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In our previous paper [Phys. Rev. D 89, 124029 (2014)], we attempted to find Robinson-Trautman-type
solutions of Einstein’s equations representing gyratonic sources (a matter field in the form of an aligned
null fluid, or particles propagating with the speed of light, with an additional internal spin). Unfortunately,
by making a mistake in our calculations, we came to the wrong conclusion that such solutions do not exist.
We are now correcting this mistake. In fact, this allows us to explicitly find a new large family of gyratonic
solutions in the Robinson-Trautman class of spacetimes in any dimension greater than (or equal to) 3.
Gyratons thus exist in all twist-free and shear-free geometries, that is, both in the expanding Robinson-
Trautman and in the nonexpanding Kundt classes of spacetimes. We derive, summarize, and compare
explicit canonical metrics for all such spacetimes in arbitrary dimension.
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I. INTRODUCTION

The Robinson-Trautman class of spacetimes [1,2] and
the closely related Kundt class [3] are important families of
exact solutions to Einstein’s field equations. They are
geometrically defined by admitting a geodesic, shear-free,
and twist-free null congruence. For the Robinson-Trautman
class, such a congruence is expanding, while for the Kundt
class it is nonexpanding.
In theusual dimensionD ¼ 4, these classes contain a great

number of famous solutions, namely, Schwarzschild-like
static black holes, accelerating black holes (C-metric),
Vaidya metric, Kinnersley photon rockets, spacetimes
with gravitational waves of various types (including well-
known pp-waves) propagating on various backgrounds
(Minkowski, de Sitter, anti–de Sitter, direct-product uni-
verses, etc.), and many other exact spacetimes. These are
vacuum solutions with any value of the cosmological
constantΛ, they admit pure radiation, electromagnetic fields
(both null and non-null), and other forms of matter. More
details and specific references can be found, e.g., in chapters
28 and 31 of [4] or chapters 18 and 19 of [5], respectively.
During the past decade, the large Robinson-Trautman

class of solutions was extended to any higher dimension
D > 4 for the case of an empty space with any Λ or aligned
pure radiation [6], for aligned electromagnetic fields [7],
and general p-form fields [8]. Similarly, extension of the
Kundt class to higher dimensions was presented in [9]; see
also [10–13]. Complementarily, all Robinson-Trautman
and Kundt solutions to Einstein’s equations for Λ-vacuum,
aligned pure radiation and gyratonic matter in lower
dimension D ¼ 3 were recently found in [14].

Gyratonic matter is a null field with internal spin/helicity.
It was first considered in 1970 by Bonnor [15] who studied
both the interior and the exterior solution of a “spinning
null fluid” in the class of axially symmetric pp-waves (see
also Griffiths [16] who studied neutrino fields). Such matter
is characterized not only by a specific energy density
profile, but also by a nonzero angular momentum density
profile. Spacetimes with localized spinning sources of this
kind (spinning null particles accompanied by impulsive
gravitational waves) moving at the speed of light were then
independently rediscovered and investigated in 2005 by
Frolov et al. [17,18]. These pp-wave-type gyratons in
D ≥ 4 were subsequently studied in greater detail, and also
generalized to include Λ < 0 [19], electromagnetic field
[20], and various other settings including nonflat back-
grounds or supergravity models. Summary of these gyra-
tonic solutions can be found, e.g., in [21,22].
All the so-far-known spacetimes with gyratonic matter

