of freedom. A proposal in this direction is
the theory of “beyond Horndeski” or even “beyond beyond Horndeski” extensions (see, e.g., Refs. 16
and 17, see also Ref. 18 where black holes in the Horndeski theories and beyond are discussed). We,
however, consider the original general Horndeski system only since even within this framework some
very interesting models can be constructed. For example, there are special subclasses of the Horndeski
theory, sometimes called Fab Four or Fab Five. These models exhibit the so-called screening property
and the self-acceleration. See Ref. 19 for the most recent discussion of a number of intriguing aspects
of these models. We also refer the reader to some other most recent literature as, for example, Refs. 20
and 21, where the generalized Horndeski theories are analyzed in detail from both the cosmological
and local perspectives. Interestingly, the most recent work on “Ultralight scalars as cosmological
dark matter” gives the action for the scalar field which is in the form of the Horndeski action [see
Eq. (2) in Ref. 22 in which a is replaced by ¢]. By learning how to proceed to find conserved
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currents within the original general Horndeski framework, one should be able to tackle similarly any
of these generalized theories. It is also important to notice that as a special case of the Horndeski
system one can extract any of the so-called f(R) theories or the prototypes of the Brans-Dicke
theory.??

Before describing how the paper is organized, let us briefly return to the issue of conserved charges
and Noether currents in general relativity and its extensions. These have been constructed by using
various approaches, and even in four dimensions, the expressions for the energy of Kerr-AdS black
holes, for example, in general, can disagree (see Ref. 24). After finishing the present work, we were
informed that recently the off-shell Noether current and conserved charge in Horndeski theory were
formulated in Ref. 25 by a generalization of the Abbott-Deser-Tekin formalism.?® This formalism
is based on the linearized perturbations of the field equations in a fixed background satisfying the
vacuum equations of motion. By contrast, as noticed above, our formalism is inspired by the KBL
approach in which the perturbations of a general background spacetime M with metric g,, may be
nonlinear (large), and the Lagrangian for a perturbed system contains an appropriate divergence term
(in addition to the difference of the Einstein Lagrangians for g, and g, ), as given in Eq. (1). It is
worth noticing that under suitable conditions for Kerr-AdS black holes, the linearized KBL expression
for the energy at infinity coincides with the one derived by Abbott and Deser [see Egs. (2.9) and (2.12)
in Ref. 24], but the coincidence is not evident. The mass of a static black hole with charge and scalar
field, described by a specific Einstein-Horndeski-Maxwell theory, was expressed by the black-hole
thermodynamics as developed originally by Wald (see Refs. 27 and 28). The Noether symmetry for
some special Horndeski Lagrangians was studied in the context of cosmological models recently
in Refs. 29 and 30. In contrast to the studies quoted above, our contribution is general in treating
non-linear perturbations with respect to general backgrounds. We thank an anonymous referee for
informing us about Refs. 25, 29, and 30.

The paper is organised as follows. In Sec. II, we recall the Lagrangians of the Horndeski theory
and introduce the notation. In Sec. III, the general methodology of Ref. 11 is used to prepare necessary
mathematical quantities for the case of theories involving both metric and scalar fields. By employing
the background (auxiliary) metric g, , the specific expressions for the conserved currents in a general
Horndeski-type theory are written down at the end of the section.

The following Sec. IV has a technical character: it is shown here how to calculate the rele-
vant expressions for current quantities. The exact forms of the conserved currents following from
each type of the four Horndeski Lagrangians are derived in Sec. V. There the relevant expres-
sions are also obtained, demonstrating how the resulting terms corresponding to the full Horndeski
Lagrangian contain simpler expressions associated just with the Einstein-Hilbert action. All rel-
evant current coefficients for the Einstein-Hilbert Lagrangian are given in the Appendix. As is
the case of the KBL currents, all generalized currents for the Horndeski theory can be obtained
from superpotentials (Sec. VI). Regarding the applications of the KBL formalism in, for exam-
ple, a cosmological context, we study superpotentials associated with perturbations of metric and
scalar fields in Sec. VII. Here, the results for linear perturbations are presented in detail. The final
expressions are very lengthy; however, they considerably simplify if the background scalar field is
constant. In the Sec. VIII, we specialize the expressions obtained in a general case for the Brans-
Dicke theory as one of the simplest cases of the Horndeski theory involving both scalar and metric
fields.

After developing the necessary mathematical tools for construction of conserved quantities
in general Horndeski-type theory, the formalism can be applied for any type of combination of
Lagrangians involving metric and scalar fields leading to the field equations at most of the second
order. It can be employed in any specific physically motivated problem like black holes or evolution
of cosmological perturbations in a Horndeski-type theory.

Il. THE HORNDESKI SCALAR-TENSOR THEORY

The Horndeski theory, the most general scalar-tensor theory of gravitation with the second-order
field equations, was originally developed in Ref. 4 and then rederived in Ref. 31. The theory with
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field variables being scalar field ¢ and metric tensor g, is given by the Lagrangian
5
E-vEY L @
i=2

where g denotes the metric determinant. The individual Lagrangians in the sum are given by the
following expressions

L =K(p, X), &)
£3 = _GS(QO’ X)D§03 (6)
L£4=Gu(¢, X)R+Gax [@p) ~TrIT’], @
L5=Gs(g,X) GV, — éGiX [@p)® - 300 TrI? +2Tr IT°] )

K, G3, G4, and G5 are the arbitrary functions of ¢ and X, where X denotes the quadratic “kinetic”
term, X = —%611 poH @, G; x = dG;/0X; R is the Ricci scalar, and G, denotes the Einstein tensor. The
O¢ represents the d’ Alembert operator, O¢ = gV, ¢. Finally, IT is a matrix of the second covariant
derivatives of ¢, i.e., I =V o =g"V,,¢; covariant derivative V,, is associated with metric field
&uv via Levi-Civita connection, in the index notation, it will be denoted by semicolon, e.g., ¢,

lll. CONSERVED CURRENTS—GENERAL EXPRESSIONS

A. Formulas for arbitrary Lagrangian theory

Methods of obtaining conserved currents from expressions involving general Lagrangians are
described abundantly in the literature. Our aim is to derive the “covariantized Noether identities” by
introducing an auxiliary metric. This metric, considered to be associated with a given background
spacetime, provides the tool to formulate conservation laws for perturbations with respect to the
background. This procedure was formulated in Ref. 5, for example, formalized in Refs. 10, 6, and 7.
The procedure was generalized to describe currents for perturbations in the Einstein-Gauss-Bonnet
gravity and in the metric torsion theories of gravity.>>=* In this paper, we shall especially employ the
work of Petrov and Lompay'! in which covariantized conservation laws are formulated for pertur-
bations in terms of general field variables Qp. In general, field variables Qp are tensor components
and B is an arbitrary multiindex. The field theory is described by the Lagrangian density assumed
to contain fields up to their second derivatives, L :I:(QB, OB.a» OB .ep), hat denotes the scalar den-
sity. In our case, Op represents both the metric g, and the scalar field ¢. L will be the Horndeski
Lagrangian (4).

