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We study properties of a recently proposed new ansatz for separation of variables in the Maxwell
equations in four-dimensional Kerr-NUT-(A)dS spacetime. We demonstrate that a dual field, which is also
a solution of the source-free Maxwell equations, can be presented in a similar form. This result implies that
the corresponding separated equations possess a discrete symmetry under a special transform of the

separation parameters.
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I. INTRODUCTION

Solving wave equations in a curved spacetime is an
important problem. Practically all information available to
observers concerning the properties of massive compact
objects is obtained by studying electromagnetic radiation
from these objects or matter surrounding them. The
spacetime curvature becomes especially important for the
case of black holes. The Maxwell equations are a set of
linear partial differential equations in which the coefficients
depend on the spacetime metric. Separability of the
Maxwell equations in the Kerr spacetime, demonstrated
by Teukolsky [1,2], allows one to reduce a rather compli-
cated problem of studying electromagnetic field propaga-
tion in the black hole spacetime to studying solutions of a
set of the second order ordinary differential equations
(ODE). Moreover, Teukolsky demonstrated that a similar
property of separability is valid also for other massless field
equations with spin s = %, 1 %, 2 in general vacuum-type D
metrics. This method is widely used now and has produced
a number of remarkable results (quasi-normal modes of
black holes, black-hole stability, superradiance, Hawking
radiation etc.).

A natural question is: How far one can generalize the
results obtained in four dimensions to the case of higher-
dimensional black hole metrics? The separability of the
(neutral or charged) scalar field (Klein-Gordon) equation in
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the most general Kerr-NUT-(a)dS metric describing sta-
tionary rotating black holes in any number of dimensions
was demonstrated in [3,4]. Later, it was shown that Dirac
equations can be also separated in higher dimensions [5—7].
A separation of variables in the higher-dimensional
Maxwell equations appeared to be a much more compli-
cated problem, although the related charged-particle prob-
lem is completely integrable and leads to a separable
Hamilton-Jacobi equation [4]. A remarkable breakthrough
was achieved only in 2017 by Lunin [8]. Instead of working
with special null tetrad components of the Maxwell tensor
F, as was done by Teukolsky, Lunin proposed a special
ansatz for the Maxwell potential A. Namely, he assumed
that A can be obtained by applying a special (polarization)
matrix function B to the gradient of some scalar function Z,
which allows the separation, A = B - VZ. Lunin demon-
strated that the integrability conditions of the Maxwell
equations in the Myers-Perry metrics, which are third order
relations for Z, reduce to decoupled second order ODE for
functions of the independent variables, which enter as a
product in Z. Later, this construction was generalized to
any off-shell Kerr-NUT-(A)dS spacetime [9,10]. It was also
shown that the separability property of the Maxwell
equations is a direct consequence of the existence of the
principal tensor in these spacetimes [11]. Separability of the
higher-dimensional Proca equations was proved in [12].

In this paper, we study some interesting properties of
Lunin’s ansatz. For this purpose we restrict ourselves by
considering the Maxwell field in four dimensions. Since
Lunin’s ansatz contains a free separation parameter denoted
by u, we refer to this separability property of the Maxwell
equations as u separability.

The four-dimensional Maxwell equations are invariant
under Hodge duality transformation; therefore, the dual
strength field, which we denote by F, must have its own
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potential A. By direct calculations we demonstrate that for a
proper choice of the gauge this potential can be also written
in the form A = B-VZ. We also show that the dual
polarization tensor B is uniquely constructed by using
the principal tensor. As a consequence of these results, we
shall demonstrate that the u-separated equations admit
a discrete symmetry transformation which preserve their
form.

II. DUALITY TRANSFORMATION

We consider the Maxwell field in the background of a 4D
off-shell Kerr-NUT-(A)dS metric of the form

A A z z
__2r PRy e (O R SR SUE T S Sl )
g= Z(dr—ky dy)*+ 5 (dr—r-dy) +A,dr +Aydy.