sources belong to the Kundt class. Five years ago we asked
ourselves a question: are there gyratons in other geometries
as well? The most natural candidate to investigate was the
Robinson-Trautman class because it shares the twist-free
and shear-free properties. It differs only in having a
nonvanishing expansion of the privileged null congruence.
In our paper [23] we attempted to systematically study the
possible existence of Robinson-Trautman gyratonic solu-
tions (in any dimension) which would be analogous to
those known in the Kundt class. Unfortunately, by making a
mistake in evaluating the gyratonic energy-momentum
conservation equation, we came to the wrong conclusion
that such solutions do not exist. Here we are correcting this
specific mistake, and we explicitly derive a new large
family of gyratonic solutions in the Robinson-Trautman
class. Gyratons thus exist in all twist-free and shear-free
D ≥ 3 geometries.
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In Sec. II we summarize the general form of nontwisting
shear-free geometries and Einstein’s field equations,
including the correct form of the gyratonic matter.
Complete integration of the field equations is presented
in Sec. III. The obtained Robinson-Trautman spacetimes
are summarized and discussed in concluding Sec. IV. In
particular, we compare the D > 4, D ¼ 4, and D ¼ 3
cases. Moreover, in a compact and explicit form we present
the entire class of Kundt solutions with aligned gyratonic
matter in any dimension D, and we compare it with the
newly obtained Robinson-Trautman class.

II. GENERAL ROBINSON-TRAUTMAN
AND KUNDT GEOMETRIES AND

EINSTEIN’S EQUATIONS FOR ALIGNED
GYRATONIC MATTER

The metric of the most general D-dimensional
Robinson-Trautman or Kundt geometry can be written as

ds2 ¼ gpqðr; u; xÞdxpdxq þ 2gupðr; u; xÞdu dxp
− 2du drþ guuðr; u; xÞdu2 ð1Þ

[see Eq. (1) in [23]], where x is a shorthand for (D − 2)
spatial coordinates xp. Recall also that the nonvanishing
contravariant metric components are gpq (an inverse matrix
to gpq), gru ¼ −1, grp ¼ gpqguq, and grr ¼ −guu þ
gpqgupguq (so that gup ¼ gpqgrq and guu ¼
−grr þ gpqgrpgrq). The null vector field k ¼ ∂r generates
a geodesic and affinely parametrized null congruence
which is twist-free and shear-free, provided
gpq;r ¼ 2Θgpq. In the Robinson-Trautman class of geom-
etries, this congruence has a nonvanishing expansion
Θ ≠ 0, while Θ ¼ 0 defines the Kundt class.
Einstein’s equations for the metric gab read

Rab − 1
2
Rgab þ Λgab ¼ 8πTab, where Λ is any cosmologi-

cal constant. We study spacetimes with a gyratonic matter
aligned with k [15,17,21]. In the coordinates of (1), the
nonvanishing components of the energy-momentum tensor
Tab are

Tuuðr; u; xÞ; Tupðr; u; xÞ; ð2Þ

where Tuu corresponds to the classical pure radiation
component, while Tup encodes inner gyratonic angular
momentum. Since its trace T ≡ gabTab vanishes, Einstein’s
equations simplify to

Rab ¼
2

D − 2
Λgab þ 8πTab: ð3Þ

In our previous paper [23], we explicitly calculated all
complicated components of the Ricci tensor Rab, namely,
Eqs. (32)–(37). While these are correct, we made an
unfortunate mistake in evaluating the conditions Tab

;b ¼ 0

following from the Bianchi identities. Indeed, Eqs. (54) and
(55) in [23] are wrong. Their correct form is

Tup;r þ ðD − 2ÞΘTup ¼ 0; ð4Þ

Tuu;r þ ðD − 2ÞΘTuu ¼ gpqTupjjq þ grp;rTup; ð5Þ

where the symbol jj denotes the covariant derivative
with respect to the spatial metric gpq, that is, Tupjjq ≡
Tup;q − Tum

SΓm
pq, in which SΓm

pq ≡ 1
2
gmnð2gnðp;qÞ − gpq;nÞ

are the Christoffel symbols with respect to the spatial
coordinates only.

III. COMPLETE INTEGRATION
OF THE FIELD EQUATIONS

As in [23], we will now perform a step-by-step integra-
tion of the Einstein field equations (3) for Θ ≠ 0. Some
results will remain the same, but due to the corrected
constraints (4) and (5), gyratonic solutions are actually
found to exist.

A. The equation Rrr = 0

This field equation remains unchanged, providing us
with the expansion scalar

Θ ¼ 1

r
; ð6Þ

and thus the (D − 2)-dimensional spatial metric

gpq ¼ r2hpqðu; xÞ; ð7Þ

which are the same expressions as Eqs. (57) and (58)
of [23].