The first step in deriving a covariant conserved current is to introduce the auxiliary back-
ground metric g, into the Lagrangian. This is done by converting partial derivatives into covariant
ones using g,,-Levi-Civita connection; in our case of Horndeski theory, simply by converting
the g, -covariant derivatives into the g, -covariant derivatives. These derivatives will be denoted
by V, or, when it is convenient, by a vertical line, e.g., ¢ wv- The new Lagrange function
E(QB, V03, ?(,BQB, Buvs RAT pg) is then obtained; R’IT oo denotes the Riemann tensor formed from
metric gy .

A conserved current /(&) associated with an arbitrary vector field £ is given by the relation
[for details, see Ref. 11, Egs. (37), (41), (44), and (47)]

01" = 0o (RSET + TV £ + 5P Vope7) =0, ©)

which represents the main identity of the formalism. The coefficients &, &', and fsz’g in (9) are to
be calculated from the Lagrangian according to the following formulas:

Ny 7

Aa/‘rﬁzl [ az 62

v d 10
aQBﬁHQB|o—+aQB|TaQB|(T]a (10)
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oL . ( oL oL . oL
mar = -V |l —/—— = ——V, 05+ \Y ) 11
7 [3Q3|a p (3Q3|aﬁ)] Osls 00B|ra Qs 00B|Ba 5 (Qsl) an
R oL oL o ( oL \]- L -
0y =L65 + —O0plg - -V Vo0s - Vso
00p Qs [3Q3|a p (3Q3|aﬁ )] Os 003 Ba s Qs
1 52 ﬁ_/l
= R . 12
+ 28QB|mQB|’l p— (12)
The quantity Qp|Z. is defined via the Lie derivative of Qp as follows:
LeQp = 0,088 — Oply0:67. (13)

In order to find conserved currents in the Horndeski theory, we need to introduce the background
auxiliary metric g,,,, into the Lagrangian. Such Lagrangian then enters the derivatives in (10)—(12).
In the following, we successively introduce the background metric into scalar field and (physical)
metric field.

B. The scalar field

In Lagrangians (5)—(8), we have the first derivatives of scalar field ¢ in quadratic term
X =-18,,p0" ¢ and the second derivatives in terms V,,, ¢, O, Tr 112, and Tr IT°.

Since 0y =Vap=V,0, we get X = —% 2PV 40 ?ﬁgo. The second derivatives are replaced by
Vv = v,,,,go - szﬁpq?, (14)

where AZ, is the difference between the Christoffel symbols I, and T}, associated with g, and
8.y, respectively. It can be written in the form

N =Th =T = 26% (Tuon + T ~ o) (1)

Thus we have
0p=g"" Ve =8"" Ve — "NV 0, (16)
I, = gv’lvﬂ/lgo - gMAﬁﬂﬁptp. a7

It is worth to observe that both g,, and g, are tensor fields which can be used to raise and
lower indices, and the covariant character of expressions like (16) and (17) is preserved. Whenever
covariant derivatives instead of partial derivatives are employed like in the quantities Aﬁv (15), they are
constructed using the auxiliary metric g, and are associated with a lower case index (like in V, g,,).
However, because of the presence of various invariants formed from scalar field ¢ by “original”
metric g, like in the Lagrangian (5)—(8), it is advantageous to use this metric to raise and lower
indices. This will appear in a number of lengthy formulas in the following. So, for example, in the
quantity

VP =g"eh7V s, (18)

where V¢ is given by (14) in terms of V and Aﬁv. In still more complicated case (which will
be needed for expressions originating from Lagrangians £4 and Ls), the third derivatives will be
required. By direct calculations, we find, for example,

Vo=V, V"o + AV + ALV o, (19)
where quantities like V#” ¢ are given by (18) with V,,, ¢ given by (14). In a contracted form, we get
Vapp‘p = 6LIDQD - Af)(tvkp‘p + Al/javpksa’ (20)

with O given by expression (16).
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_ However, whenever expression involving, for example, operator V,, occurs, quantity
vV _ gVp
V), =8"Vyp.

C. The metric field

The derivatives of metric field g,,,, are present in Lagrangians £4 and Ls [see (7) and (8)] in the
form of the Ricci scalar R and the Einstein tensor G,,,,. The covariant version of the Riemann tensor
R’lTp(T, which can be found, e.g., in Ref. 5, is

RYpo =VoAl, = Vo AL + AL AL, — AL AL + R 1)

pn—To TPO

1 - _ _ _ _ _
= Eg/u (VpU'grr + VpTgLO' - thg-r(r - V(rpgrr - V(J'Tgtp + VO’Lng)

+ Q/ITPU(g/W’ Va8uvs Buvs R/l‘rpo‘),

here on the second line, we highlighted the second derivatives of the metric. We notice that the
covariantization of the Riemann tensor is ambiguous: the antisymmetric part of the second covariant
derivatives can be converted into the terms involving the Riemann tensor of the auxiliary metric
R’ITP(T multiplied by the metric g, . In this paper, we will use the covariantization in which this
whole antisymmetric part is inserted into the second part Q*, po» leading thus to

1 - _ _ - _ _
R/l‘rpo‘ = Eg/u (V(pfr)gt‘r + V(pT)gLO' - V(pt)g‘r(r - V((rp)gt‘r - V((TT)glp + V(a't)g‘rp)

+ Q/l-rpo—(g,uw vag;tw gpv’ R/l-rp(r)~ (22)

Let us remark that this corresponds to calculating conserved current in the form %?" + %?*"
as denoted in Ref. 11 in Eq. (80) and described in Sec. IIl B therein as “another variant of

covariantization.”