(1)

Here, £ = /=g =1r?+y% and A, and A, are arbitrary
functions of coordinates r and y, respectively. For a special
case, when these functions are quartic polynomials, this
metric is a solution of the Einstein equations with a
cosmological constant A describing rotating black hole
with NUT charges. The Kerr metric is reproduced when
A = 0 and the NUT parameter vanishes. The coordinates z,
y and yw are related to the standard Boyer-Lindquist
coordinates as follows
T=1-—agp, y=acos0, v =¢/a. (2)
We do not need to specify the functions A, and A, in this
paper. This means that our results are valid for arbitrary
functions A,(r) and A, (y).
The metric (1) possesses the principal tensor k, which is
a nondegenerate closed conformal Killing—Yano 2-form
obeying the equation

1
vchab = gcaéb - gcbéav éa = gvbhba' (3)

It has the form
h=ydy A (dv—r’dy) — rdr A (dt + y’dy). (4)

This tensor generates a number of explicit and hidden
symmetries, and determines many remarkable properties of
the geometry, see [11].

Let us denote the 1-form potential and the 2-form field
by A and F, respectively. The source-free Maxwell equa-
tions are of the form

dF =0, &F=0. (5)

Here,

ba = (-1 xd*a (6)

is a coderivative of a p-form &, and * is the Hodge duality
operator. It is defined in terms of the Levi-Civita tensor € as

(*a)ap+1...aD = _aalmapgal.‘.a,,al,ﬂ..‘a[,? (7)

p!

and in D-dimensional spacetime it satisfies

In particular, for 2-forms in four-dimensional Lorentzian
spacetime, €, = —1. It is well known that the coderivative
is, up to sign, a covariant divergence

ba=-V-a. 9)

The equations (5) imply that the dual field xF obeys the
same equations

d«F =0, 6xF=0. (10)

In particular, this means that the dual field *F has a
potential A satisfying *F = dA.
Let us denote

F.,=FFixF. (11)
Then one has

In other words, F is self-dual and F _ anti-self-dual.

III. p ANSATZ FOR THE ELECTROMAGNETIC
FIELD

A. Field potential

In order to construct a vector potential A, we shall use a
special tensor B, which we call the polarization tensor. We
define it by the following relation:

(gab + iﬂhub)Bbc = 6215 (13)

where 4 is a (typically real') parameter. In the index-free
notation, one has

'We believe that 1 should be real in cases when separation
parameters @ and ¢ defined next are real. However, when
studying, e.g., quasi-normal modes, both @ and u can be, in
general, complex, cf. [12,13].
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B = (I +iuh)™". (14)
Our p-separable ansatz means that®
A=B-VZ,
Z=R(r)Y(y)E, E =exp(—iwt +ity).  (15)

One can show [8—10] that, for this potential, the Lorenz
condition
60A =0 (16)

and the Maxwell equations (5) are satisfied, provided the
mode functions R(r) and Y(y) obey the following second-
order ODEs:

d

AR c2—q, 7
9(SE)_on  g--oig %
dr\ q, Hogr 4,

d [(AY c2—q, 72
< Y ):Q),Y, Q,=-"—-" >, (17)
dy \ q, Hoqy  q4yAy

Here and later, we denote by prime and dot the derivatives
with respect to r and y, correspondingly. ¢,, q,, 7,, and 7,
are the auxiliary functions

qr = 1+ /"Zr 27

gy =1-py*, (18)

2

r,=¢—wr, ﬂy:f—i—wyz, (19)
and we have introduced a combination of separation

constants
o=+ ut. (20)

The components A, of the potential A = A, .dx can be
separated as A, = a.(r,y)E(z,y), where

1
a, = — [R’+@R} Y,
qr A,
1. ,
a, =— [Y—%Y}R,
dy A,
iw| rA, o YA, . ic
a, == |- "ZIRY +22RY| - ——RY,
1 g, qy 9.9y
a. = _M [ﬁR/Y—I—ﬁRY}
v X |rq, Y4y
+ % {a)ﬂzrzy2 + (1 + u2r? — ,uzyz)] RY. (21)
r1y

One can check that this potential satisfies the Lorenz
condition

VeA. =0,
provided the u-separated equations (17) hold.

(22)

B. Field strength

It is straightforward but rather cumbersome to calculate
the components of the field strength F for the potential A. It
is easy to see that the components F,, contain second
derivatives of the mode functions R and Y, while J*
V,F® contains their third derivatives. Validity of u-
separated equations (17) then guarantees that the source-
free Maxwell equations are satisfied, i.e., J = 0.

In what follows, we shall make our calculations on shell,
unless the opposite is explicitly stated. This means that we
shall use the relations (17) to exclude second derivatives of
R and Y whenever they appear. In order to stress that a
relation is valid only on shell, we shall use the following
notation for the equality =.

