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The scalar-tensor theories have become popular recently in particular in connection
with attempts to explain present accelerated expansion of the universe, but they have
been considered as a natural extension of general relativity long time ago. The Horn-
deski scalar-tensor theory involving four invariantly defined Lagrangians is a natural
choice since it implies field equations involving at most second derivatives. Follow-
ing the formalisms of defining covariant global quantities and conservation laws for
perturbations of spacetimes in standard general relativity, we extend these methods
to the general Horndeski theory and find the covariant conserved currents for all four
Lagrangians. The current is also constructed in the case of linear perturbations involv-
ing both metric and scalar fields. As a specific illustration, we derive a superpotential
that leads to the covariantly conserved current in the Branse-Dicke theory. Published
by AIP Publishing. https://doi.org/10.1063/1.5003190

I. INTRODUCTION

The modifications and generalizations of Einstein’s theory of gravitation have been studied very
actively in recent decades primarily in cosmological contexts with an attempt to explain the present
accelerated expansions of the universe (for reviews, see, e.g., Refs. 1–3). The motivation for such
studies is also coming from observations on galactic scales related to galaxy rotation curves and the
corresponding problem of dark matter. Most recently, in addition, the detection of gravitational waves
from black hole mergers gives prospects to investigate the possible deviations from Einstein’s theory
in local strong-gravity regimes.

The modification of Einstein’s theory by introducing a scalar field together with metric for the
description of gravity appears to be most natural and most widely discussed.

The purpose of the present work is to develop the formalism for derivation of covariant
conserved currents in the general case of the scalar-tensor Horndeski theory.4 Our formalism is
inspired by the original method of derivation of covariant currents in the classical general relativ-
ity by Katz, Bičák, and Lynden-Bell (KBL).5 This method of formulation of conservation laws
with respect to (w.r.t.) general curved backgrounds was developed in order to understand how
Mach’s principle can be formulated within cosmological perturbation theory. The resulting super-
potential, from which the conserved quantities for arbitrarily large perturbations can be expressed
as surface integrals, was found after applying certain natural criteria. It is commonly called the
“KBL superpotential” as first designated by Julia and Silva.6,7 It is unambiguous and satisfac-
tory in spacetimes with or without a cosmological constant in any spacetime dimension D ≥ 3
(see Refs. 6 and 7). It was applied in a number of situations, for example, in the studies of
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the causal generation of cosmological perturbations determining large-scale structure formation
and in the problem of the backreaction in slow-roll inflation; see Refs. 8 and 9 and references
therein.

In the KBL formalism, a strong conservation law in spacetime M with metric gµν is derived with
respect to a background spacetime M̄ with metric ḡµν; for details, see Refs. 5 and 10. The background
(auxiliary) metric enables one to define covariantly global quantities at infinity (asymptotically flat,
de Sitter, anti de Sitter, etc.). The background metric is then to be considered only at the “boundary.”
When perturbations of a given spacetime are studied, the background metric plays a role in the
“interior” as well.

Before we turn to the characterization of the Horndeski theory and the construction of the
conserved currents, we briefly recall the KBL formalism. The spacetimes M and M̄ are connected
via diffeomorphism φ; once this is fixed, we can consider both metrics to be on M (the pullback
φ∗ḡµν is denoted just by ḡµν). Correspondingly, the covariant derivatives, the Christoffel symbols,
and the curvature tensors are denoted by ∇α, Γλµν , Rλτρσ and by ∇̄α, Γ̄λµν , R̄λτρσ , the differences of
the Christoffel symbols will be denoted by ∆λµν = Γ

λ
µν − Γ̄

λ
µν . Following KBL, the Lagrangian density

for (not necessarily small) perturbations is written as

L̂G = L̂ − ¯̂L, L̂=− 1
2κ

(
R̂ + ∂µ k̂µ

)
, ¯̂L=− 1

2κ
¯̂R, (1)

where R̂=
√
−gR is the scalar density curvature of spacetime M, ¯̂R=

√
−ḡR̄ that of M̄, k̂µ is a vector

density the divergence of which removes the second derivatives of gµν from L̂,

k̂µ =
√
−g

(
gµρ∆λρλ − gκλ∆µκλ

)
. (2)

The conserved vectors and superpotentials can then be derived by applying Noether’s method to
L̂G. One considers an arbitrary displacement vector field ξµ, expresses the Lie derivative Lξ L̂G as
∂µ(L̂Gξ

µ). Assuming then that Einstein’s equations and contracted Bianchi identities are satisfied,
one finds by straightforward though not short calculations that there exists a conserved vector density
Îα equal to the divergence of a superpotential Îαβ , Îα = ∂β Îαβ , where

Îαβ =
1
κ

(
∇[α ξ̂β ] − ∇̄[α ξ̂β ] + ξ[α

(
k̂β ] −

¯̂kβ ]
))

, (3)

where overbar represents replacing gµν by ḡµν , e.g., ¯̂kα =
√
−ḡk̄α (here, in the background k̄α = 0).

This is the KBL superpotential (see Refs. 5 and 10 for details). For the purpose of our work dealing
with conservation laws in theories involving not only metric but also scalar fields, we shall follow
the formalism of Ref. 5 but generalized for arbitrary field variables by Petrov and Lompay.11 For a
comprehensive review of nonlinear perturbations and conservation laws on curved background in
general relativity and other metric theories, see Ref. 12.

As mentioned above, we shall analyze the covariant conserved currents in the scalar-tensor
Horndeski theory. This is the most general scalar tensor theory leading to the covariant second order
equations of motion for the scalar and metric field. It was used recently in series of papers.13–15 It
propagates at most three degrees of freedom. Intriguingly, it is conceivable that more general scalar
tensor theories exist, whose equations of motion are higher order but at the same time are characterized
by constraints that remove additional, undesired, degrees of freedom. A proposal in this direction is
the theory of “beyond Horndeski” or even “beyond beyond Horndeski” extensions (see, e.g., Refs. 16
and 17, see also Ref. 18 where black holes in the Horndeski theories and beyond are discussed). We,
however, consider the original general Horndeski system only since even within this framework some
very interesting models can be constructed. For example, there are special subclasses of the Horndeski
theory, sometimes called Fab Four or Fab Five. These models exhibit the so-called screening property
and the self-acceleration. See Ref. 19 for the most recent discussion of a number of intriguing aspects
of these models. We also refer the reader to some other most recent literature as, for example, Refs. 20
and 21, where the generalized Horndeski theories are analyzed in detail from both the cosmological
and local perspectives. Interestingly, the most recent work on “Ultralight scalars as cosmological
dark matter” gives the action for the scalar field which is in the form of the Horndeski action [see
Eq. (2) in Ref. 22 in which a is replaced by ϕ]. By learning how to proceed to find conserved
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currents within the original general Horndeski framework, one should be able to tackle similarly any
of these generalized theories. It is also important to notice that as a special case of the Horndeski
system one can extract any of the so-called f (R) theories or the prototypes of the Brans-Dicke
theory.23

Before describing how the paper is organized, let us briefly return to the issue of conserved charges
and Noether currents in general relativity and its extensions. These have been constructed by using
various approaches, and even in four dimensions, the expressions for the energy of Kerr-AdS black
holes, for example, in general, can disagree (see Ref. 24). After finishing the present work, we were
informed that recently the off-shell Noether current and conserved charge in Horndeski theory were
formulated in Ref. 25 by a generalization of the Abbott-Deser-Tekin formalism.26 This formalism
is based on the linearized perturbations of the field equations in a fixed background satisfying the
vacuum equations of motion. By contrast, as noticed above, our formalism is inspired by the KBL
approach in which the perturbations of a general background spacetime M̄ with metric ḡµν may be
nonlinear (large), and the Lagrangian for a perturbed system contains an appropriate divergence term
(in addition to the difference of the Einstein Lagrangians for gµν and ḡµν), as given in Eq. (1). It is
worth noticing that under suitable conditions for Kerr-AdS black holes, the linearized KBL expression
for the energy at infinity coincides with the one derived by Abbott and Deser [see Eqs. (2.9) and (2.12)
in Ref. 24], but the coincidence is not evident. The mass of a static black hole with charge and scalar
field, described by a specific Einstein-Horndeski-Maxwell theory, was expressed by the black-hole
thermodynamics as developed originally by Wald (see Refs. 27 and 28). The Noether symmetry for
some special Horndeski Lagrangians was studied in the context of cosmological models recently
in Refs. 29 and 30. In contrast to the studies quoted above, our contribution is general in treating
non-linear perturbations with respect to general backgrounds. We thank an anonymous referee for
informing us about Refs. 25, 29, and 30.

The paper is organised as follows. In Sec. II, we recall the Lagrangians of the Horndeski theory
and introduce the notation. In Sec. III, the general methodology of Ref. 11 is used to prepare necessary
mathematical quantities for the case of theories involving both metric and scalar fields. By employing
the background (auxiliary) metric ḡµν , the specific expressions for the conserved currents in a general
Horndeski-type theory are written down at the end of the section.

The following Sec. IV has a technical character: it is shown here how to calculate the rele-
vant expressions for current quantities. The exact forms of the conserved currents following from
each type of the four Horndeski Lagrangians are derived in Sec. V. There the relevant expres-
sions are also obtained, demonstrating how the resulting terms corresponding to the full Horndeski
Lagrangian contain simpler expressions associated just with the Einstein-Hilbert action. All rel-
evant current coefficients for the Einstein-Hilbert Lagrangian are given in the Appendix. As is
the case of the KBL currents, all generalized currents for the Horndeski theory can be obtained
from superpotentials (Sec. VI). Regarding the applications of the KBL formalism in, for exam-
ple, a cosmological context, we study superpotentials associated with perturbations of metric and
scalar fields in Sec. VII. Here, the results for linear perturbations are presented in detail. The final
expressions are very lengthy; however, they considerably simplify if the background scalar field is
constant. In the Sec. VIII, we specialize the expressions obtained in a general case for the Brans-
Dicke theory as one of the simplest cases of the Horndeski theory involving both scalar and metric
fields.

After developing the necessary mathematical tools for construction of conserved quantities
in general Horndeski-type theory, the formalism can be applied for any type of combination of
Lagrangians involving metric and scalar fields leading to the field equations at most of the second
order. It can be employed in any specific physically motivated problem like black holes or evolution
of cosmological perturbations in a Horndeski-type theory.