D. Conserved currents formulas in the Horndeski theory

Since in the Horndeski theory there are two different sets of the field variables, Op = (¢, guv),

we split the coefficients &%, m&", and ﬁgTB forming the conserved current i (9) into gravitational
and scalar parts
A _2:50/ + e +0e 79T = M7 4 et ~QTB _ ~aTf +AC”,3 (23)
o =500 Tla@) Tlho) Mo Mo T Moy Mo =g Ty
in the coefficient &t we separated the 2163 term; it will be considered later.
For the scalar part, we have ¢|;. = 0; hence, formulas (10)—(12) considerably simplify:

~aTf

Aerpy = 0 (24)
. oL -

M) = —MVU% (25)

Vo g (26)

oL o [ 0L \]< oL
ar, =- -V Vo —
7 [59% g (6‘%’048)] ¥ B
For the metric field g,,,,, we have from the definition (13)

guv|$— = _6;5’0'1/ - (ﬁguo'- (27)
Since in (10)—(12) there is always a sum over (u, v) of g, |5 and a term of the type - gaZ‘ s

vl
simplify (27) into g, |58 = —2g,0-S™7, with S#” being an arbitrary symmetric tensor. This leads to
the following formulas for the conserved current coefficients:

we can
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=t G+ ). o
My = ~28p0 [ajpja -v (6gif|aﬁ )] - 6giv£|m Vot = zagijﬁa Vokpr: @)
=2t | 9 (|| Pt = St

- %éﬁﬂizdarﬁ' (30)

As our Lagrangian consists of four parts, we decompose the current coefficients into four parts
as well,

5 5
AT _ Aa/TB Aa‘rp’ ~atf3
Moy = La Mo 02y N (p) Z M)y G
i=2 =2
meT ~ QT T ~ QT
Mer(g) = Z Mo (g)iiy? Mer(p) = Z Mo (o)) (32)
5
e @ ~Q _ A~
U (g) = Z U (g)iy “o(w)‘Z“o(w)(i)' (33)
i=2 i=2

Hereafter, this notation will be used.

IV. THE DERIVATIVES OF THE HORNDESKI LAGRANGIAN

We give some intermediate results necessary to calculate the conserved current coefficients &%
7, and 71y B . Simultaneously, it is rather illustrative to see how the covariantization and dlfferen—
t1at10n with respect to auxiliary fields work. As we have two different sets of fields, it is natural to
divide the calculations into two parts.

A. Derivatives with respect to the scalar field

The Horndeski Lagrangian consists of several constituents containing derivatives of field ¢: the
kinetic term X, the d’Alambertian g, and the trace of powers of matrix I1, Tr (Hk), k =2, 3. For
the calculation of the derivatives, we need to write these terms manifestly covariant with respect to
the auxiliary metric g, ; but after the calculation is done, we will eliminate the auxiliary covariant
differentiation V,, in favor of covariant derivative V, and Christoffel symbols difference Aﬁy whenever
possible.

The quadratic term X is simple: X = —% MY oV = —%g""?,,go?,,go. Hence,

X o _ _va ox
Do gV V&, Er 0. (34)
Notice that for raising and lowering indices, only the metric field g, is always used.
The derivatives of V,, ¢ are easily found employing (14)

de, do.
Puv __pa o TE _sgh) (35)
9¢|a

1% 690 o (u-v)’
which are in turn used to calculate all necessary terms present in the Horndeski Lagrangian, i.e., the
d’ Alambertian and its powers

aD‘P VAQ aD"D @

P & N m=g B, (36)
d@p)k d(@p)* w

OO ko, A gy, (37)

0Pl m 0Q|ap
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The matrix of the second derivatives [1#, of the scalar field ¢ and the trace of its various powers are
given by

1L I
Ho vAAQ " (a Bw
= _g"AY | —F =5 , (38)
0¢\a 8 S Alap " ¢
Tr [T I1 Tr [T I
oTr :kTr( 9 -nk-l) 0Tt =kTr( 9 .nk-l), (39)
0¢|a 0¢\a a‘Plaﬁ aSO\a,B
4 Tr1I? @ o 4 Tr11? B
. = =27, V¥, ors =2V*Pe, (40)
S TrI13 O TrI13
S = -3A%_ VYV 0, =3V% VP o (41)
00\ P 0¢Q|ap P

B. Derivatives with respect to the metric field g,

The metric field g, is explicitly present in the Ricci scalar and the Riemann tensor, and its first
derivatives are also contained in the second derivatives of the scalar field ¢ in the expression for the
Christoffel symbols difference [see (14) and (15)]. Hence, using

%_60 6(11 V)4 _ 15('“5") al 42)
8gluv|a_ (%8 7%z 8
we find the following relation:
6g0.,(,1 6Af:/l _ 1
LI Vop=—= (gPH6")5% + g 1" 67 — oP5 M5V V 0. 43
0guvia  O8uvla e 2(‘g kO T8O O 8 Ka)w (43)

Consequently, the resulting derivatives for the d’ Alambertians look as follows:

oo 0p.« 1 1
Lo g T =(—g"”g’”—g‘)("g”") Vop= 58" V70— gV g, (44)
agﬂvla ag,uvla 2 2
6(D )k - 1 A vi's ! 4
o =k(Ep) S8V - g Vg (45)
Suv|a 2

Finally, the traces of the second derivatives read

oI, A 2w 0N
—8
6g/tvla agﬂvla

_ 1
Vo= -5 (g/l(pgv)pég + g/mgp(ﬂér) _ gpa/g/l(,uéz)) V0, (46)

Tr ITF I

0TIy ( 9 .nk—l), 1)

ag,uvla 8uv|a

6TI'H2 @ Y (u V)

e =VPpV o - 2VH eV Y, (48)
gl

OTrII® 3

6gr —=3 (Ve VPV - 2V V" PV, ) . (49)
nvla

For the derivatives of the Riemann tensor which are necessary in the calculation of the conserved
current coefficients for Lagrangians £4 and Ls, see Secs. V C and V D and the Appendix.
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V. CONSERVED CURRENT COEFFICIENTS
A. Conserved current coefficients for £,

Starting from (5) and employing the preceding results, we easily obtain the conserved cur-

rent coefficients i ”(r(z)’ m 0'(2)’ and ﬂgg) First, derivatives with respect to the scalar field derivatives
are
oL oL
2 :_6XKV{‘I‘,D, 2 :O’ (50)
0¢|a 9¢jap
which leads to /m® ( 2= =0and it ( 2= = 0xK V¢V, . Derivatives with respect to the metric field
gﬂ,, all vanish for £, and, consequently, the coefficients /% ( )2 and n(fzg )2) vanish as well; only in
, the contribution from the field equations remains
fT(g)(Z)
(522
s —8po- 51
o2 = T 8ap 8po D

The total conserved current coefficients for the Lagrangian £, are thus given by

A

5L,
=126% + 0K V@V yp — 25" 8pos g0 =0, A% =0, (52)

~Q
Us2) Sap )

B. Conserved current coefficients for £;

The Horndeski Lagrangian £3 contains the second covariant derivatives of the scalar field. These
have an obvious impact on the derivative of £3 w.r.t. the second partial derivative of the field ¢, and
they also imply the non-vanishing derivatives w.r.t. the first derivatives of the field and metric g,
[see (14) and (36)].