B. The equation Rrp = 0

Also this equation has a correct solution given by
Eqs. (61) and (62) of [23], that is,

grq ¼ eqðu; xÞ þ r1−Dfqðu; xÞ; ð8Þ

and

gup ¼ r2epðu; xÞ þ r3−Dfpðu; xÞ; ð9Þ

respectively. Here ep ≡ hpqeq and fp ≡ hpqfq are arbitrary
functions of u and x.
Using (6)–(8), we can fully integrate the corrected

energy-momentum conservation equations (4) and (5),
yielding

Tup ¼ J pr2−D; ð10Þ

Tuu ¼ N r2−D − J pjjpr1−D þ fpJ pr3−2D; ð11Þ
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where J pðu; xÞ and N ðu; xÞ are arbitrary integration
functions of u and x, and J pjjp ≡ hpqJ pjjq. These expres-
sions rectify wrong Eqs. (63) and (64) of [23].

C. The equation Rru = − 2
D − 2Λ

Since this field equation is unaffected by the above-
mentioned mistakes, Eq. (67) of [23] is correct, so that the
corresponding metric function is

grr ¼ aþ br3−D þ cr −
2Λ

ðD − 1ÞðD − 2Þ r
2

þD − 3

D − 2
fpjjpr2−D þ D − 1

2ðD − 2Þ f
pfpr2ð2−DÞ; ð12Þ

where

c≡ −
2

D − 2

�
enjjn −

1

2
hmnhmn;u

�
; ð13Þ

which leads to

guu ¼ −grr þ r2epep þ 2r3−Depfp þ r2ð2−DÞfpfp: ð14Þ

D. The equation Rpq = 2
D − 2Λgpq

This Einstein field equation was also correctly evaluated
and integrated in [23]. It turns out that in any dimension
D ≥ 4, necessarily

fp ¼ 0 ð15Þ

for all (D − 2) spatial indices p (interestingly, in lower
dimension D ¼ 3, the single function f remains arbitrary;
see [14] and Sec. IV B below). Consequently, the most
general Robinson-Trautman line element takes the form

ds2 ¼ r2hpqdxpdxq þ 2r2epdudxp − 2dudr

þ ðr2epep − grrÞdu2; ð16Þ

where

grr ¼ aþ br3−D þ cr −
2Λ

ðD − 1ÞðD − 2Þ r
2: ð17Þ

The functions hpq and ep are constrained by the equations

Rpq ¼
R

D − 2
hpq; ð18Þ

1

2
hpq;u ¼ eðpjjqÞ þ

1

2
chpq; ð19Þ

that are also imposed by the field equation Rpq ¼ 2
D−2Λgpq,

together with the relation

a ¼ R
ðD − 2ÞðD − 3Þ : ð20Þ

Here, R≡ hpqRpq is the Ricci scalar curvature of the
spatial metric hpq, which is the r-independent part of gpq.
Notice that due to (7), the corresponding Ricci tensor is
Rpq ≡ SRpq, while R≡ SRr2. Due to (18), the transverse
(D − 2)-dimensional Riemannian space must be an
Einstein space.

E. The equation Rup = 2
D − 2Λgup + 8πTup

This Einstein equation now takes the form

−
1

D − 2
Rep −

D − 3

D − 2

�
enjjn −

1

2
hmnhmn;u

�
;p

þ hmnðhm½p;ujjn� þ e½m;p�jjnÞ

þ ðD − 4Þ
2ðD − 2ÞðD − 3ÞR;pr−1 −

1

2
b;pr2−D

þ
�
ðD − 2Þ

�
ene½n;p� −

1

2
ðenenÞ;p þ

1

2
enhnp;u

�

þ ep

�
enjjn −

1

2
hmnhmn;u

��
r ¼ 8πTup: ð21Þ

The gyratonic term Tup on the right-hand side is given by
the corrected expression (10), namely, Tup ¼ J pr2−D. This
gives us four conditions:

Rep þ ðD − 3Þ
�
enjjn −

1

2
hmnhmn;u

�
;p

− ðD − 2Þhmnðhm½p;ujjn� þ e½m;p�jjnÞ ¼ 0; ð22Þ

ðD − 4ÞR;p ¼ 0; ð23Þ

b;p ¼ −16πJ p; ð24Þ

ðD − 2Þ
�
ene½n;p� −

1

2
ðenenÞ;p þ

1

2
enhnp;u

�

þ ep

�
enjjn −

1

2
hmnhmn;u

�
¼ 0: ð25Þ

In our previous paper we used the wrong expression
Tup ¼ J pr, which led us to the wrong relations b;p ¼ 0

and subsequently J p ¼ 0; cf. Eqs. (86) and (92) in [23].
Thus, we were misled to the incorrect conclusion that there
are no gyratonic solutions in the Robinson-Trautman class
of geometries. But such solutions do exist since nonzero
J p is obviously allowed by admitting a spatial dependence
of the function bðu; xÞ in (24).
Moreover, as shown in our paper [23], complicated

Eqs. (22) and (25) are identically satisfied. Equation (23)
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clearly restricts the dependence of the spatial Ricci scalarR
on the spatial coordinates xp, namely,

R ¼ RðuÞ for D > 4; ð26Þ
R ¼ Rðu; xÞ for D ¼ 4: ð27Þ

There is thus a significant difference between the D ¼ 4
case of classical relativity and the extension of Robinson-
Trautman spacetimes to higher dimensions. The remaining
Eq. (24) gives

J p ¼ −
1

16π
b;p: ð28Þ

Therefore, in any dimensionD ≥ 4 we obtain the gyratonic
matter component

Tup ¼ −
1

16π
b;pr2−D: ð29Þ

F. The equation Ruu = 2
D − 2Λguu + 8πTuu

This final equation determines the relation between the
Robinson-Trautman geometry and the pure radiation matter
field represented by the profile N ðu; xÞ in (11).
For (6)–(9) and (14) with (15), the Ricci tensor compo-

nent Ruu becomes1

Ruu ¼
1

2
grrgrr;rr þ

1

2

�
enjjn −

1

2
hmnhmn;u þ ðD − 2Þgrrr−1 − 2enenr

�
grr;r

þen
�
grr;r þ

1

2
ðD − 6Þgrrr−1

�
;n
þ 1

2
hmngrrjjmjjnr−2 þ

1

2
ðD − 2Þgrr;ur−1

−ðD − 3Þenengrr þ hmn

�
em;ujjn −

1

2
ðepepÞjjmjjn −

1

2
hmn;uu

�

þhmnhpq
�
e½p;m� þ

1

2
hpm;u

��
e½q;n� þ

1

2
hqn;u

�

þ
�
1

2
ðD − 2Þðemenhmn;u − enðepepÞ;nÞ − epep

�
enjjn −

1

2
hmnhmn;u

��
r: ð30Þ

Employing the explicit form (17) of grr with the help of (19) we obtain

Ruu ¼
2

D − 2
Λguuþ

1

2

�
ðD − 2Þb;u þ

1

2
ðD − 2ÞðD − 1Þbc −Denb;n

�
r2−Dþ 1

2
Δbr1−D þ 1

2
Δar−2

þ 1

2
½ðD − 2Þða;u þ acÞ þ ðD − 6Þena;n þ Δc�r−1

þ 1

2
ðD − 2Þðc;u þ c2Þ þ enjjncþ

1

2
ðD − 4Þenc;n − ðD − 3Þepepa

þ hmn

�
em;ujjn −

1

2
hmn;uu −

1

2
ðepepÞjjmjjn þ hpqepjjmeqjjn

�
þ 1

2
ðD − 2Þ½emenhmn;u − enðepepÞ;n − enenc�r; ð31Þ

where a is given by (20), c is given by (13), and Δa≡ hmnajjmjjn denotes the covariant Laplace operator on the (D − 2)-
dimensional transverse Riemannian space.
Now, in the Appendix of our previous work [23] we proved the nontrivial identities

emenhmn;u − enðepepÞ;n − enenc ¼ 0; ð32Þ

1

2
ðD−2Þðc;uþc2Þþenjjncþ

1

2
ðD−4Þenc;n− ðD−3Þepepaþhmn

�
em;ujjn−

1

2
hmn;uu−

1

2
ðepepÞjjmjjnþhpqepjjmeqjjn

�
¼ 0;