II. THE HORNDESKI SCALAR-TENSOR THEORY

The Horndeski theory, the most general scalar-tensor theory of gravitation with the second-order
field equations, was originally developed in Ref. 4 and then rederived in Ref. 31. The theory with
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field variables being scalar field ϕ and metric tensor gµν is given by the Lagrangian

L̂=
√
−g

5∑
i=2

Li, (4)

where g denotes the metric determinant. The individual Lagrangians in the sum are given by the
following expressions

L2 =K(ϕ, X), (5)

L3 =−G3(ϕ, X)�ϕ, (6)

L4 =G4(ϕ, X) R + G4,X

[
(�ϕ)2 − TrΠ2

]
, (7)

L5 =G5(ϕ, X) Gµν∇µνϕ −
1
6

G5,X

[
(�ϕ)3 − 3�ϕTrΠ2 + 2 TrΠ3

]
, (8)

K, G3, G4, and G5 are the arbitrary functions of ϕ and X, where X denotes the quadratic “kinetic”
term, X =− 1

2∂µϕ∂
µϕ, Gi ,X = ∂Gi/∂X; R is the Ricci scalar, and Gµν denotes the Einstein tensor. The

�ϕ represents the d’Alembert operator, �ϕ= gµν∇µνϕ. Finally, Π is a matrix of the second covariant
derivatives of ϕ, i.e., Π ν

µ =∇
ν
µ ϕ= gνρ∇µρϕ; covariant derivative ∇µ is associated with metric field

gµν via Levi-Civita connection, in the index notation, it will be denoted by semicolon, e.g., ϕ;µν .

III. CONSERVED CURRENTS—GENERAL EXPRESSIONS

A. Formulas for arbitrary Lagrangian theory

Methods of obtaining conserved currents from expressions involving general Lagrangians are
described abundantly in the literature. Our aim is to derive the “covariantized Noether identities” by
introducing an auxiliary metric. This metric, considered to be associated with a given background
spacetime, provides the tool to formulate conservation laws for perturbations with respect to the
background. This procedure was formulated in Ref. 5, for example, formalized in Refs. 10, 6, and 7.
The procedure was generalized to describe currents for perturbations in the Einstein-Gauss-Bonnet
gravity and in the metric torsion theories of gravity.32–34 In this paper, we shall especially employ the
work of Petrov and Lompay11 in which covariantized conservation laws are formulated for pertur-
bations in terms of general field variables QB. In general, field variables QB are tensor components
and B is an arbitrary multiindex. The field theory is described by the Lagrangian density assumed
to contain fields up to their second derivatives, L̂ = L̂(QB, QB,α, QB,αβ), hat denotes the scalar den-
sity. In our case, QB represents both the metric gµν and the scalar field ϕ. L̂ will be the Horndeski
Lagrangian (4).

The first step in deriving a covariant conserved current is to introduce the auxiliary back-
ground metric ḡµν into the Lagrangian. This is done by converting partial derivatives into covariant
ones using ḡµν-Levi-Civita connection; in our case of Horndeski theory, simply by converting
the gµν-covariant derivatives into the ḡµν-covariant derivatives. These derivatives will be denoted
by ∇̄α or, when it is convenient, by a vertical line, e.g., ϕ|µν . The new Lagrange function
L̂(QB, ∇̄αQB, ∇̄αβQB, ḡµν , R̄λτρσ) is then obtained; R̄λτρσ denotes the Riemann tensor formed from
metric ḡµν .

A conserved current ı̂α(ξµ) associated with an arbitrary vector field ξµ is given by the relation
[for details, see Ref. 11, Eqs. (37), (41), (44), and (47)]

∂α îα = ∂α
(
ûασξ

σ + m̂ατ
σ ∇̄τξ

σ + n̂ατβσ ∇̄τβξ
σ
)
= 0, (9)

which represents the main identity of the formalism. The coefficients ûασ , m̂ατ
σ , and n̂ατβσ in (9) are to

be calculated from the Lagrangian according to the following formulas:

n̂ατβσ =
1
2

[
∂L̂

∂QB |βα
QB |

τ
σ +

∂L̂
∂QB |τα

QB |
β
σ

]
, (10)
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m̂ατ
σ =

[
∂L̂

∂QB |α
− ∇̄β

(
∂L̂

∂QB |αβ

)]
QB |

τ
σ −

∂L̂
∂QB |τα

∇̄σQB +
∂L̂

∂QB |βα
∇̄β

(
QB |

τ
σ

)
, (11)

ûασ = L̂δασ +
δL̂
δQB

QB |
α
σ −

[
∂L̂

∂QB |α
− ∇̄β

(
∂L̂

∂QB |αβ

)]
∇̄σQB −

∂L̂
∂QB |βα

∇̄βσQB

+
1
2

∂L̂
∂QB |τα

QB |
β
λ R̄λστβ . (12)

The quantity QB |
τ
σ is defined via the Lie derivative of QB as follows:

LξQB = ∂ρQBξ
ρ − QB |

τ
σ∂τξ

σ . (13)

In order to find conserved currents in the Horndeski theory, we need to introduce the background
auxiliary metric ḡµν into the Lagrangian. Such Lagrangian then enters the derivatives in (10)–(12).
In the following, we successively introduce the background metric into scalar field and (physical)
metric field.

B. The scalar field

In Lagrangians (5)–(8), we have the first derivatives of scalar field ϕ in quadratic term
X =− 1

2∂µϕ∂
µϕ and the second derivatives in terms ∇µνϕ, □ϕ, Tr Π2, and Tr Π3.

Since ∂αϕ=∇αϕ= ∇̄αϕ, we get X =− 1
2 gαβ∇̄αϕ ∇̄βϕ. The second derivatives are replaced by

∇µνϕ= ∇̄µνϕ − ∆
ρ
µν∇̄ρϕ, (14)

where ∆λµν is the difference between the Christoffel symbols Γλµν and Γ̄λµν associated with gµν and
ḡµν , respectively. It can be written in the form

∆
λ
µν = Γ

λ
µν − Γ̄

λ
µν =

1
2

gλρ
(
∇̄νgρµ + ∇̄µgρν − ∇̄ρgµν

)
. (15)

Thus we have

�ϕ= gµν∇µνϕ= gµν∇̄µνϕ − gµν∆ρµν∇̄ρϕ, (16)

Π
ν
µ = gνλ∇̄µλϕ − gνλ∆ρλµ∇̄ρϕ. (17)

It is worth to observe that both gµν and ḡµν are tensor fields which can be used to raise and
lower indices, and the covariant character of expressions like (16) and (17) is preserved. Whenever
covariant derivatives instead of partial derivatives are employed like in the quantities∆λµν (15), they are
constructed using the auxiliary metric ḡµν and are associated with a lower case index (like in ∇̄νgρµ).
However, because of the presence of various invariants formed from scalar field ϕ by “original”
metric gµν like in the Lagrangian (5)–(8), it is advantageous to use this metric to raise and lower
indices. This will appear in a number of lengthy formulas in the following. So, for example, in the
quantity

∇αβϕ= gαρgβσ∇ρσϕ, (18)

where ∇ρσϕ is given by (14) in terms of ∇̄ and ∆λµν . In still more complicated case (which will
be needed for expressions originating from Lagrangians L4 and L5), the third derivatives will be
required. By direct calculations, we find, for example,

∇
µν
α ϕ= ∇̄α∇

µνϕ + ∆µρα∇
νρϕ + ∆νρα∇

µρϕ, (19)

where quantities like ∇µνϕ are given by (18) with ∇µνϕ given by (14). In a contracted form, we get

∇
ρ

αρ ϕ= ∇̄α�ϕ − ∆
κ
ρα∇

ρ
κ ϕ + ∆ρκα∇

κ
ρ ϕ, (20)

with □ϕ given by expression (16).
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However, whenever expression involving, for example, operator ∇̄µν occurs, quantity
∇̄ ν
µ = ḡνρ∇̄µρ.

C. The metric field

The derivatives of metric field gµν are present in Lagrangians L4 and L5 [see (7) and (8)] in the
form of the Ricci scalar R and the Einstein tensor Gµν . The covariant version of the Riemann tensor
Rλτρσ , which can be found, e.g., in Ref. 5, is

Rλτρσ = ∇̄ρ∆
λ
τσ − ∇̄σ∆

λ
τρ + ∆λρη∆

η
τσ − ∆

λ
ησ∆

η
τρ + R̄λτρσ , (21)

=
1
2

gλι
(
∇̄ρσgιτ + ∇̄ρτgισ − ∇̄ριgτσ − ∇̄σρgιτ − ∇̄στgιρ + ∇̄σιgτρ

)
+ Qλ

τρσ(gµν , ∇̄αgµν , ḡµν , R̄λτρσ),

here on the second line, we highlighted the second derivatives of the metric. We notice that the
covariantization of the Riemann tensor is ambiguous: the antisymmetric part of the second covariant
derivatives can be converted into the terms involving the Riemann tensor of the auxiliary metric
R̄λτρσ multiplied by the metric gµν . In this paper, we will use the covariantization in which this
whole antisymmetric part is inserted into the second part Qλ

τρσ , leading thus to

Rλτρσ =
1
2

gλι
(
∇̄(ρσ)gιτ + ∇̄(ρτ)gισ − ∇̄(ρι)gτσ − ∇̄(σρ)gιτ − ∇̄(στ)gιρ + ∇̄(σι)gτρ

)
+ Q̃λ

τρσ(gµν , ∇̄αgµν , ḡµν , R̄λτρσ). (22)

Let us remark that this corresponds to calculating conserved current in the form 1
2 îα + 1

2 î∗α

as denoted in Ref. 11 in Eq. (80) and described in Sec. III B therein as “another variant of
covariantization.”

D. Conserved currents formulas in the Horndeski theory

Since in the Horndeski theory there are two different sets of the field variables, QB ≡ (ϕ, gµν),
we split the coefficients ûασ , m̂ατ

σ , and n̂ατβσ forming the conserved current ı̂α (9) into gravitational
and scalar parts

ûασ = L̂δασ + ûασ(g) + ûασ(ϕ), m̂ατ
σ = m̂ατ

σ(g) + m̂ατ
σ(ϕ), n̂ατβσ = n̂ατβ

σ(g) + n̂ατβ
σ(ϕ), (23)

in the coefficient ûασ we separated the L̂δασ term; it will be considered later.
For the scalar part, we have ϕ|τσ = 0; hence, formulas (10)–(12) considerably simplify:

n̂ατβ
σ(ϕ) = 0, (24)

m̂ατ
σ(ϕ) =−

∂L̂
∂ϕ |τα

∇̄σϕ, (25)

ûασ(ϕ) =−

[
∂L̂
∂ϕ |α

− ∇̄β

(
∂L̂
∂ϕ |αβ

)]
∇̄σϕ −

∂L̂
∂ϕ |βα

∇̄βσϕ. (26)

For the metric field gµν , we have from the definition (13)

gµν |
τ
σ =−δ

τ
µgσν − δ

τ
νgµσ . (27)

Since in (10)–(12) there is always a sum over (µ, ν) of gµν |τσ and a term of the type ∂L̂
∂gµν |···

, we can
simplify (27) into gµν |τσSµν =−2gρσSτρ, with Sµν being an arbitrary symmetric tensor. This leads to
the following formulas for the conserved current coefficients:
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n̂ατβ
σ(g) =−gρσ

(
∂L̂

∂gτρ |βα
+

∂L̂
∂gβρ |τα

)
, (28)

m̂ατ
σ(g) =−2gρσ

[
∂L̂

∂gρτ |α
− ∇̄β

(
∂L̂

∂gρτ |αβ

)]
−

∂L̂
∂gµν |τα

∇̄σgµν − 2
∂L̂

∂gρτ |βα
∇̄βgρσ , (29)

ûασ(g) =−2
δL̂
δgαρ

gσρ −

[
∂L̂

∂gµν |α
− ∇̄β

(
∂L̂

∂gµν |αβ

)]
∇̄σgµν −

∂L̂
∂gµν |βα

∇̄βσgµν

−
∂L̂

∂gβρ |τα
gρλR̄λστβ . (30)

As our Lagrangian consists of four parts, we decompose the current coefficients into four parts
as well,

n̂ατβ
σ(g) =

5∑
i=2

n̂ατβ
σ(g)(i), n̂ατβ

σ(ϕ) =

5∑
i=2

n̂ατβ
σ(ϕ)(i), (31)

m̂ατ
σ(g) =

5∑
i=2

m̂ατ
σ(g)(i), m̂ατ

σ(ϕ) =

5∑
i=2

m̂ατ
σ(ϕ)(i), (32)

ûασ(g) =

5∑
i=2

ûασ(g)(i), ûασ(ϕ) =

5∑
i=2

ûασ(ϕ)(i). (33)

Hereafter, this notation will be used.