The on-shell components F, of the field strength tensor
F = F_,dx%dx" can be also written in separated form

Fup :fah(r,y)E(T, l//), namely

. ziR’Y—%R’Y—@RY,
y
T 44y qy4, 9,8,
A A, . plmm,
fop = =P gy B gy KT Ry,
q,x g,z 44y
TuyA, . 2 A 2uryA, . 2 :
Fre2 iR 4 <—’ﬂ+” ’z(rz—yz)>R'Y— K Ry L<aqy Wrﬂ“‘)RY],
L g, q-9y  4;Z g, q,x qy A,
[—urA, . 2 A, . 2urvA )
L 4% q:9y  4yx rZ gy qr A,
[ uriyA, . 2r? 2A ry’A, . -2 ur'mm,
frll/ él _:u yZyR/Y+ (ﬂ ”y +My22r (r2 —y2)>RlY— M yzz )Ry_ rz <O_y2 qy H A]Tﬂ)>RY:|,
L 4 %9, 4, gy q, qy r
ZA . 2.,2 ZA, . 2 3 A _2 2
Fop 2 i| - gy o (B B Sy 2y YRy _ XSy I (e D 22 B T Ryl (23)
! q,x q-qy 4y q,% 22 qr A,

*For the Kerr metric in the Boyer-Lindquist coordinate, one has

E = exp(—iwt + img),

m==¢/a— w.
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Notice that the first two equalities hold even without using relations (17).

IV. HODGE DUALITY

Using the Hodge duality transformation one finds the dual field «F. Calculations give separated components xF,;, =

xfap(r,y)E(7,w) of this field as

2
Iz . T,y %
sf,, =" gy Mgy K= by
Cah,y ayA, qrq9yArAy
A, A A,
*fﬂ// :ﬂ r yR/Y_'uy”} rRIY—'u Ty yRY,
qrdy q)z q,2
[ urAy o 2uryA A 2 ' “2
wfe |- Ry + P Ry 2 (B 2oy S gy o Y (I T2 B gy
qrz qrz (]y Z qrAr qyz qr Ar
A ryA, . A 2, 5 )
sy zi| -2y 4 yz}RY J(%(rz—ﬁ)—” ﬂy)R’Y—k . <aqy _ pm ’”)RY},
) CIyZ qyz q, z ql,Ay qrz q, Ay
[ur? 3 2 2.2 )
rA .2 A . 5 P
*fr«//%i'“ YR'Y + /”yer/Y+7y "%(rz—yz)Jr'“r”r Ry - ayzqr PRy by
L qrz rz q); 2 rAr q)z qr Ar
[ 3A . 2uriyA, . 220 5 2
*fyl// = _ﬂy "R'Y H yz yRY -r <ﬂr2 (7'2 _y2) +//l y y)R,Y r (grz q, ny y) Ryj| (24)
L 0% ar \X qyRy q,x qy A,
|
The vector potential A for the dual field F is related as _ AA . 3A SA .
' A, = ip {M SRy Y SRy o+ “VRY} E. (30
04,9y qu qrz

*Fab = 3aAb - abAa. (25)
Substituting expressions (24) gives a set of the first order
partial differential equations for A,, the consistency of
which is guaranteed by the integrability condition (10).
Naturally, we assume that the 7 and y dependence of this
potential can also be separated using E(z,y) given in (15),

Ac = ac(r.y)E(z. ). (26)
Derivatives of A, with respect to 7 and y are thus trivial.
It is convenient to start the integration procedure by
solving the equation *F,, = 9,A, — 0,A,. This equation is
satisfied for the following choice of the potential:

One can check that the other equations of the set (25) are
identically satisfied.

This means that we have found the potential A for the
dual field «F. However, a direct calculation shows that A
does not satisfy the Lorenz condition. Of course, it can be
improved by a suitable gauge transformation. But we will
construct the vector potential for the dual field satisfying
the Lorenz condition in different way first, and only then
we will present the proper gauge transformation connecting
both potentials.