ð33Þ

1Recall that en jjn ≡ hnmemjjn, epjjq ≡ ep;q − emSΓm
pq, ajjpjjq ≡ a;pq − a;nSΓn

pq, etc.; see [23] for more details.
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ðD − 2Þða;u þ acÞ þ ðD − 6Þena;n þ Δc ¼ ðD − 4Þena;n;
ð34Þ

which are valid in any dimension D ≥ 4. These appear in
the terms in (31) proportional to r, r0, and r−1, respectively.
Einstein’s equation Ruu ¼ 2

D−2Λguu þ 8πTuu with (11) thus
simplifies to2

�
ðD−2Þb;uþ

1

2
ðD−2ÞðD−1Þbc−Denb;n

�
r2−DþΔbr1−D

þΔar−2þðD−4Þena;nr−1¼16π½N r2−D−J pjjpr1−D�:
ð35Þ

Moreover, due to (28) the gyratonic matter functions J p

always obey the “divergence relation”

−16πJ pjjp ¼ Δb; ð36Þ

so that the r1−D part of Eq. (35) is identically valid. Also,
ðD − 4Þa;n ¼ 0 in any dimension D ≥ 4; see Eqs. (23) and
(20). Consequently, the field equation (35) reduces to

�
ðD − 2Þb;u þ

1

2
ðD − 2ÞðD − 1Þbc −Denb;n

�
r2−D

þ Δa r−2 ¼ 16πN r2−D: ð37Þ

The factor Δa proportional to r−2 is always zero in any
D > 4 due to (26), while in the D ¼ 4 case it is combined
with the terms proportional to r2−D ¼ r−2. The last
Einstein’s field equation thus reads

ðD−2Þb;uþ
1

2
ðD−2ÞðD−1Þbc−Denb;n¼16πN forD>4;

ð38Þ

Δ
�
1

2
R
�
þ 2b;u þ 3bc − 4enb;n ¼ 16πN for D ¼ 4:

ð39Þ

This is a complete and explicit solution for gyratons with
aligned pure radiation in the Robinson-Trautman class of
geometries (16) in four and any higher dimension D.
According to (28), specific properties of the corresponding

gyraton are encoded in the metric function bðu; xÞ and in the
related off-diagonal functions epðu; xÞ. The gyratonic matter
is absent when J p ¼ 0, which is equivalent to b;p ¼ 0. In
otherwords, there are no gyratons if (and only if) the function
bðuÞ is independent of any spatial coordinates.

IV. SUMMARY AND DISCUSSION

By fully integrating all Einstein’s equations we explicitly
proved that there are gyratons in the Robinson-Trautman
class, as they are in the Kundt class. A null matter field in
these geometries can thus have its “internal spin”/angular
momentum.

A. Robinson-Trautman gyratons in D ≥ 4

The most general D-dimensional (D ≥ 4) Robinson-
Trautman line element in vacuum, with a cosmological
constantΛ, and possibly the pure radiation matter field with
an additional gyratonic component, characterized by

Tup ¼ J pr2−D; ð40Þ

Tuu ¼ N r2−D − J pjjpr1−D; ð41Þ

can be written as

ds2¼ r2hpqdxpdxqþ2r2epdudxp−2dudrþguudu2; ð42Þ

where

guu ¼ −
R

ðD − 2ÞðD − 3Þ −
b

rD−3

þ 2

D − 2

�
enjjn −

1

2
hmnhmn;u

�
r

þ
�

2Λ
ðD − 1ÞðD − 2Þ þ enen

�
r2; ð43Þ

with the functions hpqðu; xÞ, epðu; xÞ, and bðu; xÞ con-
strained by the field equations (18), (19), (24), and (37),
that is