IV. THE DERIVATIVES OF THE HORNDESKI LAGRANGIAN

We give some intermediate results necessary to calculate the conserved current coefficients ûασ ,
m̂ατ
σ , and n̂ατβσ . Simultaneously, it is rather illustrative to see how the covariantization and differen-

tiation with respect to auxiliary fields work. As we have two different sets of fields, it is natural to
divide the calculations into two parts.

A. Derivatives with respect to the scalar field

The Horndeski Lagrangian consists of several constituents containing derivatives of field ϕ: the
kinetic term X, the d’Alambertian □ϕ, and the trace of powers of matrix Π, Tr (Πk), k = 2, 3. For
the calculation of the derivatives, we need to write these terms manifestly covariant with respect to
the auxiliary metric ḡµν; but after the calculation is done, we will eliminate the auxiliary covariant
differentiation ∇̄α in favor of covariant derivative∇a and Christoffel symbols difference∆λµν whenever
possible.

The quadratic term X is simple: X =− 1
2 gµν∇µϕ∇νϕ=− 1

2 gµν∇̄µϕ∇̄νϕ. Hence,

∂X
∂ϕ |α

=−gαρ∇ρϕ=−∇
αϕ,

∂X
∂ϕ |αβ

= 0. (34)

Notice that for raising and lowering indices, only the metric field gµν is always used.
The derivatives of ∇µνϕ are easily found employing (14)

∂ϕ;µν

∂ϕ |α
=−∆αµν ,

∂ϕ;µν

∂ϕ |αβ
= δ(α

(µ δ
β )
ν ) , (35)

which are in turn used to calculate all necessary terms present in the Horndeski Lagrangian, i.e., the
d’Alambertian and its powers

∂ �ϕ

∂ϕ |α
=−gµν∆αµν ,

∂ �ϕ

∂ϕ |αβ
= gαβ , (36)

∂(�ϕ)k

∂ϕ |α
=−k(�ϕ)k−1gµν∆αµν ,

∂(�ϕ)k

∂ϕ |αβ
= k(�ϕ)k−1gαβ . (37)
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The matrix of the second derivatives Πµν of the scalar field ϕ and the trace of its various powers are
given by

∂Π ν
µ

∂ϕ |α
=−gνλ∆αλµ,

∂Π ν
µ

∂ϕ |αβ
= δ(α

µ gβ )ν , (38)

∂ TrΠk

∂ϕ |α
= k Tr

(
∂Π

∂ϕ |α
· Πk−1

)
,

∂ TrΠk

∂ϕ |αβ
= k Tr

(
∂Π

∂ϕ |αβ
· Πk−1

)
, (39)

∂ TrΠ2

∂ϕ |α
=−2∆αµν∇

µνϕ,
∂ TrΠ2

∂ϕ |αβ
= 2∇αβϕ, (40)

∂ TrΠ3

∂ϕ |α
=−3∆αρσ∇

λρϕ∇σλϕ,
∂ TrΠ3

∂ϕ |αβ
= 3∇αρϕ∇βρϕ. (41)

B. Derivatives with respect to the metric field gµν

The metric field gµν is explicitly present in the Ricci scalar and the Riemann tensor, and its first
derivatives are also contained in the second derivatives of the scalar field ϕ in the expression for the
Christoffel symbols difference [see (14) and (15)]. Hence, using

∂∆λτσ
∂gµν |α

= δα(τδ
(µ
σ )g

ν )λ −
1
2
δ

(µ
(τ δ

ν )
σ )g

αλ, (42)

we find the following relation:

∂ϕ;κλ

∂gµν |α
=−

∂∆
ρ
κλ

∂gµν |α
∇̄ρϕ=−

1
2

(
gρ(µδν )

κ δ
α
λ + gρ(µδν )

λ δ
α
κ − gραδ(µ

κ δν )
λ

)
∇ρϕ. (43)

Consequently, the resulting derivatives for the d’Alambertians look as follows:

∂�ϕ

∂gµν |α
= gκλ

∂ϕ;κλ

∂gµν |α
=

(
1
2

gαρgµν − gρ(µgν )α
)
∇ρϕ=

1
2

gµν∇αϕ − gα(µ∇ν
)ϕ, (44)

∂(�ϕ)k

∂gµν |α
= k(�ϕ)k−1

(
1
2

gµν∇αϕ − gα(µ∇ν
)ϕ

)
. (45)

Finally, the traces of the second derivatives read

∂Πκ
λ

∂gµν |α
=−gλι

∂∆
ρ
ικ

∂gµν |α
∇̄ρϕ=−

1
2

(
gλ(µgν )ρδακ + gλαgρ(µδν )

κ − gραgλ(µδν )
κ

)
∇ρϕ, (46)

∂ TrΠk

∂gµν |α
= k Tr

(
∂Π

∂gµν |α
· Πk−1

)
, (47)

∂ TrΠ2

∂gµν |α
=∇αϕ∇µνϕ − 2∇(µϕ∇ν )αϕ, (48)

∂ TrΠ3

∂gµν |α
=

3
2

(
∇αϕ∇ρ(µϕ∇ν )

ρϕ − 2∇(µϕ∇ν )ρϕ∇ρ
αϕ

)
. (49)

For the derivatives of the Riemann tensor which are necessary in the calculation of the conserved
current coefficients for Lagrangians L4 and L5, see Secs. V C and V D and the Appendix.
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V. CONSERVED CURRENT COEFFICIENTS

A. Conserved current coefficients for L2

Starting from (5) and employing the preceding results, we easily obtain the conserved cur-
rent coefficients ûα

σ(2), m̂ατ
σ(2), and n̂ατβ

σ(2). First, derivatives with respect to the scalar field derivatives
are

∂L2

∂ϕ |α
=−∂XK ∇αϕ,

∂L2

∂ϕ |αβ
= 0, (50)

which leads to m̂ατ
σ(ϕ)(2) = 0 and ûα

σ(ϕ)(2) = ∂X K̂ ∇αϕ∇σϕ. Derivatives with respect to the metric field

gµν all vanish for L2 and, consequently, the coefficients m̂ατ
σ(g)(2) and n̂ατβ

σ(g)(2) vanish as well; only in
ûα
σ(g)(2), the contribution from the field equations remains

ûασ(g)(2) =−2
δL̂2

δgαρ
gρσ . (51)

The total conserved current coefficients for the Lagrangian L2 are thus given by

ûασ(2) = L̂2δ
α
σ + ∂X K̂ ∇αϕ∇σϕ − 2

δL̂2

δgαρ
gρσ , m̂ατ

σ(2) = 0, n̂ατβ
σ(2) = 0. (52)

B. Conserved current coefficients for L3

The Horndeski Lagrangian L3 contains the second covariant derivatives of the scalar field. These
have an obvious impact on the derivative of L3 w.r.t. the second partial derivative of the field ϕ, and
they also imply the non-vanishing derivatives w.r.t. the first derivatives of the field and metric gµν
[see (14) and (36)].

For the scalar part, we get

∂L3

∂ϕ |α
= ∂XG3 ∇

αϕ�ϕ + G3gµν∆αµν , (53)

∂L3

∂ϕ |αβ
=−G3 gαβ . (54)

It is simple to insert these expressions into (25) and (26) to obtain coefficients m̂ατ
σ(ϕ)(3) and ûα

σ(ϕ)(3).
However, there is one term involved in the calculation of ûα

σ(ϕ)(3) which needs to be examined more
closely:

∇̄β

(
∂L̂3

∂ϕ |αβ

)
=−∇̄β

(√
−g G3(ϕ, X)gαβ

)
. (55)

As noticed already, the result should be written in terms of g-covariant derivatives and the Christoffel
symbols difference ∆λµν . For the derivative of the metric and its determinant, we have

∇̄αgµν =−2gλ(µ
∆
ν )
λα, ∇̄αgµν = 2gλ(µ∆

λ
ν )α (56)

and ∇̄αg= 2g∆λλα since the metric determinant is the scalar density of weight two, implying

∇̄α
√
−g=

√
−g∆λλα. (57)

The derivative of G3, a function of two scalars, ∇̄αϕ=∇αϕ, ∇̄αX =∇αX =−∇αρϕ∇ρϕ, is

∇̄αG3 = ∂ϕG3∇αϕ − ∂XG3∇αρϕ∇
ρϕ. (58)

Regarding (53)–(58), we find the final forms of m̂ατ
σ(ϕ)(3) and ûα

σ(ϕ)(3)
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m̂ατ
σ(ϕ)(3) = Ĝ3gτα∇σϕ, (59)

ûασ(ϕ)(3) = Ĝ3(∇ασϕ + gακ∆ρσκ∇ρϕ) − ∂ϕĜ3∇
αϕ∇σϕ

+ ∂XĜ3

(
∇αρϕ∇ρϕ∇σϕ − �ϕ∇

αϕ∇σϕ
)

. (60)

For the metric part, the results considerably simplify since L3 does not contain the second
derivatives of gµν . The non-vanishing derivatives of L3 are obtained using (44). The result is

∂L3

∂gµν |α
=G3

(
gα(µ∇ν

)ϕ −
1
2

gµν∇αϕ

)
, (61)

∂L3

∂gµν |αβ
= 0. (62)

The above expressions plugged into formulas (28)–(30) lead to the following conserved current
coefficients for L3:

n̂ατβ
σ(g)(3) = 0, (63)

m̂ατ
σ(g)(3) =−2gρσ

∂L̂3

∂gρτ |α
= Ĝ3

(
2δ[τ

σ ∇
α ]ϕ − gατ∇σϕ

)
, (64)

ûασ(g)(3) =−2
δL̂3

δgαρ
gσρ −

∂L̂3

∂gµν |α
∇̄σgµν

=−2
δL̂3

δgαρ
gσρ + Ĝ3

(
∇αϕ∆

ρ
ρσ − ∇

ρϕ∆αρσ − ∇ρϕ∆
ρ
κσgκα

)
. (65)

C. Conserved current coefficients for L4

The Lagrangian L4 contains the scalar curvature R which, multiplied by the square root of the
determinant g, constitutes the Einstein-Hilbert Lagrangian. The calculations for conserved current
coefficients will be performed in such a way that the coefficients corresponding to the Einstein-Hilbert
Lagrangian will be preserved in the final result.