V. DUALITY OF u-SEPARATED EQUATIONS

A = Hr g {—ﬂ—A} v+ 2y } E, (27) Let us formulate the main result of this paper. We claim
oh, y y that the Hodge dual xF of a field obtained from the

e A or separation ansatz (15) can be presented also in the

Av ="y [Q R +— R} E. (28) separated form, however, associated with a different sep-
©ooAy L, qr aration constant fi. First, we will define the p-duality: an

The equations 0,A, = —iwA, + «F,, and 0,A, =
—ia);ly + *F, can be integrated to give

YA,

qyx

: A, .
R'Y R’Y—réRY]E, (29)
qr

] AA,
A 2 iy {”7’ :
04,4y

while the equation —iwA,, = ifA, + «F,, gives

operation for the separation functions, which give us the
duality for the vector potential, and which leads to the dual
field also satisfying the Maxwell equations. Next, we will
show that such generated field is actually the Hodge dual of
the original field.

For given w and #, we define a dual transformation
changing the separation constant x into a new separation
constant

044044-4
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w

o (31)

fi=-

Similarly, we define a dual of various quantities which
depend on p,

Z]y =1 _ﬁ2y27 (32)
G =w+p*. (33)

Next, we define dual separation functions R and ¥’ 3

- u A, or
R=- —R,—l———R), 34
\/—C()f <Qr rda, ( )
- U Ay, oy >
Y = —Y—-—=7]. 35
V—f (‘br Hqy ( )

Using the separation equations (17), we easily find

2

1Y) /’l or ﬂr
R = - <R/— R>, 36
V=l \Kq, qrAr ( )

ye_

2
U Gy . 3 >
—=Y- Y ). 37
V -l <,Lt qy quy ( )

Finally, we define the dual vector potential A by the
separation ansatz (15), starting from the dual quantities,

A=B-VZ, (38)
Z=RYE, E = exp(—iwt + ity), (39)
B = (I+igh)™". (40)

The field strength is given by the standard relation

F=dA. (41)
We can observe that the p-duality applied twice gives4

=y, (42)

*In order to write the expressions for R and ¥ in the symmetric
form, we include the factor v/ —@? in both of these expressions.
For positive —@? these mode functions are real. For negative
value of —@? one has “unpleasant” factor i in these relations,
making both of this quantities imaginary. However, in the
expression for a mode function Z, only the product of R and
Y enters and this product always remain real. ~

4Alternatively, we could include a factor i in the definition of R
to eliminate the minus sign arising for the double u-duality. This
could be called the Euclidian convention since it would be natural
for the Euclidian version of the metric. In this case, the Wick
rotation is applied to radial coordinate r, namely the Euclidian
version x is given as x = ir, cf., e.g., [11]. Then also the Hodge
duality on 2-forms would satisfy * * @ = e, since the Euclidian
Levi-Civita tensor would contain the dx term instead of dr.

=_R YY (43)

o

=_A, F=-F. (44)

B

Therefore, we call this operation a duality.

A nontrivial observation is that the p-duality is the
symmetry of the separation equations (17). Namely, given
functions R and Y that satisfy (17) with the separation
constant y, the functions R and ¥ constructed by (34)
and (35) solve the same equations (17) with the separation
constant i given by (31). Let us denote by R, and Y,
the solutions of (17) with the separation constants u, @ and
Z. Then we can write

R=R,s < R==2R;,,.
Y=Y0r ©Y =Y. (45)

This observation can be demonstrated by a direct sub-
stitution of (31)—(37) into “tilded” version of (17).

This means that the constant ji and functions R, ¥
generate the vector potential A given by the “tilded” version
of (21) and the field strength F given by the “tilded” form
of (23). Moreover, A satisfies the Lorenz condition, cf. (22).

The key property of this dual solution F is that it is
equivalent to the Hodge dual of the original field F, i.e.,

lo

F = «F. (46)
Indeed, substituting (31)—(37) into the “tilded” version
of (23) gives (24). In other words, the Hodge dual of
a pu-separated field can thus be written again as the
ji-separated field.