For the scalar part, we get

oL
3 = 0yG3 V¥ 0p + G3g” A, (53)
0Pl H
oL
> =—Gs g (54)
0¢iap
It is simple to insert these expressions into (25) and (26) to obtain coefficients m(r( )3) and i “a(@(z)
However, there is one term involved in the calculation of &% )3 which needs to be examined more
closely:
_ (oL _
v ( - ) =V (V=8 G3(p, X)) . (55)
6‘10\(1,3

As noticed already, the result should be written in terms of g-covariant derivatives and the Christoffel
symbols difference Aﬁv- For the derivative of the metric and its determinant, we have

Vog" ==28" 1A Vaguy =280, (56)
and V,g = ZgAfm since the metric determinant is the scalar density of weight two, implying
VaV—g=v-gA%,. (57)
The derivative of G3, a function of two scalars, ?atp =Vao, VoX=VoX = ~VapeVP e, is
VoG3 = 0p,G3V o p — 0xG3V 40 VP 0. (58)

Regarding (53)—(58), we find the final forms of /% ( '3) and i ”a@p)(%)
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M) = 638" Vg, (59)
i1 o3 = G3 (Vo0 + 8 NG,V 9) = 0,G3V oV 50
+0xG3 (VP9V,0V o — D9V oV ) . (60)

For the metric part, the results considerably simplify since £3 does not contain the second
derivatives of g, . The non-vanishing derivatives of L3 are obtained using (44). The result is

aL 1
5 =G (g“(“VV)sO - ng”vw) , 1)
Suv|a
95 (62)
agwlaﬁ .

The above expressions plugged into formulas (28)—(30) lead to the following conserved current
coefficients for L£3:

~atf
R (gy3) =0 (63)
. Ly .
ol = 2800 o~ =03 (2657 vl - g7 V) . (64)
o 0L dLs N
U3 =~ 5g(,pg‘fp_ Temin o 8uv
= 2523 G (VEQAL, — VPOAT  — YV, oAL o~® 65
- Kgcrp'*' 3( ‘pplr_ QOPO-_ JXZAVE 2 ) ( )
ap

C. Conserved current coefficients for £,

The Lagrangian £4 contains the scalar curvature R which, multiplied by the square root of the
determinant g, constitutes the Einstein-Hilbert Lagrangian. The calculations for conserved current
coefficients will be performed in such a way that the coefficients corresponding to the Einstein-Hilbert
Lagrangian will be preserved in the final result.

The derivatives of £4 with respect to the scalar field derivatives are easily obtained using
expressions (37) and (40)

oL
3 2 = _0xGyV¥GR — OxxGa V¢ [(u¢)2 ~Tr HZ] ~20xG4 A%, [¢"Dp - V* ], (66)
Dla
OLs _ xGy [20p g™ - 2V ). (67)
0¢|ap

To calculate the conserved current, we plug the above results into formulas (25) and (26). The
calculations are straightforward except, as in the case of L3, for the term

_ [ 0Ly 1 0Ly _ [ 0Ly
V| =) =at, 224 L =¥ 68
ﬁ(a‘PIaB) Y 0giap A B(awaﬁ)’ (©8)

we used the relation V,(y/=g T) = Ajaf" +4/=g Vo T, where T denotes an arbitrary tensor, cf. (57).
Furthermore, in the second term of (68), we need to convert the third “mixed” covariant derivatives
VO and V,V*” ¢ into just the g-covariant derivatives and Aﬁv—s using formulas (19) and (20). The
resulting conserved current coefficients for scalar part then read

Ml = —0xGa [200 87" =2V 9] Vg, (69)
0 sy = 0xGa (RVo V0 +2 (Voo VP 0 — 0oV % )
2 Vo (V6 — g7 00) + 2V, (V¥ (D) = V, ) )
+ 00 GaVog (V¢ (09)° = TrIT?) +29,0 (V¢V, ¢ — 0gV77¢))
+20x, G4V (0pV" ¢ = VP 0V ,0) . (70)
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The Lagrangian L4 is the first one containing the second derivatives of the metric in the
scalar curvature. For now, we keep the derivatives of the scalar curvature unevaluated as it will
mainly contribute to the Einstein-Hilbert part of the conserved current coefficients. Employing
(45) and (48), we obtain the Lagrangian derivatives with respect to the metric field derivatives as
follows:

oL OR
*—q, +0x Gy [8" V¥ 0p — 28"V g D — VIOV o + 2V @V 7|, (T1)
08uvia 0guvia
oL OR
L -G, . (72)
ag,uvla/ﬁ ag,uvlaﬁ
In the conserved current, the coefficient ﬁg?g( 2 is simple since the result is just the Einstein-
Hilbert current multiplied by the function Gy,
dR AR
A% = _Gug ( + ) =G4 ™" . (73)
@ . 08rplpa  98pplra 7
The next term, we have to evaluate
_ oL i, AR _ AR
Vs ( 4 ) =V4G,4 A ( ) , (74)
6g;tv|a,8 agpv\aﬁ 6g;tv|a,8

consists of two parts. The second part will contribute to the Einstein-Hilbert coefficient m®7 .., for

o (EH)’
the first part we need an explicit expression for scalar curvature derivative,
OR
— gtl(ﬂgv B _ g‘lﬁgll"_ (75)
6gyv|(tﬁ

Using expressions (71)—(75), we obtain the final conserved current coefficient ﬁzgg)( 4y

W) = Gamipy + 0,Ga (Vo g7 + V9 65 = 290 67)
+0x G (200 (205790 + Vo g7) +2 (29170V7 ) o — Vo oV p)

+ V0 2V 0 5% = VP9 5% — VP o) ). (76)
By similar procedure, we find
. 6L, . SR
ug(g)(4) = — 2_5gap 8op + G4 (ug_(EH) + 2_5gap g(,p)

+0,G4 (A2, VP 0+ A, V08" — 200, V)
+0x Gy (200 (AL, V7@ + N V08" — b,V ) + 28,V oV,
— 200 VooV = 2N V¥V, 0 + 200 L VoV ¥ p — AG, VeV o
— MG VapV0e?) . (77)

D. Conserved current coefficients for L5

The last Horndeski Lagrangian Ls is the most complex—it contains the Einstein tensor G,,,, and
the cubic terms of the second derivatives of the scalar field. The derivatives with respect to the scalar
field are found rather easily using (35), (37), (40), and (41),

dLs
0¢|a

1
=~ GsGMA, + 6XG5( = GVt 38 A, (O — THIT?)
—Op AL Vo + AL VH /I‘PV/IV‘P)

1 1 1
+ OxxGsV% (6(D<p)3 - 30¢ Trll? + 5Trn3) , (78)
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0Ls
a§0|aﬁ

1
= G5GP + 9yGs (w VB ey - VPV Py - Eg“ﬂ ((um,a)2 - TrHZ)) . (79)