The derivatives of L4 with respect to the scalar field derivatives are easily obtained using
expressions (37) and (40)

∂L4

∂ϕ |α
=−∂XG4 ∇

αϕR − ∂XXG4 ∇
αϕ

[
(�ϕ)2 − TrΠ2

]
− 2∂XG4 ∆

α
µν

[
gµν�ϕ − ∇µνϕ

]
, (66)

∂L4

∂ϕ |αβ
= ∂XG4

[
2�ϕ gαβ − 2∇αβϕ

]
. (67)

To calculate the conserved current, we plug the above results into formulas (25) and (26). The
calculations are straightforward except, as in the case of L3, for the term

∇̄β

(
∂L̂4

∂ϕ |αβ

)
=∆λλβ

∂L̂4

∂ϕ |αβ
+
√
−g ∇̄β

(
∂L4

∂ϕ |αβ

)
, (68)

we used the relation ∇̄α(
√
−g T )=∆λλαT̂ +

√
−g ∇̄αT , where T denotes an arbitrary tensor, cf. (57).

Furthermore, in the second term of (68), we need to convert the third “mixed” covariant derivatives
∇̄α�ϕ and ∇̄α∇µνϕ into just the g-covariant derivatives and ∆αµν-s using formulas (19) and (20). The
resulting conserved current coefficients for scalar part then read

m̂ατ
σ(ϕ)(4) =−∂XĜ4

[
2�ϕ gτα − 2∇ατϕ

]
∇σϕ, (69)

ûασ(ϕ)(4) = ∂XĜ4

(
R∇σϕ∇

αϕ + 2
(
∇σρϕ∇

ραϕ − �ϕ∇σ
αϕ

)
+2∆ρκσ∇ρϕ (∇καϕ − gκα�ϕ) + 2∇σϕ

(
∇α(�ϕ) − ∇ρ

αρϕ
))

+ ∂XXĜ4∇σϕ
(
∇αϕ

(
(�ϕ)2 − TrΠ2

)
+ 2∇ρϕ (∇ρκϕ∇κ

αϕ − �ϕ∇ραϕ)
)

+ 2∂XϕĜ4∇σϕ
(
�ϕ∇αϕ − ∇αρϕ∇ρϕ

)
. (70)
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The Lagrangian L4 is the first one containing the second derivatives of the metric in the
scalar curvature. For now, we keep the derivatives of the scalar curvature unevaluated as it will
mainly contribute to the Einstein-Hilbert part of the conserved current coefficients. Employing
(45) and (48), we obtain the Lagrangian derivatives with respect to the metric field derivatives as
follows:

∂L4

∂gµν |α
=G4

∂R
∂gµν |α

+ ∂XG4

[
gµν∇αϕ�ϕ − 2gα(µ∇ν

)ϕ�ϕ − ∇αϕ∇µνϕ + 2∇(µϕ∇ν )αϕ
]

, (71)

∂L4

∂gµν |αβ
=G4

∂R
∂gµν |αβ

. (72)

In the conserved current, the coefficient n̂ατβ
σ(g)(4) is simple since the result is just the Einstein-

Hilbert current multiplied by the function G4,

n̂ατβ
σ(g)(4) =−G4 gρσ

(
∂R̂

∂gτρ |βα
+

∂R̂
∂gβρ |τα

)
=G4 n̂ατβ

σ(EH). (73)

The next term, we have to evaluate

∇̄β

(
∂L̂4

∂gµν |αβ

)
= ∇̄βG4

∂R̂
∂gµν |αβ

+ G4∇̄β

(
∂R̂

∂gµν |αβ

)
, (74)

consists of two parts. The second part will contribute to the Einstein-Hilbert coefficient m̂ατ
σ(EH), for

the first part we need an explicit expression for scalar curvature derivative,

∂R
∂gµν |αβ

= gα(µgν )β − gαβgµν . (75)

Using expressions (71)–(75), we obtain the final conserved current coefficient m̂ατ
σ(g)(4),

m̂ατ
σ(g)(4) =G4m̂ατ

σ(EH) + ∂ϕĜ4
(
∇σϕ gατ + ∇τϕ δασ − 2∇αϕ δτσ

)
+ ∂XĜ4

(
2�ϕ

(
2δ[α

σ ∇
τ ]ϕ + ∇σϕ gατ

)
+ 2

(
2∇[αϕ∇τ ]

σϕ − ∇σϕ∇
ατϕ

)
+ ∇ρϕ

(
2∇ραϕ δτσ − ∇

ρτϕ δασ − ∇
ρ
σϕ gατ

) )
. (76)

By similar procedure, we find

ûασ(g)(4) = − 2
δL̂4

δgαρ
gσρ + G4

(
ûασ(EH) + 2

δR̂
δgαρ

gσρ

)
+ ∂ϕĜ4

(
∆
α
σρ∇

ρϕ + ∆ρσκ∇ρϕgκα − 2∆ρρσ∇
αϕ

)
+ ∂XĜ4

(
2�ϕ

(
∆
α
σρ∇

ρϕ + ∆ρσκ∇ρϕgκα − ∆ρρσ∇
αϕ

)
+ 2∆ρκσ∇

αϕ∇ρ
κϕ

− 2∆ρσκ∇ρϕ∇
καϕ − 2∆ρσκ∇

κϕ∇ρ
αϕ + 2∆ρρσ∇κϕ∇

καϕ − ∆ασρ∇κϕ∇
ρκϕ

−∆
ρ
σκ∇λϕ∇

λ
ρϕgκα

)
. (77)

D. Conserved current coefficients for L5

The last Horndeski Lagrangian L5 is the most complex—it contains the Einstein tensor Gµν and
the cubic terms of the second derivatives of the scalar field. The derivatives with respect to the scalar
field are found rather easily using (35), (37), (40), and (41),

∂L5

∂ϕ |α
= − G5Gµν

∆
α
µν + ∂XG5

(
− Gµν∇αϕ∇µνϕ +

1
2

gµν∆αµν
(
(�ϕ)2 − TrΠ2

)
− �ϕ∆αµν∇

µνϕ + ∆αµν∇
µλϕ∇λ

νϕ
)

+ ∂XXG5∇
αϕ

(
1
6

(�ϕ)3 −
1
2
�ϕTrΠ2 +

1
3

TrΠ3
)

, (78)
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∂L5

∂ϕ |αβ
= G5Gαβ + ∂XG5

(
�ϕ∇αβϕ − ∇αρϕ∇ρ

βϕ −
1
2

gαβ
(
(�ϕ)2 − TrΠ2

))
. (79)

The conserved current coefficient m̂ατ
σ(ϕ)(5) is then simply obtained by putting (79) into (25)

m̂ατ
σ(ϕ)(5) =

(
1
6
∂XĜ5

[
3gατ(�ϕ)2 − 3gατ TrΠ2 − 6�ϕ∇ατϕ + 6∇τρϕ∇ρ

αϕ
]
− Ĝ5Gατ

)
∇σϕ. (80)

For the term ∇̄β(∂L̂5/∂ϕ |αβ) in ûα
σ(ϕ)(5), we use (19) and (20) as in the conserved current

coefficients for L4. Also, we use the following relation:

∇̄βGαβ =−
(
∆
α
ρβGρβ + ∆βρβGαρ

)
. (81)

After quite tedious calculations, we get the final form of the conserved current coefficient ûα
σ(ϕ)(5) as

follows:

ûασ(ϕ)(5) = − Ĝ5Gαρ
(
∇ρσϕ + ∆κρσ∇κϕ

)
+ ∂ϕĜ5Gαρ∇ρϕ∇σϕ

+ ∂XĜ5

(
∇σϕ

(
(Gρκ∇αϕ − Gαρ∇κϕ)∇ρκϕ +

1
2
∇α

(
TrΠ2 − (�ϕ)2

)
+∇αρϕ∇ρ(�ϕ) + �ϕ∇τ

ατϕ − ∇ρκϕ∇
ρακϕ − ∇αρϕ∇κρ

κϕ
)

+
(
∇ρσϕ + ∆κρσ∇κϕ

) (
1
2

gαρ
(
(�ϕ)2 − TrΠ2

)
− �ϕ∇αρϕ + ∇ρλϕ∇λ

αϕ

))
+ ∂XϕĜ5∇σϕ

(
1
2

(
TrΠ2 − (�ϕ)2

)
∇αϕ + ∇ρϕ (∇ραϕ�ϕ − ∇ρκϕ∇κ

αϕ)

)
+ ∂XXĜ5∇σϕ

(
∇αϕ

(
−

1
6

(�ϕ)3 +
1
2

TrΠ2�ϕ −
1
3

TrΠ3
)

+∇ρϕ

(
1
2

(
(�ϕ)2 − TrΠ2

)
∇ραϕ − �ϕ∇ρκϕ∇κ

αϕ + ∇ρκϕ∇κλϕ∇
λαϕ

))
. (82)

Now let us turn to the metric field. The derivative of L5 with respect to the first derivative of gµν
is worked out using expressions (45), (48), and (49)

∂L5

∂gµν |α
=G5

(
∂Rρκ

∂gµν |α
∇ρκϕ −

1
2

∂R
∂gµν |α

�ϕ +
1
2

Gµν∇αϕ − Gα(µ∇ν
)ϕ

)
+ ∂XG5

(
1
2

(
(�ϕ)2 − TrΠ2

) (
gα(µ∇ν

)ϕ −
1
2

gµν∇αϕ

)
+ ∇(µϕ∇ν )ρϕ∇ρ

αϕ

+
1
2
�ϕ

(
∇αϕ∇µνϕ − 2∇(µϕ∇ν )αϕ

)
−

1
2
∇αϕ∇ρ(µϕ∇ν )

ρϕ

)
, (83)

where, when convenient, the Einstein tensor has been split into the Ricci tensor and the scalar
curvature. The scalar curvature will then contribute to the Einstein-Hilbert part of the resulting
conserved current coefficients. Using the derivative of Ricci tensor with respect to the first derivative
of the metric,

∂Rτσ
∂gµν |α

=
1
2
∆
α
ρκδ

(µ
(τ δ

ν )
σ )g

ρκ − ∆αρ(τδ
(µ
σ )g

ν )ρ +
1
2
∆
α
τσgµν − ∆(µ

ρκδ
ν )
(τδ

α
σ )g

ρκ

+ δα(τ∆
(µ
σ )ρgν )ρ + ∆(µ

ρ(τδ
ν )
σ )g

ρα − ∆
(µ
τσgν )α, (84)

we express the first term of (83) as follows:
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∂Rρκ

∂gµν |α
∇ρκϕ=

1
2
∆
α
ρκ∇

µνϕ gρκ − ∆αρκ∇
ρ(µϕ gν )κ +

1
2
∆
α
ρκ∇

ρκϕ gµν − ∆(µ
ρκ∇

ν )αϕ gρκ

+ gκ(µ
∆
ν )
κρ∇

αρϕ + ∆(µ
ρκ∇

ν )ρϕ gακ − gα(µ
∆
ν )
ρκ∇

ρκϕ. (85)