The vector potential A, which we have obtained for the
Hodge dual field in the previous section in egs. (27)—(30),
is related to the ji-separated potential A by the gauge
transformation

A:A+V<§R?E). (47)

VI. SUMMARY

The separation of variables in the Maxwell equations in
the four-dimensional Kerr spacetime plays an important
role in the study of the propagation of electromagneric
waves in the vicinity of rotating black holes. The standard

>Since R = —R, we cannot eliminate the sign arising for R. But
the equations (17) are linear, and therefore the solutions R, and

Y e are fixed only up to a normalization.
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method developed by Teukolski in 1972 [1,2] has been
widely used for this purpose. This method is closely related
to the algebraical structure of the background metric, and it
can be applied to the vacuum-type D solutions of the
Einstein equations. However, for a long time attempts to
generalize this approach to higher-dimensional black holes
were unsuccessful. Only in 2017 Lunin [8] was able to
solve this problem. He proposed a new method of the
separation of the Maxwell equations which works both for
four-dimensional black holes and their higher-dimensional
generalizations described by Myers-Perry metrics with a
cosmological constant. It was recently demonstrated that
this separability is directly connected with the existence of
a so-called principal tensor [11], and it can be extended to a
wide class of Kerr-NUT-(A)dS off-shell metrics [9,10]. The
modes of the electromagnetic field that arise as a result
of this approach contain a separation constant which is
traditionally denoted by . However, the physical meaning
of this separation parameter at the moment remains unclear.
It would be desirable to relate it with (explicit and hidden)
symmetries as happens with the separation constants in the
Teukolsky approach.

The original motivation of the work presented in this
paper was to analyze this problem in four dimensions where
the properties of the solutions of the Maxwell equations are
better understood. An important property of the 4D source-
free Maxwell equations is their invariance under the Hodge
duality transformation. This allows one for any solution F of
the Maxwell equations to define its (anti-)self-dual versions
F . =F F ixF. The remarkable property is that during
their propagation in a stationary curved spacetime the
helicity of photons is conserved [14—19].

The main result of this paper is that a mode-solution of
the Maxwell equations, obtained by u-separation of vari-
ables, under the Hodge-duality is transformed into another
mode with a different parameter ji. The relations between
these modes are given by formulas (31)—(35). In analogy
with the standard separation of variables, we can assume
that these two dual modes differ just in polarization, and we
may use a linear combination of these dual modes to obtain
a solution describing a fixed helicity.

The obtained result can be also viewed from an another
point of view. The formulas (31)-(35) describe a discrete

The u-separated vector potential A takes the form

1
qr

r

+

i
q,z

r

(—yrArR/ + ﬂ,R) YE& + LZ (ﬂyAyY - JrVY> RE®.
. ,

symmetry in the space of solutions of the u-separated
equations. Certainly, the Maxwell equations in higher
dimensions does not possess the property of the Hodge-
duality. However, an interesting question is: Do u-separated
equations in higher dimensions still have similar discrete
symmetries?
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APPENDIX: FIELD IN THE DARBOUX FRAME

Calculations of the vector potential and the field strength
is slightly more manageable in the Darboux frame in which
the metric is diagonal and the principal tensor is semi-
diagonal. The non-normalized Darboux frame of 1-forms is
defined as

e =dr, & =dr +y’dy,

e =dy, & =dr - rldy. (A1)

The metric and the principal tensor read

g=- ﬁé’é’ + ﬁé)’é«v + Ee’G’ + Eeyey (A2)
> > A, A

h=—re" N€ +ye' NE. (A3)
The orientation of the Levi-Civita tensor € can be chosen as

e=—€" Ne"NE NE. (A4)

1 /.
A=— (R’+@R> YEe +— (Y—%Y>REey
A qy A

y

y
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The field strength F reads

Hra,

I YTy
9,8,

94y g8,

[ 2uryA U 2
LRy 1 B2 (2 2 RY 10
X gX q,x q- gy
i [2uryA A : 2—
g i a > (r? —yz)RYJrol—qr
z 4y 4,

F= RY — Y — R}"}Ee’/\ey—{—

z

"R'Y +
q,2 qy

i [uyA T
Z| g 94y 9,8,
I W,z wymmy o
qy8,

YR'Y —

+i _/LA"R/'Y_

RY +
Xl g 4,4y

and the Hodge dual of the p-separated field takes the form
urm,

*xF = | —
[ q-A,
2uryA, A : 2-
L { P2 gy s B2 (2 C )Ry 4o 22—
I gx qyx 9y 4r
2uryA, A r2-—
{”y YRY - HEr (2 )Ry — o LD
q,z 4, 9y
A ZA, .
{”r HIBy prip  FORED gy Ty RY]Ee N
qr q:9y A, 9,4,
{uyA, RV ﬂzﬂ),ZA

ﬂzﬂrﬂyz
q-9yA,A,

HYT,
q,8,

R'Y + RY —

M|~

+

M|~

rﬂ'ﬂ'
Srpry yRY}Eey AE.