A AT

The conserved current coefficient M o)(5) is then simply obtained by putting (79) into (25)

. 1, » R
sy = (EGXG5 [3¢7" (D) - 3g°™ Tr I — 60p V" 0 + 6V 4V, " | — G5G‘”) Vaop. (80)

For the term ?ﬁ(ﬁﬁs /0@|ap) In ﬁZ(w)(S)’ we use (19) and (20) as in the conserved current

coefficients for £4. Also, we use the following relation:
V.G — _ (AX L B rap
VpG = — (A2, G + A0 .G . (81)

After quite tedious calculations, we get the final form of the conserved current coefficient ﬁg(w)(s) as

follows:
12 sy = = GG (Voo + A, Vi) + 0,G5sG PV oV 0
R 1
+xGs (Va—(p ((GP“V g = G*V*0) Vo + 5V (TrIT? - (D))
+V @V ,(09) + 0PV 0 = V0 pVFP ™ 0 = V¥ 0V, 50 )
1
+ (Vpo—(p + A;()O'VK()D) (ngp ((D‘,O)Z _ TI.HZ) _ Dgovllp(p + Vp/l‘pv/la(p))
R 1
+ G5 Voo (5 (TrI? - (@p)?) Vo + V0 (V7" Op V”KsDVK"sO))
R o (1. 5 1. 1.5
+0xxGs5Vop VY@ —E(Dgo) + ETrH Op — §TrH

1
+V,0 (E ((@g)? - TrII?) VP — 0pVP* oV, " + Vp'((,oVMtpV’mgo)) . (82

Now let us turn to the metric field. The derivative of L5 with respect to the first derivative of g,
is worked out using expressions (45), (48), and (49)

0Ls ( ORP¥ 1 OR 1
=Gs - = |:|<,0+—G”VV”90—G“(”VV)¢)
ag,uvl(z (98,”\0 e 2 agyv\a 2
1 1
+ BXGS (5 ((D(p)2 _ Ter) (g(l(ﬂVV)(p _ Egﬂvvaso) + V(”QDVV)IOQDVPQQD
1 1
+300 (Vv p - 2V eV tg) - EV%VP(”WVW) : (83)

where, when convenient, the Einstein tensor has been split into the Ricci tensor and the scalar
curvature. The scalar curvature will then contribute to the Einstein-Hilbert part of the resulting
conserved current coefficients. Using the derivative of Ricci tensor with respect to the first derivative
of the metric,

OR: > 1 v (uov) pk y o(u _v)p 1 Y v (Hev) ca  pk
I 380000 87 = Bpr00 )87 + 388" = Bokd(:958
+ 5?TAEJ{l)ng o+ A(P/(l‘l' 50_))810” - As_lé_g" )n’ (84)

we express the first term of (83) as follows:
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ORP" 1 a guv,, pK a vp(u . vk 1 a ypK, Uy (L), pK
2] e Vo= S8 Vg = Ay VI g g 4 S AL Ve = Ap VT e g
uvla

+ gAYV + ASV P p g™ — g KAV, (85)

The only object in L5 containing the second derivatives of the metric tensor is the Einstein tensor
Gy ; we get

0Ls ORPT 1 OR
Vpa' -3

=Gs , (86)
08uviap 98uviap

where, as in (83), we split the Einstein tensor into the Ricci and scalar curvature part. The differentiated
Ricci tensor with respect to the second derivatives of the metric reads

OR:»

e u v | B su o _5lagh) g (1 gv) gaB
(9g—_§(6( 5L + 87 6 — 59 ) ). (87)
vlop

(TO' (T(T (T(T

After contracting it with the second derivatives of the scalar field, we get

ORFP¥
agwlwﬁ

i
Voo = 5 (871 Pp+ UV — gV — g BV ), (88)

which is then inserted into the expression (86).
Finally, we can calculate the last set of conserved current coefficients by employing the above
results (83) and (86) [together with (85) and (88)]

1.,
~atfl atf (7 ) ( )
Arois = 05 (B¢ iy + &V o0 + 55 VT = 67V = g TV g) (89
. 1 . >
Mg (o5) = §G5|:l¢p g gy + Gs [G‘”V,,-tp +G% V9 -Gy "V — AT VP

1 1 1
+ 2AZUV‘” EA;K (&7Vi% @ — g™ VP oo+ 55VFP ) + EVO-QTQD
+ lv‘rar _ Va T + AP l akK T . _ TKVQ’ + l at K
) o o ¢ K(ng p $—8 p¥P 28 p ¥
1 1
55 (Vpp7¢ _ VTppgo) +07. (Vapp<p _ Vpap¢) + Egm (Vppo_(p _ V(rpp(p) ]
1
+dxGs [5 ((0g)* = TTT?) (55, V¢ = 65V ¢ — g™ Vi) + DQD(VTSDVGUQD
1 1
— VIV 9+ VooV 9+ V0 (263V”T90 — 05 VP + ng”vp(,go) )
1 1
+§V"¢VT’) OVoorp + EV"soVapsoV’”w = Vo pVeV, " = VT VoV 50
1 1 1
+Vpp (6I,V”“¢VK"¢ - EéﬁV”“<pVKT¢ - Eg‘”V”chVmp - EV”MV"%
1
—EVpTQOVQO-QD + Vp(’(pVngo) ]
- 1 o1 0T T o 1 aTt 1 aTt 0
+6¢G5[§6(,thpv @ = 05VopV ¢+§VU<,0V <p+§g ooVl o

1 1 1
+ EVT()DVQO"P - V¥V, p+0¢ (53V“¢ - §5ZVT¢ - Eg‘”V(rso) ] (90)
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ey (g5) = ~ E%g«m - %GSD%’ (ﬁﬁ@m + Z%gap)
+Gs [G“PAQ(TVW +GYAL YV o — GIAL, V0 + %Agp (Vae - V71 10)
+ AL (Ve = Vi) + %Aﬁ; A (Vo o+ VA0 - 2V o
+8 (V¥ p0 = Vi 0)) = %VpAg VPl £V, AL VP %vag Vi
- %Vp AGp VA + VIAG Vg — %Vp ALV ape 87 ~ %A;’AA‘SKV”@D
1

1 1
- EA;’KAf,pV“w + A ATV e~ EAZ’KA(’}LVP"cp g - EAQ’KA@LV‘,JQD g%

K at 3 D a 3 D akK
+MAG Y g™ = TRV = TR, V08 ]

R 1 1
+0xGs [ (A},F;V“]ga - zAf’T Vop g‘“) ((Dg)* - THI1?) + O (EAngMVPQo
— Mo VapV™ e + A (V,eV g = V7oV, + VAoV, %