The only object in L5 containing the second derivatives of the metric tensor is the Einstein tensor
Gµν; we get

∂L5

∂gµν |αβ
=G5

∂Rρσ

∂gµν |αβ
∇ρσϕ −

1
2

G5�ϕ
∂R

∂gµν |αβ
, (86)

where, as in (83), we split the Einstein tensor into the Ricci and scalar curvature part. The differentiated
Ricci tensor with respect to the second derivatives of the metric reads

∂Rτσ
∂gµν |αβ

=
1
2

(
δα(τδ

(µ
σ )g

ν )β + δβ(τδ
(µ
σ )g

ν )α − δ(α
(τ δ

β )
σ )g

µν − δ
(µ
(τ δ

ν )
σ )g

αβ
)

. (87)

After contracting it with the second derivatives of the scalar field, we get

∂Rρκ

∂gµν |αβ
∇ρκϕ=

1
2

(
gα(µ∇ν

)βϕ + gβ(µ∇ν
)αϕ − gµν∇αβϕ − gαβ∇µνϕ

)
, (88)

which is then inserted into the expression (86).
Finally, we can calculate the last set of conserved current coefficients by employing the above

results (83) and (86) [together with (85) and (88)]

n̂ατβ
σ(g)(5) =−

1
2

Ĝ5

(
�ϕ nατβ

σ(EH) + gβτ∇ασϕ + δασ∇
βτϕ − δ(τ

σ ∇
β )αϕ − gα(τ∇β

)
σϕ

)
, (89)

m̂ατ
σ(g)(5) = −

1
2

G5�ϕ m̂ατ
σ(EH) + Ĝ5

[
Gατ∇σϕ + Gα

σ∇
τϕ − Gσ

τ∇αϕ − ∆ασρ∇
ρτϕ

+
1
2
∆
ρ
ρσ∇

ατϕ +
1
2
∆
τ
ρκ

(
gρκ∇ασϕ − gακ∇ρσϕ + δασ∇

ρκϕ
)

+
1
2
∇σ

ατϕ

+
1
2
∇τασϕ − ∇

α
σ
τϕ + ∆ρκσ

(
1
2

gακ∇ρ
τϕ − gτκ∇αρϕ +

1
2

gατ∇ρ
κϕ

)
+

1
2
δασ

(
∇ρ

ρτϕ − ∇τρρϕ
)

+ δτσ
(
∇αρρϕ − ∇ρ

αρϕ
)

+
1
2

gατ
(
∇ρ

ρ
σϕ − ∇σ

ρ
ρϕ

) ]

+ ∂XĜ5

[ 1
2

(
(�ϕ)2 − TrΠ2

) (
δτσ∇

αϕ − δασ∇
τϕ − gατ∇σϕ

)
+ �ϕ

(
∇τϕ∇ασϕ

− ∇αϕ∇τσϕ + ∇σϕ∇
ατϕ + ∇ρϕ

(
1
2
δασ∇

ρτϕ − δτσ∇
ραϕ +

1
2

gατ∇ρσϕ

) )
+

1
2
∇αϕ∇τρϕ∇ρσϕ +

1
2
∇αϕ∇σρϕ∇

ρτϕ − ∇σϕ∇
αρϕ∇ρ

τϕ − ∇τϕ∇αρϕ∇ρσϕ

+∇ρϕ

(
δτσ∇

ρκϕ∇κ
αϕ −

1
2
δασ∇

ρκϕ∇κ
τϕ −

1
2

gατ∇ρκϕ∇κσϕ −
1
2
∇ρσϕ∇

ατϕ

−
1
2
∇ρτϕ∇ασϕ + ∇ραϕ∇σ

τϕ

) ]

+ ∂ϕĜ5

[ 1
2
δασ∇ρϕ∇

ρτϕ − δτσ∇ρϕ∇
ραϕ +

1
2
∇σϕ∇

ατϕ +
1
2

gατ∇ρϕ∇
ρ
σϕ

+
1
2
∇τϕ∇ασϕ − ∇

αϕ∇σ
τϕ + �ϕ

(
δτσ∇

αϕ −
1
2
δασ∇

τϕ −
1
2

gατ∇σϕ

) ]
, (90)
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ûασ(g)(5) = − 2
δL̂5

δgαρ
gσρ −

1
2

G5�ϕ

(
ûασ(EH) + 2

δR̂
δgαρ

gσρ

)
+ Ĝ5

[
Gαρ
∆
λ
ρσ∇λϕ + Gα

λ∆
λ
σκ∇

κϕ − Gρ
λ∆

λ
ρσ∇

αϕ +
1
2
∆
α
σρ

(
∇λ

λρϕ − ∇ρλλϕ
)

+ ∆ρρσ
(
∇αλλϕ − ∇λ

λαϕ
)

+
1
2
∆
ρ
σλ

(
∇ρ

αλϕ + ∇λαρϕ − 2∇αλρϕ

+gαλ
(
∇κ κρϕ − ∇ρκ

κϕ
))
−

1
2
∇ρ∆

α
σλ∇

ρλϕ + ∇ρ∆
λ
λσ∇

αρϕ −
1
2
∇ρ∆

ρ
σλ∇

αλϕ

−
1
2
∇ρ∆λσρ∇λ

αϕ + ∇α∆λσρ∇λ
ρϕ −

1
2
∇ρ∆λσκ∇λρϕ gακ −

1
2
∆
α
ρλ∆

ρ
σκ∇

κλϕ

−
1
2
∆
ρ
λκ∆

λ
σρ∇

ακϕ + ∆ρρλ∆
λ
σκ∇

ακϕ −
1
2
∆
ρ
λκ∆

λ
σι∇ρ

αϕ gκι −
1
2
∆
ρ
λκ∆

λ
σι∇

ι
ρϕ gακ

+ ∆ρλκ∆
λ
σι∇ρ

κϕ gαι −
3
4

R̄σλ∇
αλϕ −

3
4

R̄ρσλκ∇ρ
λϕ gακ

]

+ ∂XĜ5

[ (
∆

[ ρ
ρσ∇

α ]ϕ −
1
2
∆
ρ
σλ∇ρϕ gαλ

) (
(�ϕ)2 − TrΠ2

)
+ �ϕ

(
1
2
∆
α
σρ∇λϕ∇

ρλϕ

− ∆
ρ
ρσ∇λϕ∇

αλϕ + ∆ρσλ
(
∇ρϕ∇

αλϕ − ∇αϕ∇ρ
λϕ + ∇λϕ∇ρ

αϕ

+
1
2
∇κϕ∇ρ

κϕ gαλ
))
−

1
2
∆
α
σρ∇λϕ∇κ

ρϕ∇λκϕ + ∆ρρσ∇λϕ∇κ
αϕ∇λκϕ

+ ∆ρσλ

(
∇κϕ

(
∇ρ

λϕ∇ακϕ −
1
2
∇ρ

αϕ∇λκϕ −
1
2
∇ρ

κϕ∇αλϕ −
1
2
∇ι
κϕ∇ρ

ιϕ gαλ
)

− ∇ρϕ∇κ
αϕ∇λκϕ + ∇αϕ∇κ

λϕ∇ρ
κϕ − ∇λϕ∇κ

αϕ∇ρ
κϕ

)]

+ ∂ϕĜ5

[ 1
2
∆
α
σρ∇λϕ∇

ρλϕ − ∆
ρ
σρ∇λϕ∇

αλϕ + �ϕ
(
−

1
2
∆
α
σρ∇

ρϕ

−
1
2
∆
ρ
σλ∇ρϕ gαλ + ∆ρσρ∇

αϕ
)

+ ∆ρσλ
(1
2
∇λϕ∇ρ

αϕ − ∇αϕ∇ρ
λϕ

+
1
2
∇κϕ∇ρ

κϕ gαλ +
1
2
∇ρϕ∇

αλϕ
)]

. (91)

VI. SUPERPOTENTIAL

The general formula for the superpotential reads [see Eq. (55) in Ref. 11]

îαβ =

(
2
3
∇̄λn̂[αβ]λ

σ − m̂[αβ]
σ

)
ξσ −

4
3

n̂[αβ]λ
σ ∇̄λξ

σ . (92)

The conserved current ı̂α, given by (9), is generated by the superpotential as a divergence:
ı̂α = ∂β ı̂αβ .

Since we have two fields, we split the superpotential for the scalar and for the tensor field and
for each Lagrangian, as in the case of the conserved currents. We write

îαβ =
5∑

i=2

(
îαβ(ϕ)(i) + îαβ(g)(i)

)
. (93)

The coefficients n̂ατβσ vanish for the scalar field, see (24), so the superpotential for ϕ-field reduces to

îαβ(ϕ) =−m̂[αβ]
σ(ϕ)ξ

σ . (94)

Moreover, all coefficients m̂αβ
σ of scalar parts are symmetrical in (α, β) [cf. (25)], hence îαβ(ϕ)(i) = 0

for all the Lagrangians. We thus need to calculate only the metric field part of the superpotential.
For Lagrangian L2, the coefficients n̂ατβ

σ(g)(2) and m̂ατ
σ(g)(2) vanish, see Sec. V A, and so does the

superpotential îαβ(g)(2).
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Regarding the Lagrangian L3, as the coefficient n̂ατβ
σ(g)(3) is also vanishing, we get the similar

situation as for the scalar field and the superpotential formula reduces to the same form as in (94).
Then, plugging (64) into (94), we get

îαβ(3) = îαβ(g)(3) = 2Ĝ3δ
[α
σ ∇

β ]ϕ ξσ . (95)

For the Lagrangian L4, we split the superpotential into two parts – we will explicitly exclude
the part originating from the Einstein-Hilbert part of current coefficients m̂ατ

σ and n̂ατβσ . Generally
speaking, if the structure of coefficients m̂ατ

σ and n̂ατβσ is

m̂ατ
σ =F m̂ατ

σ(EH) + m̂ατ
σ(rest), n̂ατβσ =F n̂ατβ

σ(EH) + n̂ατβ
σ(rest), (96)

where F is an arbitrary function, we obtain, after plugging (96) into (92), the following splitting of
the superpotential:

îαβ =F îαβ(EH) + îαβ(rest), (97)

with the latter part given by the expression

îαβ(rest) =

[
2
3

(
∇̄λF n̂[αβ]λ

σ(EH) + ∆κκλn̂[αβ]λ
σ(rest) +

√
−g ∇̄λn[αβ]λ

σ(rest)

)
− m̂[αβ]

σ(rest)

]
ξσ −

4
3

n̂[αβ]λ
σ(rest)∇̄λξ

σ . (98)

Then, following this scheme for the Lagrangian L4 with F = G4, we get

îαβ(4) =G4 îαβ(EH) + îαβ(4)(rest), (99)

îαβ(4)(rest) = 4
[
∂XĜ4

(
δ[α
σ ∇

β ]ρϕ∇ρϕ − δ
[α
σ ∇

β ]ϕ�ϕ − ∇[αϕ∇β ]
σϕ

)
− ∂ϕĜ4 δ

[α
σ ∇

β ]ϕ
]
ξσ . (100)