Rpq ¼
hpq
D − 2

R; ð44Þ

eðpjjqÞ −
1

2
hpq;u ¼

hpq
D − 2

�
enjjn −

1

2
hmnhmn;u

�
; ð45Þ

− b;p ¼ 16πJ p; ð46Þ

ΔR
ðD − 2ÞðD − 3Þ − ðD − 1Þ

�
enjjn −

1

2
hmnhmn;u

�
b

þ ðD − 2Þb;u −Denb;n ¼ 16πN : ð47Þ

The first equation (44) restricts the Riemannian metric
hpq of the transverse (D − 2)-dimensional space covered by2Recall that necessarily fp ¼ 0; see (15).
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the coordinates xp (with Rpq and R being its Ricci tensor
and Ricci scalar). Any Einstein spacemetric hpq is admitted.
The second constraint (45) imposes a specific coupling
between this spatial metric hpq and the off-diagonal metric
components represented by (D − 2) functions ep.
Equation (46) directly expresses the gyratonic matter

profile functions J pðu; xÞ in (40) in terms of the spatial
derivatives of bðu; xÞ [recall also the relation (36) which
enables us to express the function J pjjp in (41) as
− 1

16πΔb], while Eq. (47) effectively relates these functions
to the pure radiation profile N ðu; xÞ.
In particular, in any higher dimension D > 4, the field

equation (47) simplifies to (38), while in the usual D ¼ 4
case it takes the form (39). In the no-gyraton (J p ¼ 0)
case, that is, for b;p ¼ 0, Eq. (39) reduces exactly to the
classical Robinson-Trautman equation [see [4,5] with the
identification a ¼ 1

2
R ¼ ΔðlogPÞ ¼ K, b ¼ −2mðuÞ,

c ¼ −2ðlogPÞ;u, where K is the Gaussian curvature of
the spatial metric hpq ¼ P−2δpq]. Equation (38) generalizes
the field equation previously derived in [6] to admit the
gyratonic matter in D > 4.
Vacuum spacetimes are obtained when J p ¼ 0 ¼ N .

First of all, this arises when b ¼ 0 [and R is constant,
which is true in any D > 4 due to (23)].

B. Comparison to Robinson-Trautman
gyratons in D= 3

In our recent work [14], we integrated Einstein’s field
equations for a general three-dimensional Robinson-
Trautman metric in vacuum, with a cosmological constant
Λ, and possibly a pure radiation field and gyratons. The
matter field takes the form

Tux ¼
J
r
; ð48Þ

Tuu ¼
N
r
−
PðPJ Þ;x

r2
þ fP2J

r3
; ð49Þ

where N ðu; xÞ and J ðu; xÞ are functions determining the
(density of) energy and angular momentum. The corre-
sponding generic metric can be written in the form

ds2 ¼ r2

P2
dx2 þ 2ðer2 þ fÞdudx− 2dudr

þ ð−aþ 2½PðPeÞ;x þ ðlnPÞ;u�rþ ðΛþP2e2Þr2Þdu2:
ð50Þ

The functions Pðu; xÞ, eðu; xÞ, fðu; xÞ, and aðu; xÞ are
constrained just by two equations, namely,

a;x ¼ cf − 2f;u − 16πJ ; ð51Þ

a;u ¼ acþΔcþ2ðΛþP2e2ÞPðPfÞ;xþ3P2fðP2e2Þ;x
−2P2fe;u−P2eð4f;u−cfþ48πJ Þþ16πN ; ð52Þ

where Δc≡ PðPc;xÞ;x is the transverse-space Laplace
operator applied on the function c, defined by c≡
2½PðPeÞ;x þ ðlnPÞ;u�.
Generically, by prescribing an arbitrary gyratonic func-

tion J (as well as any metric functions P, e, f) we can
always integrate (51) to obtain aðu; xÞ. Subsequently, its
partial derivative a;u (and other given functions) uniquely
determines the pure radiation energy profileN via the field
equation (52).
It is remarkable that in D ¼ 3 the function fðu; xÞ in the