+§va“so g‘”)) - %Amkaﬂw% + A0 VaeV oV ¥
+ Af’m (ngo (VpﬂgoV‘“‘go - %Vp“gav/l“cp - %Vp’(chMgo - %VLKQDV‘DLQO g“’l)
~ VooV "oV ¥ 0 + VoV, AV, K — V”soVK“(pr“so)]

+08,Gs [% AL Vap VYo — NG Ve V™ + u<p( - % AL VP

1 1
— S A Vo g™+ NG, V) + Aﬁ_ﬂ(E ViV, %0 - V9V,

2 ol ap
1 1
+5 VeV, pg™ + Evaf“(p)]. 1)

VI. SUPERPOTENTIAL

The general formula for the superpotential reads [see Eq. (55) in Ref. 11]
X 2 4 _
2 = (gv AL _ rhffﬁ]) £ - gﬁffﬁ]’lV,[f”. (92)

The conserved current i*, given by (9), is generated by the superpotential as a divergence:
17 = 9P,

Since we have two fields, we split the superpotential for the scalar and for the tensor field and
for each Lagrangian, as in the case of the conserved currents. We write

5
taf _ ~af3 ~af
= 22: (i + o) ©3)
i=
The coefficients fzfﬁ vanish for the scalar field, see (24), so the superpotential for ¢-field reduces to
saf _ o lafl po
‘o)~ mv(«p)f ) (94)

Moreover, all coefficients ﬁzgﬁ of scalar parts are symmetrical in (e, ) [cf. (25)], hence ?Zpﬁ;(i) =0

for all the Lagrangians. We thus need to calculate only the metric field part of the superpotential.

For Lagrangian L, the coefficients A% and moT vanish, see Sec. V A, and so does the
; (@2 (92
(09

superpotential ,l:(g)(Z)'
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Regarding the Lagrangian L3, as the coefficient na_zﬁ)o) is also vanishing, we get the similar
situation as for the scalar field and the superpotential formula reduces to the same form as in (94).
Then, plugging (64) into (94), we get

A _ layB]
‘3= (g)(s)‘2G35 Vg ©5)

For the Lagrangian L4, we split the superpotential into two parts — we will explicitly exclude
the part originating from the Einstein-Hilbert part of current coefficients /" and ﬁfﬁ . Generally

speaking, if the structure of coefficients 2" and A% is
~QT _ 17 A QT Aa‘rﬁ ~aTf ~aTf3
my = F mo‘(EH) + m(r(revt)’ =Fn o (EH) + n(r(res[)’ (96)

where F' is an arbitrary function, we obtain, after plugging (96) into (92), the following splitting of
the superpotential:

~ _ haf saf
i = il +i0, 97
with the latter part given by the expression
A 2 4
aﬁ _ ~laBlA [aB ~ [af] A[aﬁ]/l
(rest) [3 (V’IF no‘(EH) + Az/lnlr(rest) -8 VAn(r(rest)) - mo‘(rest)] é:o— 3 (T(rest)v f (98)
Then, following this scheme for the Lagrangian £4 with F = G4, we get
soB
ity = G ity + ey ©9)
1 oy =4 [0xGa (85 VP P oV 0 — L2 VF g g — VI VP ) — 0,64 6L VF 1] 7. (100)
Finally, for the last Lagrangian Ls, we have
’\nﬁ ~af3
Is) = 2G5 Dtpl(EH) L(s)(rest)” (101)

The calculation of 7 z( S)rest) is done similarly as for the coefficients m&" and #% for Lagrangians L4

and L5. The result turns out to be

10 o = G5 (2057 9P o+ 29191 — 2610V P 1 — AT, g 17VF) o
+ A2 VA g —2GLavPly)
+20,Gs (852 VP lpnp + VI9pVP o — 6LovA P4V, )
+0xGs (—20LVA I oV 10 00 + 2V, 0V * o VP o + 26L0VE I 4V, V% o
+0LeVAlpmp)? - sLeVAlp TrII? + 2VI9oVA] Lo op
—2Vl TGV OV, 0) |67 + Gs 0LV g — g1oVP) 0] 7,67 (102)

VIl. SUPERPOTENTIALS ASSOCIATED WITH NONLINEAR
AND LINEAR PERTURBATIONS

Superpotentials associated with the background are obtained simply by replacing all g,,,, and ¢
by g,» and ¢ and, consequently, all covariant derivatives V are replaced by ones with respect to the
background metric V, and the connection difference Aﬁ vanishes. The superpotentials can be made
relevant for (possibly large) perturbations if we consider the difference between the “total” and the
background superpotentials as follows:

jaB —jaB _7aB, (103)

If the quantities ¢, g, and @, g, are solutions of the field equations for both physical and background
spacetimes, we can construct relative superpotentials and associated conserved charges for specific
physical problems.
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In this section, indices are raised and lowered with the metric g, only. For the Lagrangian L3,
we have the background superpotential

Aggfj 2636129815 &7, (104)

where thei not_ation 1:7 means \—gF (¢, X) with F being arbitrary function of ¢ and X; naturally,
X= % 8"V, @V, @. For the Lagrangian L4, we have the splitting (99), hence

Zaf
- G4Z(EH) (4)(rest)’ (105)
where the second part of the expression is given by
1 sy =4 [0xGa (6L0 VP 37,0 — 6Lo VP g ag - VoGV §) - 0,6y 6L TP1g] 7, (106)

the obvious notation &= g"”V,V, was used. For the last Lagrangian Ls, we use the splitting (101),
consequently, we have the expression for the background fields as follows:

% 1._
af ,,8
1(5) 2 GS D"O l(EH) (5)(rest)’ (107)
with the following lengthy expression:
Jap 1 - Flag
1 =[G (201791 g+ 251081 g — 2610 g — 2GLe 0P )
+20,Gs (6L 9P g + V1o gVPl G — 52 VPP v, )
+ 0y Gs (-20L0 9P ¥ 59,508 + 29,67, gV ¢ + 260 VP 57, 574
+6L9VPg(ag)? — 6LaVAIG Tr T2 + 2VI9gVAl gag
291GV 59,0 5) |67 + Gs [sLr TP g — 1Tl g V67 (108)
Bl
= G510, + 0,85 g+ 03 Gs 1 )| €7+ Bs 0 Vg™, (109)

where the identity Aﬁv =0 and the notation Tr ﬁzzﬁwtpﬁf‘"@ were used; we also introduced

afi - sef zap . . . .
notation i o (Gs)’ L0, G5y lor(axGs) and 7" (VG ) denoting the terms in brackets appearing at various
derivatives of function Gs. These will be subsequently used in the expressions for the linearized

superpotential.