Finally, for the last Lagrangian L5, we have

îαβ(5) =−
1
2

G5 �ϕ îαβ(EH) + îαβ(5)(rest). (101)

The calculation of îαβ(5)(rest) is done similarly as for the coefficients m̂ατ
σ and ûασ for Lagrangians L4

and L5. The result turns out to be

îαβ(5)(rest) =
[
Ĝ5

(
2δ[α

σ ∇
β ]λ

λϕ + 2∇[αβ]
σϕ − 2δ[α

σ ∇λ
β ]λϕ − ∆

ρ
σκgκ[α∇β ]

ρϕ

+ ∆[α
σρ∇

β ]ρϕ − 2G[α
σ ∇

β ]ϕ
)

+ 2 ∂ϕĜ5

(
δ[α
σ ∇

β ]ϕ�ϕ + ∇[αϕ∇β ]
σϕ − δ

[α
σ ∇

β ]ρϕ∇ρϕ
)

+ ∂XĜ5

(
−2δ[α

σ ∇
β ]ρϕ∇ρϕ�ϕ + 2∇ρϕ∇σ

[αϕ∇β ]ρϕ + 2δ[α
σ ∇

β ]ρϕ∇ρκϕ∇
κϕ

+ δ[α
σ ∇

β ]ϕ(�ϕ)2 − δ[α
σ ∇

β ]ϕTrΠ2 + 2∇[αϕ∇β ]
σϕ�ϕ

−2∇[αϕ∇β ]ρϕ∇ρσϕ
) ]
ξσ + Ĝ5

[
δ[α
σ ∇

β ]λϕ − gλ[α∇β ]
σϕ

]
∇̄λξ

σ . (102)

VII. SUPERPOTENTIALS ASSOCIATED WITH NONLINEAR
AND LINEAR PERTURBATIONS

Superpotentials associated with the background are obtained simply by replacing all gµν and ϕ
by ḡµν and ϕ̄ and, consequently, all covariant derivatives ∇ are replaced by ones with respect to the
background metric ∇̄, and the connection difference ∆λµν vanishes. The superpotentials can be made
relevant for (possibly large) perturbations if we consider the difference between the “total” and the
background superpotentials as follows:

Îαβ = îαβ − ¯̂iαβ . (103)

If the quantities ϕ, gµν and ϕ̄, ḡµν are solutions of the field equations for both physical and background
spacetimes, we can construct relative superpotentials and associated conserved charges for specific
physical problems.
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In this section, indices are raised and lowered with the metric ḡµν only. For the Lagrangian L3,
we have the background superpotential

¯̂iαβ(3) = 2 ¯̂G3δ
[α
σ ∇̄

β ]ϕ̄ ξσ , (104)

where the notation ¯̂F means
√
−ḡF(ϕ̄, X̄) with F being arbitrary function of ϕ and X; naturally,

X̄ = 1
2 ḡµν∇̄µ ϕ̄∇̄ν ϕ̄. For the Lagrangian L4, we have the splitting (99), hence

¯̂iαβ(4) = Ḡ4
¯̂iαβ(EH) + ¯̂iαβ(4)(rest), (105)

where the second part of the expression is given by

¯̂iαβ(4)(rest) = 4
[
∂X

¯̂G4

(
δ[α
σ ∇̄

β ]ρ ϕ̄∇̄ρ ϕ̄ − δ
[α
σ ∇̄

β ]ϕ̄ �̄ϕ̄ − ∇̄[α ϕ̄∇̄β ]
σ ϕ̄

)
− ∂ϕ

¯̂G4 δ
[α
σ ∇̄

β ]ϕ̄
]
ξσ , (106)

the obvious notation �̄= ḡµν∇̄µ∇̄ν was used. For the last Lagrangian L5, we use the splitting (101),
consequently, we have the expression for the background fields as follows:

¯̂iαβ(5) =−
1
2

Ḡ5 �̄ϕ̄
¯̂iαβ(EH) + ¯̂iαβ(5)(rest), (107)

with the following lengthy expression:

¯̂iαβ(5)(rest) =
[ ¯̂G5

(
2δ[α

σ ∇̄
β ]λ

λϕ̄ + 2∇̄[αβ]
σ ϕ̄ − 2δ[α

σ ∇̄
β ]λ
λ ϕ̄ − 2Ḡ[α

σ ∇̄
β ]ϕ̄

)
+ 2 ∂ϕ

¯̂G5

(
δ[α
σ ∇̄

β ]ϕ̄ �̄ϕ̄ + ∇̄[α ϕ̄∇̄β ]
σ ϕ̄ − δ

[α
σ ∇̄

β ]ρ ϕ̄∇̄ρ ϕ̄
)

+ ∂X
¯̂G5

(
−2δ[α

σ ∇̄
β ]ρ ϕ̄∇̄ρ ϕ̄ �̄ϕ̄ + 2∇̄ρ ϕ̄∇̄σ

[α
ϕ̄∇̄β ]ρ ϕ̄ + 2δ[α

σ ∇̄
β ]ρ ϕ̄∇̄ρκ ϕ̄∇̄

κ ϕ̄

+ δ[α
σ ∇̄

β ]ϕ̄(�̄ϕ̄)2 − δ[α
σ ∇̄

β ]ϕ̄Tr Π̄2 + 2∇̄[α ϕ̄∇̄β ]
σ ϕ̄ �̄ϕ̄

−2∇̄[α ϕ̄∇̄β ]ρ ϕ̄∇̄ρσ ϕ̄
) ]
ξσ + ¯̂G5

[
δ[α
σ ∇̄

β ]λϕ̄ − gλ[α∇̄β ]
σ ϕ̄

]
∇̄λξ

σ (108)

=

[
¯̂G5 īαβ

σ(G5) + ∂ϕ
¯̂G5 īαβ

σ(∂ϕG5) + ∂X
¯̂G5 īαβ

σ(∂X G5)

]
ξσ + ¯̂G5 īαβλ

σ(∇G5)∇̄λξ
σ , (109)

where the identity ∆̄λµν = 0 and the notation Tr Π̄2 = ∇̄µν ϕ̄∇̄
µν ϕ̄ were used; we also introduced

notation īαβ
σ(G5), īαβ

σ(∂ϕG5), īαβ
σ(∂X G5) and īαβλ

σ(∇G5), denoting the terms in brackets appearing at various
derivatives of function G5. These will be subsequently used in the expressions for the linearized
superpotential.

The linearization of these superpotentials is done by assuming the metric and the scalar field
in the form gµν = ḡµν + εhµν and ϕ= ϕ̄ + εδϕ in superpotentials (95), (99)–(102) and keeping
terms only of the first order in ε. We also have gµν = ḡµν � εhµν + O(ε2), with hµν = ḡµρḡνσhρσ .
Typically, for a term H, the quantity δH means: H = H̄ + εδH + O(ε2), where in H̄ every quantity was
replaced by its background counterpart. The linearization of the following expressions is obtained
easily:

Gi(ϕ, X)=Gi(ϕ̄, X̄) + ε
(
∂ϕGi(ϕ̄, X̄)δϕ + ∂XGi(ϕ̄, X̄)δX

)
+ O(ε2), (110)

δX =−∇̄µ ϕ̄∇̄µδϕ −
1
2

hµν∇̄µ ϕ̄∇̄ν ϕ̄, (111)

δ∆λµν =
1
2

ḡλκ
(
∇̄µhνκ + ∇̄νhµκ − ∇̄κhµν

)
, (112)

∇µνϕ= ∇̄µν ϕ̄ + ε
(
∇̄µνδϕ − δ∆

ρ
µν∇̄ρ ϕ̄

)
+ O(ε2), (113)

√
−g=

√
−ḡ

(
1 +

1
2
εh

)
+ O(ε2), (114)

where h= hµµ = ḡµνhµν .
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For the superpotentials, we have îαβ(i) =
¯̂iαβ(i) +ε δîαβ(i) +O(ε2), and for the Lagrangian L3, we obtain

δîαβ(3) = 2δ[α
σ

[
¯̂G3

(
∇̄β ]δϕ +

1
2

h∇̄β ]ϕ̄ − hβ ]ρ∇̄ρ ϕ̄

)
+ ∂ϕ

¯̂G3 δϕ ∇̄
β ]ϕ̄

+∂X
¯̂G3∇̄

β ]ϕ̄

(
1
2
δgµν∇̄µ ϕ̄∇̄ν ϕ̄ − ∇̄ρ ϕ̄∇̄

ρδϕ

)]
ξσ . (115)

Assuming ϕ̄= const., we get simply δîαβ(3) = 2 ¯̂G3δ
[α
σ ∇̄

β ]δϕ ξσ .
The splitting of the superpotential (97) leads to the following decomposition:

δîαβ = δF ¯̂iαβ(EH) + F̄ δîαβ(EH) + δîαβ(rest), (116)

with F̄ simply denoting F(ϕ̄, X̄) and δF = ∂ϕF̄ δϕ + ∂X F̄ δX . In the case of the Lagrangian L4, the
decomposition looks as follows:

δîαβ(4) = δG4
¯̂iαβ(EH) + Ḡ4δîαβ(EH) + δîαβ(4)(rest), (117)

and for the δîαβ(4)(rest), we arrive at the expression

δîαβ(4)(rest) = 4
[
∂ϕ

¯̂G4 δ
[α
σ

(
hβ ]ρ∇̄ρ ϕ̄ − ∇̄

β ]δϕ −
1
2

h∇̄β ]ϕ̄

)
− ∂ϕϕ

¯̂G4 δϕ δ
[α
σ ∇̄

β ]ϕ̄

+ ∂X
¯̂G4

[
δ[α
σ

(
∇̄β ]ρ ϕ̄∇̄ρδϕ + ∇̄β ]ρδϕ∇̄ρ ϕ̄ − ∇̄

β ]ϕ̄ �̄δϕ − ∇̄β ]δϕ �̄ϕ̄
)

− ∇̄[α ϕ̄∇̄β ]
σδϕ − ∇̄

[αδϕ∇̄β ]
σ ϕ̄ +

1
2

h
(
δ[α
σ ∇̄

β ]ρ ϕ̄∇̄ρ ϕ̄ − δ
[α
σ ∇̄

β ]ϕ̄ �̄ϕ̄

− ∇̄[α ϕ̄∇̄β ]
σ ϕ̄

)
− δ[α

σ ḡβ ]ρ∇̄κ ϕ̄∇̄
λϕ̄ δ∆κρλ + δ[α

σ ∇̄
β ]ϕ̄∇̄ρ ϕ̄ δ∆

ρ
κλḡκλ

+ ∇̄ρ ϕ̄∇̄
[α ϕ̄ ḡβ ]κ δ∆

ρ
κσ + δ[α

σ

(
− ∇̄β ]

ρ ϕ̄∇̄κ ϕ̄ hρκ − hβ ]ρ∇̄κ ϕ̄∇̄ρκ ϕ̄

+ ∇̄β ]ϕ̄∇̄ρκ ϕ̄ hρκ + hβ ]ρ∇̄ρ ϕ̄ �̄ϕ̄
)