metric (50) remains arbitrary and, in general, nonvanishing.
This is an entirely new feature which does not occur in
dimensions D ≥ 4. Indeed, it was demonstrated in [6–8]
that for the Robinson-Trautman class of spacetimes in four
and any higher dimensions necessarily fp ¼ 0 for all
(D − 2) spatial components. In this sense, the D ¼ 3 case
is surprisingly richer than the D ≥ 4 cases.
In the specific subcase f ¼ 0, the metric (50) basically

reduces to the form (42) and (43) (where, of course,R ¼ 0)
with the two remaining field equations (51) and (52)
simplifying considerably to

a;x ¼ −16πJ ; ð53Þ

a;u ¼ acþ Δc − 48πP2eJ þ 16πN : ð54Þ

Since a here corresponds to b in (43), these two equations
are very similar to Eqs. (46) and (47). The only difference is
the additional term Δc in (54). In fact, it is not possible to
set D ¼ 3 in (47) because in this number of dimensions
the terms in (31) proportional to r2−D and r−1 combine
together, introducing thus the term Δc into the correct field
equation (54).

C. Comparison to Kundt gyratons in D ≥ 3

Finally, it is useful to compare the newly found complete
class of Robinson-Trautman-type (Θ ≠ 0) gyratons in any
dimension D with the most general gyratonic solutions
in the closely related Kundt family (Θ ¼ 0) of spacetimes,
completing thus the derivation of all solutions with
aligned gyratonic matter in any nontwisting and shear-free
geometry.
We obtain the most general Kundt gyratons by a direct

integration of the field equations, using the explicit form of
the Ricci tensor components which we presented in [23].
By setting Θ ¼ 0, they simplify considerably. First, from
the geometric relation gpq;r ¼ 2Θgpq we immediately
obtain gpq ¼ hpqðu; xÞ independent of r, instead of (7)
in the Robinson-Trautman case. The second field equation
Rrp ¼ 0 for Θ ¼ 0 yields gup ¼ ep þ fpr, so that grp ¼
ep þ fpr (recall that ep ≡ hpqeq, fp ≡ hpqfq). The gyra-
tonic/pure radiation matter field is then obtained by
integrating (4) and (5) as
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Tup ¼ J p; ð55Þ

Tuu ¼ N þ ðJ pjjp þ fpJ pÞr; ð56Þ

where J p and N are arbitrary functions of u and x.
The Einstein’s equation Rru ¼ − 2

D−2Λ gives guu ¼
ar2 þ brþ c, with3

a ¼ 2Λ
D − 2

þ 1

2
ðfpjjp þ fpfpÞ; ð57Þ

so that the Kundt metric takes the form

ds2 ¼ hpqdxpdxq þ 2ðep þ fprÞdudxp − 2dudr

þ ðar2 þ brþ cÞdu2: ð58Þ

The next field equation Rpq ¼ 2
D−2Λgpq yields just one

constraint, namely,

Rpq ¼
2Λ

D − 2
hpq þ fpq; where fpq ≡ fðpjjqÞ þ

1

2
fpfq:

ð59Þ

It couples the Ricci curvature Rpq of the (D − 2)-
dimensional spatial metric hpq to the tensor fpq constructed
from the functions fp determining the metric components
gup. The trace of (59) is R ¼ 2Λþ fpjjp þ 1