The linearization of these superpotentials is done by assuming the metric and the scalar field
in the form g, = g,y + €hyy, and ¢ =¢ + £6¢ in superpotentials (95), (99)—(102) and keeping
terms only of the first order in £. We also have g*” = g* — eh*” + O(g?), with h*¥ = gh* 8" hpo
Typically, for a term H, the quantity H means: H = H + e6H + O(&?), where in H every quantity was
replaced by its background counterpart. The linearization of the following expressions is obtained
easily:

Gi(e. X) = Gi(3.X) + £ (0,Gi(3. X)0¢ + 0x Gi(¢. X)6X ) + O(e?), (110)
6X =-V*@V, 60— %hﬂvv,,@vvgz, (111)
SA}, = ;-AK (Vv + Vol = Vi) . (112)
Vir# =V @+ & (V00 — 0AL,V,8) + OE?), (113)
\/—_gz\/—_g(l +%eh)+0(52), (114)

where h = Ry = 8" hy, .
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For the superpotentials, we have ?Zf = ?Z)B +e 625')8 +0(&?), and for the Lagrangian L3, we obtain

A, =~ - 1 vV, v G V
518 =26l [G3 (Vﬁ]&p + hVPlg - hﬁ]’”%@) +0,G3 69 VP15

z = 1 - = - =
+0x GV lg (Eég”vvﬂwv@ - pr”éso)] £7. (115)

Assuming @ = const., we get simply 6?%? =266 VBlsp £
The splitting of the superpotential (97) leads to the following decomposition:

518 = 6F 1P 4 F 5P 4 51

(1
(EH) EH) T Ollresty (116)

with F' simply denoting F(@, X) and 6F = d,F 5¢ + OxF 6X. In the case of the Lagrangian L4, the
decomposition looks as follows:

51 =6G1% 4 G614 5P

gle7
(EH) EH) T Ol resty (117)

and for the 62&[;0“ e arrive at the expression

A P = _ = 1 <p1- = =51 -
61(4€(resz) = 4[6¢G4 5{;1 (hﬁ ]pr‘P -V ]590 - EhV'B ]‘P — 0o G4 69 5£rav'8 ]‘P
+oxGa[sLe (VP @¥,60 + VP 549,6 - TP1g Bog — TP 150 Bp)
_ _ _ _ 1 _ _ _
~VegVPl 5o - V5o VA g+ Eh(é([;’Vﬁ peV,¢ - sLaVPlgag
- VlagVPl @) - slogh Py, oVg SN ) + oLrVPIgY, 5 oA
+V,gVleg P sAL, + 6L (- VP oV, g P — PPV gV, &
+ VPGV @ O + 1PV, 5 80) + VG WY o 6+ TP 59, 6]
+0x, Ga [0 (8L PI 5,6 - 6LoVP g ag - V1 gV, ¢) - 6X sL2 9P g
+ Oxx G4 6X (6L 9P GV, 6 - 6.1 VPG B — V@GP, ) ]g‘f. (118)
After setting @ = const., we obtain A?‘zﬂ rest) = —6¢646£T"Vﬁ]6¢ £,
In the superpotential for the Lagrangian L5 (102), we observe two terms for which the lineariza-
tion is not so obvious. It is the Einstein tensor Gy, and the third derivatives of scalar field Vg, ¢. Let

us examine them closer. Using (21) and realizing that Al’}v is already of the first order, we obtain the
Riemann tensor and, by contraction, the linearized Ricci tensor

RYpo =R'epr + 8 (Vo007 = Vo0AL,) + O(),
Reo =Reg +& (Va0AY, — Vo 0AL) + O(7). (119)
The Ricci scalar R = g"7 R, is then linearized as follows:
R=R+&(-h""Reo + 37 (Va0AL, - Vo0A%)) + O, (120)
leading to the final expression for the linearized Einstein tensor G, = G,,V +&6Gy, + 0(&),

v, vV, 1 D 1— TO D -T0 (O v,
0Gyy = V20A,, — V,0A%, - SR = S8 (—h Riv +3 (VA(SAﬁU - V,TéAjl‘T)) . (12D

The linearization of the third covariant derivative of the scalar field proceeds as follows.
Converting the outermost derivative into a background one, we obtain

Vapyp= Vo (Vﬁﬂa) - Aﬂﬁvw‘:” - Af/)wvﬁﬂ‘»‘” (122)
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and after substituting from (14), we have

Vasy® = Vapye =380,V 100 = (Talf, — AL AT = A5, A7 ) V0. (123)
This is then linearized in a straightforward way into
Va0 =Vap, @ + & (Vapyoe = 367 ;9,100 = VAL ¥,6) + O(). (124)
Hence, we can write
5 (Vapy#) = Vapy 0@ = 36A7, 59y )@ = Va0AL V0. (125)
Considering antisymmetrization of two outermost derivatives in (123), we obtain
Viagty® = Viapn e — (Viadl), — A% 00, ) Voo, (126)
and rewriting the terms in brackets using (21), we arrive at the familiar result
2Vlapty = 2V1aph® — (R Lop = B o) Vop- (127)
Linearizing the last expression using (119) gives
2V(aplyp = 2V1ap1y @ + & (2V1ap1 00 — (VadAg = VoY) ¥,8) + O, (128)

which is in agreement with result (124). The substitution 2V 4z, 6¢ = —R” Wﬁﬁp&p completes the
result so that we have

1, < N
8 (Viapiye) = ~3 R apVr0P = Viadhy b Vo d. (129)

The last superpotential has the following form:
1.

61(5) (5 (GSDtp) l(EH) - stﬁgﬁ 51 (EH) + 61(5)(rm), (130)
with
_[AHaeB saf | saf o AAPBAE o
51(5)(rm) [03F + R +35F| &7 + PSP9 6, (131)
where the terms above are given by the following lengthy expressions:
PP = Gs [l (-nP 19,0 - VPl g™+ VP VS - 9,0 8P 6L &)
— g (~WPPN g+ VP 60 - VoG P OAL, ) + H1 VG G
2
(a Gs6p + 0xGs6X + 2G5 h) G (132)

0% = Gs 2617 (-WPPT A g~ TP @ h 4 VRSV ap) + HEPT ) A+ 9 PV g et
— PRV ) — 21T, F) g 2B, 6+ 2871 B (V )
= 0N BNVP G+ SALT VPG — 256G, 31 VP G + 2G o i1 VP I

+ 2G9N, 6 - 2GL VP 15| + (a Gs6¢ + 9y GsoX + G5h) "‘fG . (133)

The terms 6(Vapy¢), 645, and 6G,,, should be replaced with expressions (125), (112), and (121),

/w’

R =20,Gs [0l (- PP V,6 05 + Voot - VPG 119 6 + VP 1g@op — g6 AL ¥ ,9)
+ 1PV @ VP o+ TP o101V ,6 - VPP 509,6 + P IOAL V16906 - TP 5V ,6¢)
+VLo6pVPl ¢ -V, gnfleVPl g - VleghP ]Kv,(o-t,ﬁ +VLogVPl s¢