+ ∇̄[α ϕ̄ hβ ]ρ∇̄ρσ ϕ̄ + hρ[α∇̄β ]
σ ϕ̄∇̄ρ ϕ̄

]

+ ∂Xϕ
¯̂G4

[
δϕ

(
δ[α
σ ∇̄

β ]ρ ϕ̄∇̄ρ ϕ̄ − δ
[α
σ ∇̄

β ]ϕ̄ �̄ϕ̄ − ∇̄[α ϕ̄∇̄β ]
σ ϕ̄

)
− δX δ[α

σ ∇̄
β ]ϕ̄

]

+ ∂XX
¯̂G4 δX

(
δ[α
σ ∇̄

β ]ρ ϕ̄∇̄ρ ϕ̄ − δ
[α
σ ∇̄

β ]ϕ̄ �̄ϕ̄ − ∇̄[α ϕ̄∇̄β ]
σ ϕ̄

) ]
ξσ . (118)

After setting ϕ̄= const., we obtain ∆îαβ(4)(rest) =−∂ϕ
¯̂G4δ

[α
σ ∇̄

β ]δϕ ξσ .
In the superpotential for the Lagrangian L5 (102), we observe two terms for which the lineariza-

tion is not so obvious. It is the Einstein tensor Gµν and the third derivatives of scalar field ∇αβγϕ. Let
us examine them closer. Using (21) and realizing that ∆λµν is already of the first order, we obtain the
Riemann tensor and, by contraction, the linearized Ricci tensor

Rλτρσ = R̄λτρσ + ε
(
∇̄ρδ∆

λ
τσ − ∇̄σδ∆

λ
τρ

)
+ O(ε2),

Rτσ = R̄τσ + ε
(
∇̄λδ∆

λ
τσ − ∇̄σδ∆

λ
λτ

)
+ O(ε2). (119)

The Ricci scalar R = gτσRτσ is then linearized as follows:

R= R̄ + ε
(
−hτσR̄τσ + ḡτσ

(
∇̄λδ∆

λ
τσ − ∇̄σδ∆

λ
λτ

))
+ O(ε2), (120)

leading to the final expression for the linearized Einstein tensor Gµν = Ḡµν + εδGµν + O(ε2),

δGµν = ∇̄λδ∆
λ
µν − ∇̄µδ∆

λ
λν −

1
2

hµνR̄ −
1
2

ḡµν
(
−hτσR̄τσ + ḡτσ

(
∇̄λδ∆

λ
τσ − ∇̄σδ∆

λ
λτ

))
. (121)

The linearization of the third covariant derivative of the scalar field proceeds as follows.
Converting the outermost derivative into a background one, we obtain

∇αβγϕ= ∇̄α
(
∇βγϕ

)
− ∆

ρ
αβ∇γρϕ − ∆

ρ
γα∇βρϕ, (122)
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and after substituting from (14), we have

∇αβγϕ= ∇̄αβγϕ − 3∆ρ(αβ∇̄γ )ρϕ −
(
∇̄α∆

ρ
βγ − ∆

κ
αβ∆

ρ
γκ − ∆

κ
γα∆

ρ
βκ

)
∇̄ρϕ. (123)

This is then linearized in a straightforward way into

∇αβγϕ= ∇̄αβγ ϕ̄ + ε
(
∇̄αβγδϕ − 3δ∆ρ(αβ∇̄γ )ρ ϕ̄ − ∇̄αδ∆

ρ
βγ∇̄ρ ϕ̄

)
+ O(ε2). (124)

Hence, we can write

δ
(
∇αβγϕ

)
= ∇̄αβγδϕ − 3δ∆ρ(αβ∇̄γ )ρ ϕ̄ − ∇̄αδ∆

ρ
βγ∇̄ρ ϕ̄. (125)

Considering antisymmetrization of two outermost derivatives in (123), we obtain

∇[αβ]γϕ= ∇̄[αβ]γϕ −
(
∇̄[α∆

ρ
β ]γ − ∆

κ
γ[α∆

ρ
β ]κ

)
∇̄ρϕ, (126)

and rewriting the terms in brackets using (21), we arrive at the familiar result

2∇[αβ]γϕ= 2∇̄[αβ]γϕ −
(
Rργαβ − R̄ργαβ

)
∇̄ρϕ. (127)

Linearizing the last expression using (119) gives

2∇[αβ]γϕ= 2∇̄[αβ]γ ϕ̄ + ε
(
2∇̄[αβ]γδϕ −

(
∇̄αδ∆

ρ
γβ − ∇̄βδ∆

ρ
γα

)
∇̄ρ ϕ̄

)
+ O(ε2), (128)

which is in agreement with result (124). The substitution 2∇̄[αβ]γδϕ=−R̄ργαβ∇̄ρδϕ completes the
result so that we have

δ
(
∇[αβ]γϕ

)
=−

1
2

R̄ργαβ∇̄ρδϕ − ∇̄[αδ∆
ρ
β ]γ∇̄ρ ϕ̄. (129)

The last superpotential has the following form:

δîαβ(5) =−
1
2
δ (G5�ϕ) ¯̂iαβ(EH) −

1
2

Ḡ5�̄ϕ̄ δîαβ(EH) + δîαβ(5)(rest), (130)

with
δîαβ(5)(rest) =

[
Q̂αβ
σ + R̂αβσ + Ŝαβσ

]
ξσ + P̂αβλσ ∇̄λξ

σ , (131)

where the terms above are given by the following lengthy expressions:

P̂αβλσ = ¯̂G5

[
δ[α
σ

(
−hβ ]ρ∇̄ λ

ρ ϕ̄ − ∇̄
β ]
τ ϕ̄ hτλ + ∇̄β ]λδϕ − ∇̄ρ ϕ̄ ḡβ ]κδ∆

ρ
κτ ḡτλ

)
− ḡλ[α

(
−hβ ]ρ∇̄ρσ ϕ̄ + ∇̄β ]

σδϕ − ∇̄τ ϕ̄ ḡβ ]κδ∆τκσ
)

+ hλ[α∇̄
β ]
σ ϕ̄

]

+

(
∂ϕ

¯̂G5δϕ + ∂X
¯̂G5δX +

1
2

¯̂G5 h

)
īαβλ
σ(∇G5), (132)

Q̂αβ
σ =

¯̂G5

[
2δ[α

σ

(
−hβ ]ρ∇̄ λ

ρλ ϕ̄ − ∇̄β ]
κλϕ̄ hκλ + ḡβ ]ρḡκλδ(∇ρκλϕ) + hβ ]ρ∇̄ λ

λρ ϕ̄ + ∇̄ β ]λ
κ ϕ̄ hκλ

− ḡβ ]ρḡκλδ(∇λρκϕ)
)
− 2hρ[α∇̄

β ]
ρ σ

ϕ̄ − 2hκ[ β∇̄α ]
κσ ϕ̄ + 2ḡρ[αḡβ ]κδ(∇ρκσϕ)

− δ∆
ρ
σκ ḡκ[α∇̄β ]

ρ ϕ̄ + δ∆[α
σρ∇̄

β ]ρ ϕ̄ − 2δGσρḡρ[α∇̄β ]ϕ̄ + 2Ḡσρhρ[α∇̄β ]ϕ̄

+ 2Ḡ[α
σ hβ ]κ∇̄κ ϕ̄ − 2Ḡ[α

σ ∇̄
β ]δϕ

]
+

(
∂ϕ

¯̂G5δϕ + ∂X
¯̂G5δX +

1
2

¯̂G5h

)
īαβ
σ(G5). (133)

The terms δ(∇αβγϕ), δ∆λµν , and δGµν should be replaced with expressions (125), (112), and (121),

R̂αβσ = 2∂ϕ
¯̂G5

[
δ[α
σ

(
− hβ ]ρ∇̄ρ ϕ̄ �̄ϕ̄ + ∇̄β ]δϕ �̄ϕ − ∇̄β ]ϕ̄ hκλ∇̄κλϕ̄ + ∇̄β ]ϕ̄(�̄δϕ − ḡκλδ∆ρκλ∇̄ρ ϕ̄)

+ hβ ]κ∇̄κρ ϕ̄ ∇̄
ρ ϕ̄ + ∇̄β ]

ρ ϕ̄ hρλ∇̄λϕ̄ − ∇̄
β ]ρδϕ∇̄ρ ϕ̄ + ḡβ ]κδ∆λκρ∇̄λϕ̄∇̄

ρ ϕ̄ − ∇̄β ]ρ ϕ̄ ∇̄ρδϕ
)

+ ∇̄[αδϕ∇̄β ]
σ ϕ̄ − ∇̄ρ ϕ̄hρ[α∇̄β ]

σ ϕ̄ − ∇̄
[α ϕ̄hβ ]κ∇̄κσ ϕ̄ + ∇̄[α ϕ̄∇̄β ]

σδϕ

− ∇̄[α ϕ̄ ḡβ ]κδ∆
ρ
κσ∇̄ρ ϕ̄

]
+

(
∂ϕϕ

¯̂G5δϕ + ∂Xϕ
¯̂G5δX +

1
2
∂ϕ

¯̂G5 h

)
īαβ
σ(∂ϕG5), (134)
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Ŝαβσ = ∂X
¯̂G5

(
Tαβσ + Uαβ

σ

)
+

(
∂Xϕ

¯̂G5δϕ + ∂XX
¯̂G5δX +

1
2
∂X

¯̂G5 h

)
īαβ
σ(∂X G5), (135)

Tαβσ = δ
[α
σ

(
2 hβ ]λ∇̄ρ ϕ̄ ∇̄ρλϕ̄ �̄ ϕ̄ + 2 ∇̄ρ ϕ̄ ∇̄

β ]
λϕ̄ �̄ ϕ̄ hρλ − 2 ∇̄β ]

ρδϕ ∇̄
ρ ϕ̄ �̄ ϕ̄

+ 2 ḡβ ]κδ∆
ρ
κλ ∇̄ρ ϕ̄ ∇̄

λϕ̄ �̄ ϕ̄ − 2 ∇̄β ]
ρ ϕ̄ ∇̄

ρδϕ �̄ ϕ̄ + 2 ∇̄β ]
ρ ϕ̄ ∇̄

ρ ϕ̄ ∇̄λκ ϕ̄ hλκ

− 2 ∇̄β ]
ρ ϕ̄ ∇̄

ρ ϕ̄ �̄δϕ + 2 ∇̄β ]
κ ϕ̄ ḡλτδ∆ρλτ ∇̄ρ ϕ̄ ∇̄

κ ϕ̄ − 2 hβ ]κ∇̄ρ ϕ̄ ∇̄ρ
λϕ̄ ∇̄λκ ϕ̄

− 2 ∇̄β ]
λϕ̄ ∇̄

ρ ϕ̄ ∇̄ρκ ϕ̄ hλκ + 2 ∇̄β ]λδϕ ∇̄ρ ϕ̄ ∇̄ρλϕ̄ − 2 ḡβ ]τδ∆
ρ
τλ ∇̄ρ ϕ̄ ∇̄

κ ϕ̄ ∇̄λκ ϕ̄

+ 2 ∇̄β ]λϕ̄ ∇̄ρ ϕ̄ ∇̄λρδϕ̄ − 2 ∇̄β ]κ ϕ̄ δ∆
ρ
λκ ∇̄ρ ϕ̄ ∇̄

λϕ̄ − 2 ∇̄ρ ϕ̄ ∇̄
β ]λϕ̄ ∇̄λκ ϕ̄ hρκ

+ 2 ∇̄βλϕ̄ ∇̄ρδϕ ∇̄ρλϕ̄ − hβ ]ρ∇̄ρ ϕ̄ (�̄ ϕ̄)2 + ∇̄β ]δϕ (�̄ ϕ̄)2 − 2 ∇̄β ]ϕ̄ �̄ ϕ̄ ∇̄ρλϕ̄ hρλ