2
fpfp, which

enables us to rewrite a as

a ¼ 1

2
R −

D − 4

D − 2
Λþ 1

4
fpfp: ð60Þ

Evaluating the field equation Rup ¼ 2
D−2Λgup þ 8πTup, we

obtain the following two conditions:

a;p þ
1

2
fpðfnjjn þ fnfnÞ − 2fnf½n;p� − hmnf½m;p�jjn

þ 2Λ
D − 2

fp ¼ 0; ð61Þ

b;p − fp;u − enðfnjjp − 2fpjjn − fpfnÞ

þ fp

�
enjjn −

1

2
hmnhmn;u

�

− fnenjjp − 2hmnðhm½p;ujjn� þ e½m;p�jjnÞ

þ 4Λ
D − 2

ep ¼ −16πJ p: ð62Þ

Effectively, they determine the spatial derivatives of the
metric functions a and b, respectively. The last Einstein

equation Ruu ¼ 2
D−2Λguu þ 8πTuu contains terms propor-

tional to r2, r1, and r0. Separately, they form three
constraints, namely,

Δaþ fnjjnaþ 3fna;n þ 2fnfna − 2hmnhpqf½p;m�f½q;n� ¼ 0;

ð63Þ

Δbþ fnb;n þ 4ena;n þ 2a

�
enjjn −

1

2
hmnhmn;u

�

þ 4fnena − 2fnfn;u − 4fnemf½n;m�

− 2hmnfm;ujjn − 2hmnhpqf½p;m�ð2e½q;n� þ hqn;uÞ
¼ −16πðJ pjjp þ fpJ pÞ; ð64Þ

Δc − fnjjnc − fnc;n þ 2enb;n þ b

�
enjjn −

1

2
hmnhmn;u

�

þ hmnhmn;uu þ 2enena − enenfmfm þ enfnemfm

− 2enfn;u − 4fneme½n;m� − 2hmnem;ujjn

− 2hmnhpq
�
e½p;m� þ

1

2
hpm;u

��
e½q;n� þ

1

2
hqn;u

�

¼ −16πN : ð65Þ

Surprisingly, a lengthy calculation [using (57) and (59),
standard properties of covariant derivatives, the
identity (A.15) from [23], and also the Bianchi identities]
reveals that Eqs. (63) and (64) are, in fact, identically
satisfied as a consequence of previous Eqs. (61)
and (62) (As shown in [24], see footnote 8, the same is
true for the Kundt spacetimes with aligned electromagnetic
field.). We thus conclude that the most general Kundt
metric with aligned gyratonic matter can be written in the
form (58) with (59), in which the metric function a given by
(60) is constrained by (61), the function b is determined
by (62), and the function c satisfies Eq. (65). The particular
subcase D ¼ 3 is presented and discussed in more detail
in [14].
There is a great simplification in the case when

fp ¼ 0 for all p. In fact, it was shown in our previous
work [9] that this is a geometrically distinct subclass of the
Kundt class. The complete family of such gyratonic
solutions reads

ds2 ¼ hpqdxpdxq þ 2epdudxp − 2dudr

þ
�

2Λ
D − 2

r2 þ brþ c

�
du2; ð66Þ

where, as in the Robinson-Trautman case [cf. (18)], hpq is
the spatial metric of any Einstein space,

Rpq ¼
2Λ

D − 2
hpq; R ¼ 2Λ; ð67Þ3The meanings of a, b, c, ep, and fp are here, of course,

different from those in the Robinson-Trautman case.
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Eq. (61) is satisfied identically, and Eqs. (62) and (65) for
the functions b, c reduce to

b;p−2hmnðhm½p;ujjn� þe½m;p�jjnÞþ
4Λ

D−2
ep¼−16πJ p;

ð68Þ

Δcþ 2enb;nþb
�
enjjn −

1

2
hmnhmn;u

�
þhmnhmn;uu

þ 4Λ
D− 2

enen− 2hmnem;ujjn

− 2hmnhpq
�
e½p;m� þ

1

2
hpm;u

��
e½q;n� þ

1

2
hqn;u

�
¼−16πN ;

ð69Þ

respectively. Equation (68) relating b;p to J p is similar to
Eq. (24) in the Robinson-Trautman case, while Eq. (69)
relates the metric function c to N . The corresponding
gyratonic matter takes the form

Tup ¼ J p; ð70Þ

Tuu ¼ N þ J pjjpr: ð71Þ

In fact, this fp ¼ 0 subclass of Kundt spacetimes (66)–(71)
contains all particular gyratonic solutions discussed in the
literature so far; see [21,22] for a review and a list of
references.
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