(134)

- ﬁ[agﬁgB]K&Aﬁrvp@] (a¢¢G5590 + 0X¢G55X + = 6 G5 of@ Gs)’
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858 = oxGs (158 + UP) + (6X¢G55<,0 + OxxGsoX + = aXG5 h)i (135)

a(a Gs)’
T3P =6l (2181 V0006 +2V,6 VP \gaght —29F) 50 VP a6
+28P 6N Vo Vigag —2VP) ,gVPsp 0@ +2VP .6 VPGV o ™
-2VP g VPgase +2VP g2 "o N, N,V g —21PVPEV, GV 1
—2VP g VP eV b g W + 2V 50 VP gV 05 — 2881762 V6 V¥ @V @
+2VPNE VP eV 1,60 —2VP KGNS YV, V'G —2V,6 VPGV 1 ™
+2 VPG VP59 Vg — PPV 6 (@ @) + VPlsp @ @) - 2VPlga ¢ V,.0 ht
+2VPlgase g -2 VPG 6N Vg0 + PPV, V%GV 1
- VPsp VP GV ,0@ —2 VPG VP50 V6 +2 VPG 6AY V,6 V%
+2VP169° 16 V@ ™), (136)
U = -29,6mloVPl sa ¢ +2V[“5¢ VA, gag -2Vl Py, g0

(en

Yl

+2VI9e VPl 5o B @ +26A g1 VFPIgV g0 -2V g VP 5V,,,6
+2VlegV, Flgasy —25Ap/lgk’lvptpv[a VoPle +2V,6V, 1oV g
-2Vl VA \6V, PG + 2V WP IY, PGV 10 +2V1 96 VP 16V, @ !
-2V g VAP0 Vg —20A0 g1 OVPIG Y,V G —2VI9G TP .6 VP ;50
+26A° VgV VPG 1 2VP5p ¥, 196 VP1 g - 2?’3@%4@}%[“?‘”;@
+2VP gV, %60 VP 6 —26A° 5, 81OV 16V,6V1G —2VP3V, 9GP 1T 10
—2V,0V, e VP 1o Pt 1 2VP Y, g VP 5 +26A° 31°VP1, 6V ,6 V0.

(137)

For ¢ = const., the preceding results simplify into

raf _ A [agB]l [ag Bl olap] ay o
81l oy = Gs [2 (059 M 1600 — 6577 PV o + WP 56 - GLrvPl6¢) &
+ (8L 9P s — TP 60) V067 (138)
Viil. BRANS-DICKE THEORY
Considering the Brans-Dicke Lagrangian

L=+/- ( ¥R + @X U(ga)) (139)

all of the results considerably simplify. The Brans-Dicke theory is a special case of a general Horndeski
theory with Lagrangians £, and £4 with functions K and G4 given as follows:

1
K(p, X) = %X ~U@. Gip)=5. (140)

The non-vanishing superpotential associated with the Lagrangian L4 is obtained after setting
0,Gy = % and dxG4 =0 in (99) and (100) with the result

5 1
B _ a
iy = 2901(”,)—2\/_5[ VPlpeo, (141)

The superpotential associated with the background reads

5 1
B _
i) = 2¢1(EH)—2\/ golrVPlg e, (142)
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Finally, the linearization of the superpotential becomes

. 1 = 1. S _ .
61&%)=§6¢1$H)+Egoél:fH)—Zw/—géEr (EhVﬁ]tp—hﬂ]prgo+Vﬂ]6(p &, (143)
ACKNOWLEDGMENTS

J.B. acknowledges the support from the Czech Science Foundation, GACR Grant No. 14-37086G
(Albert Einstein Centre); J.S. was supported by the Grant Agency of the Czech Technical University
in Prague, Grant No. SGS13/217/OHK4/3T/14. We also thank for the hospitality of Albert Einstein
Institute in Golm where we enjoyed brief but useful collaboration.

APPENDIX: CONSERVED CURRENT COEFFICIENTS
FOR THE EINSTEIN-HILBERT LAGRANGIAN

Considering the Einstein-Hilbert Lagrangian density, 2(EH) =R= /=g R, we can calculate the
coefficients using formulas (28)—(30) with £ gp. Concerning % , we have to add the term Zo‘g to (30)
which we explicitly excluded in (23) to be able to split the coefficients into scalar and tensor parts.
The conserved current coefficients involve partial derivatives of the Riemann tensor with respect
to the metric tensor and its (background) covariant derivatives. These were already considered in
the currents associated with the Horndeski Lagrangians £4 and Ls. For the derivative of the scalar
curvature with respect to the second derivative of the metric, see (75), the derivative of the Ricci
tensor w.r.t. the first derivative of the metric tensor can be found by contracting (84),

OR

Tan A (878" — g?W g ) + 200 (878" — g7"g™). (A1)
wla
For the coefficients fzing), ﬁzngH), and ﬁg( Ery We get
A = 0T — 53T, (A2)
Ry = Dok 805 + N 807 = 205,877, (A3)

i1 g =R6%L = 2G5 + 28V ALy — 37V, AL, — g’avaAfw
. N . ) 3.
+ 3PN A = BOPAS AL = AL AT B AL N B - 3 2 Rpor- (A4)

The general formula for the superpotential (92) requires the antisymmetrized current
coefficients,

SaBll _ 3 Ja,
ng-l([;s]m = _§5£ragﬁu’ (A5)
T = O ADARP = 2AL P, (A6)

and, regarding the relation V, 777 = A% T+ =g V, T, we obtain the resulting superpotential for
the Einstein-Hilbert Lagrangian in the form

T = 20U P NET 4 2517 PN 127 (A7)
Adding a divergence of a vector density d,d® to a Lagranﬁgian does not change the equations of
motion, but it changes the conserved current coefficient /75 and corresponding superpotential i
as follows:

g’ — gl +2sl0adfl, 1P 79F _sleaPler, (A8)
see Ref. 11, Eq. (84). Considering the vector density ar =kt = BHPAL, — gp"A’p'K as in Ref. 5,
the following conserved current and superpotential modification, denoted as ﬁii’fk) and ;Z{/)g

arise:

me =20l P AL, — 26l RPT, OB = —20Le PP AL £ + 26l NDIRPCET. (A9)
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If the divergence of the vector density k* is added to the Einstein-Hilbert Lagrangian, the KBL
superpotential® is recovered

fafB _naf raf
-2 Lkpry = Lemy T Lty - (A10)

If we wish to recover the KBL superpotential from a general Horndeski theory, this divergence has
to be added to the general Horndeski Lagrangian.
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