+ 2 ∇̄β ]ϕ̄ �̄δϕ �̄ ϕ̄ − 2 ∇̄β ]ϕ̄ ḡκλδ∆ρκλ ∇̄ρ ϕ̄ �̄ ϕ̄ + hβ ]ρ∇̄ρ ϕ̄ ∇̄
λκ ϕ̄ ∇̄λκ ϕ̄

− ∇̄β ]δϕ ∇̄ρλϕ̄ ∇̄ρλϕ̄ − 2 ∇̄β ]ϕ̄ ∇̄ρλδϕ ∇̄ρλϕ̄ + 2 ∇̄β ]ϕ̄ δ∆
ρ
λκ ∇̄ρ ϕ̄ ∇̄

λκ ϕ̄

+ 2 ∇̄β ]ϕ̄ ∇̄ρ λϕ̄ ∇̄ρκ ϕ̄ hλκ
)
, (136)

Uαβ
σ = − 2 ∇̄ρ ϕ̄ hρ[α∇̄β ]

σ ϕ̄ �̄ ϕ̄ + 2 ∇̄[αδϕ ∇̄β ]
σ ϕ̄ �̄ ϕ̄ − 2 ∇̄[α ϕ̄ hβ ]ρ∇̄σρ ϕ̄ �̄ ϕ̄

+ 2 ∇̄[α ϕ̄ ∇̄β ]
σδϕ �̄ ϕ̄ + 2 δ∆ρσλ ḡλ[α∇̄β ]ϕ̄ ∇̄ρ ϕ̄ �̄ ϕ̄ − 2 ∇̄[α ϕ̄ ∇̄β ]

σ ϕ̄ ∇̄ρλϕ̄ hρλ

+ 2 ∇̄[α ϕ̄ ∇̄σ
β ]ϕ̄ �̄δϕ − 2 δ∆ρκλ ḡκλ∇̄ρ ϕ̄ ∇̄

[α ϕ̄ ∇̄σ
β ]ϕ̄ + 2 ∇̄ρ ϕ̄ ∇̄σ

λϕ̄ hρ[α∇̄β ]
λϕ̄

− 2 ∇̄[αδϕ ∇̄β ]
ρ ϕ̄ ∇̄σ

ρ ϕ̄ + 2 ∇̄[α ϕ̄ hβ ]λ∇̄σ
ρ ϕ̄ ∇̄ρλϕ̄ + 2 ∇̄[α ϕ̄ ∇̄β ]

λϕ̄ ∇̄σρ ϕ̄ hρλ

− 2 ∇̄[α ϕ̄ ∇̄β ]ρδϕ ∇̄σρ ϕ̄ − 2 δ∆ρκλ ḡκ[α∇̄β ]ϕ̄ ∇̄ρ ϕ̄ ∇̄
λ
σ ϕ̄ − 2 ∇̄[α ϕ̄ ∇̄β ]

ρ ϕ̄ ∇̄
ρ
σδϕ

+ 2 δ∆ρσλ ∇̄ρ ϕ̄ ∇̄
[α ϕ̄ ∇̄β ]λϕ̄ + 2 ∇̄ρδϕ ∇̄σ

[α ϕ̄ ∇̄β ]
ρ ϕ̄ − 2 ∇̄ρ ϕ̄ ∇̄σλϕ̄ hλ[α∇̄β ]

ρ ϕ̄

+ 2 ∇̄ρ ϕ̄ ∇̄σ
[αδϕ ∇̄β ]

ρ ϕ̄ − 2 δ∆ρ σκ ḡκ[α∇̄β ]
λϕ̄ ∇̄ρ ϕ̄ ∇̄

λϕ̄ − 2 ∇̄ρ ϕ̄ ∇̄σ
[α ϕ̄ hβ ]λ∇̄ρλϕ̄

− 2 ∇̄ρ ϕ̄ ∇̄σ
[α ϕ̄ ∇̄β ]

λϕ̄ hρλ + 2 ∇̄ρ ϕ̄ ∇̄σ
[α ϕ̄ ∇̄β ]

ρδϕ + 2 δ∆ρκλ ḡκ[α∇̄β ]
σ ϕ̄ ∇̄ρ ϕ̄ ∇̄

λϕ̄.
(137)

For ϕ̄= const., the preceding results simplify into

δîαβ(5)(rest) =
¯̂G5

[
2
(
δ[α
σ ∇̄

β ]λ
λδϕ − δ

[α
σ ∇̄

β ]λ
λ δϕ + ∇̄[αβ]

σδϕ − G[α
σ ∇̄

β ]δϕ
)
ξσ

+
(
δ[α
σ ∇̄

β ]λδϕ − ḡλ[α∇̄β ]
σδϕ

)
∇̄λξ

σ
]
. (138)

VIII. BRANS-DICKE THEORY

Considering the Brans-Dicke Lagrangian

L =
√
−g

(
1
2
ϕR +

ω

ϕ
X − U(ϕ)

)
, (139)

all of the results considerably simplify. The Brans-Dicke theory is a special case of a general Horndeski
theory with Lagrangians L2 and L4 with functions K and G4 given as follows:

K(ϕ, X)=
ω

ϕ
X − U(ϕ), G4(ϕ)=

1
2
ϕ. (140)

The non-vanishing superpotential associated with the Lagrangian L4 is obtained after setting
∂ϕG4 =

1
2 and ∂XG4 = 0 in (99) and (100) with the result

îαβ(BD) =
1
2
ϕ îαβ(EH) − 2

√
−g δ[α

σ ∇
β ]ϕ ξσ . (141)

The superpotential associated with the background reads

¯̂iαβ(BD) =
1
2
ϕ̄ ¯̂iαβ(EH) − 2

√
−ḡ δ[α

σ ∇̄
β ]ϕ̄ ξσ . (142)
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Finally, the linearization of the superpotential becomes

δîαβ(BD) =
1
2
δϕ ¯̂iαβ(EH) +

1
2
ϕ̄ δîαβ(EH) − 2

√
−ḡ δ[α

σ

(
1
2

h∇̄β ]ϕ̄ − hβ ]ρ∇̄ρ ϕ̄ + ∇̄β ]δϕ

)
ξσ . (143)
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APPENDIX: CONSERVED CURRENT COEFFICIENTS
FOR THE EINSTEIN-HILBERT LAGRANGIAN

Considering the Einstein-Hilbert Lagrangian density, L̂(EH) = R̂=
√
−g R, we can calculate the

coefficients using formulas (28)–(30) withL(EH). Concerning ûασ , we have to add the term L̂δασ to (30)
which we explicitly excluded in (23) to be able to split the coefficients into scalar and tensor parts.
The conserved current coefficients involve partial derivatives of the Riemann tensor with respect
to the metric tensor and its (background) covariant derivatives. These were already considered in
the currents associated with the Horndeski Lagrangians L4 and L5. For the derivative of the scalar
curvature with respect to the second derivative of the metric, see (75), the derivative of the Ricci
tensor w.r.t. the first derivative of the metric tensor can be found by contracting (84),

∂R
∂gµν |α

=∆αρκ

(
gρκgµν − gρ(µgν)κ

)
+ 2∆(µ

ρκ

(
gν)κgαρ − gν)αgρκ

)
. (A1)

For the coefficients n̂ατβ
σ(EH), m̂ατ

σ(EH), and ûα
σ(EH), we get

n̂ατβ
σ(EH) = δ

( β
σ ĝτ )α − δασ ĝβτ , (A2)

m̂ατ
σ(EH) =∆

τ
ρκ ĝρκδασ + ∆ρρσ ĝατ − 2∆ασρĝρτ , (A3)

ûασ(EH) = R̂δασ − 2Ĝα
σ + 2ĝαρ∇̄ρ∆

κ
κσ − ĝρκ∇̄ρ∆

α
κσ − ĝαρ∇̄κ∆

κ
ρσ

+ ĝαρ∆κρλ∆
λ
κσ − ĝαρ∆κρσ∆

λ
κλ − ∆

α
ρκ∆

ρ
σλĝκλ + ∆ασρ∆

ρ
κλĝκλ −

3
2

ĝαρR̄ρσ . (A4)

The general formula for the superpotential (92) requires the antisymmetrized current
coefficients,

n̂[αβ]λ
σ(EH) =−

3
2
δ[α
σ ĝβ ]λ, (A5)

m̂[αβ]
σ(EH) = δ

[α
σ ∆

β ]
ρκ ĝρκ − 2∆[α

σρĝβ ]ρ, (A6)

and, regarding the relation ∇̄αT̂ · · ·· · · =∆
λ
λαT̂ · · ·· · · +

√
−g ∇̄αT · · ·· · · , we obtain the resulting superpotential for

the Einstein-Hilbert Lagrangian in the form

îαβ(EH) = 2∆[α
σλĝβ ]λξσ + 2δ[α

σ ĝβ ]λ∇̄λξ
σ . (A7)

Adding a divergence of a vector density ∂αd̂α to a Lagrangian does not change the equations of
motion, but it changes the conserved current coefficient m̂αβ

σ and corresponding superpotential ı̂αβ

as follows:
m̂αβ
σ → m̂αβ

σ + 2δ[α
σ d̂β ], îαβ→ îαβ − 2δ[α

σ d̂β ]ξσ , (A8)

see Ref. 11, Eq. (84). Considering the vector density d̂µ = k̂µ = ĝµρ∆κρκ − ĝρκ∆µρκ as in Ref. 5,

the following conserved current and superpotential modification, denoted as m̂αβ
σ(k) and îαβ(k)

arise:

m̂αβ
σ(k) = 2δ[α

σ ĝβ ]ρ
∆
κ
ρκ − 2δ[α

σ ∆
β ]
ρσ ĝρσ , îαβ(k) =−2δ[α

σ ĝβ ]ρ
∆
κ
ρκξ

σ + 2δ[α
σ ∆

β ]
ρκ ĝρκξσ . (A9)
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If the divergence of the vector density k̂µ is added to the Einstein-Hilbert Lagrangian, the KBL
superpotential5 is recovered

−2 îαβ(KBL) = îαβ(EH) + îαβ(k) . (A10)

If we wish to recover the KBL superpotential from a general Horndeski theory, this divergence has
to be added to the general Horndeski Lagrangian.
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