+
qy 4.9y A, q,4,

M|~

1 {/Jtm A,
q,2 q,% 4.9

.. I
R'Y +%RY] Ee A&

Y] Ee’ N €,

1
RY |Ee" N €
]e €+Z{

2
WT, Ty s
"YRY|Eée" A &
y

w.A, .
rry ~ TSy gy 4

— 9 RY} Ee" A&

RY] Ee’ N €

(A6)

2
BBy
9.9y

T, A rrc, A .
T Br pry B2y gyl ger a @y
g,z q.x

RY} Ee" N E"

RY} Ee’ A €

(A7)

[1] S. A. Teukolsky, Rotating Black Holes—Separable Wave
Equations for Gravitational and Electromagnetic Perturba-
tions, Phys. Rev. Lett. 29, 1114 (1972).

[2] S. A. Teukolsky, Perturbations of a rotating black hole. I.
Fundamental equations for gravitational electromagnetic and
neutrino field perturbations, Astrophys. J. 185, 635 (1973).

[3] V.P. Frolov, P. Krtous, and D. Kubizidk, Separability of
Hamilton-Jacobi and Klein-Gordon equations in general Kerr-
NUT-AAS spacetimes, J. High Energy Phys. 02 (2007) 005.

[4] V.P. Frolov and P. Krtou§, Charged particle in higher
dimensional weakly charged rotating black hole spacetime,
Phys. Rev. D 83, 024016 (2011).

[5] T. Oota and Y. Yasui, Separability of Dirac equation in
higher dimensional Kerr-NUT-de Sitter spacetime, Phys.
Lett. B 659, 688 (2008).

[6] M. Cariglia, P. Krtous, and D. Kubiziidk, Dirac equation in
Kerr-NUT-(A)dS spacetimes: Intrinsic characterization of

separability in all dimensions, Phys. Rev. D 84, 024008
(2011).

[7] M. Cariglia, P. Krtous, and D. Kubiziidk, Commuting
symmetry operators of the Dirac equation, Killing-Yano
and Schouten-Nijenhuis brackets, Phys. Rev. D 84, 024004
(2011).

[8] O. Lunin, Maxwell’s equations in the Myers-Perry geom-
etry, J. High Energy Phys. 12 (2017) 138.

[9] P. Krtous, V.P. Frolov, and D. Kubizndk, Separation of
Maxwell equations in Kerr—-NUT—(A)dS spacetimes, Nucl.
Phys. B934, 7 (2018).

[10] V.P. Frolov, P. Krtous, and D. Kubizidk, Separation of
variables in Maxwell equations in Plebanski—Demianiski
metric, Phys. Rev. D 97, 101701(R) (2018).

[11] V.P. Frolov, P. Krtous, and D. Kubiziak, Black holes,
hidden symmetries, and complete integrability, Living Rev.
Relativity 20, 6 (2017).

044044-7


https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1088/1126-6708/2007/02/005
https://doi.org/10.1103/PhysRevD.83.024016
https://doi.org/10.1016/j.physletb.2007.11.057
https://doi.org/10.1016/j.physletb.2007.11.057
https://doi.org/10.1103/PhysRevD.84.024008
https://doi.org/10.1103/PhysRevD.84.024008
https://doi.org/10.1103/PhysRevD.84.024004
https://doi.org/10.1103/PhysRevD.84.024004
https://doi.org/10.1007/JHEP12(2017)138
https://doi.org/10.1016/j.nuclphysb.2018.06.019
https://doi.org/10.1016/j.nuclphysb.2018.06.019
https://doi.org/10.1103/PhysRevD.97.101701
https://doi.org/10.1007/s41114-017-0009-9
https://doi.org/10.1007/s41114-017-0009-9

VALERI P. FROLOV and PAVEL KRTOUS PHYS. REV. D 99, 044044 (2019)

[12] V.P. Frolov, P. Krtous, D. Kubiznak, and J.E. Santos, [16] B. Mashhoon, Influence of gravitation on the propagation of

Massive Vector Fields in Rotating Black-Hole Spacetimes: electromagnetic radiation, Phys. Rev. D 11, 2679 (1975).

Separability and Quasinormal Modes, Phys. Rev. Lett. 120, [17] A. Brodutch, T.F. Demarie, and D.R. Terno, Photon

231103 (2018). polarization and geometric phase in general relativity, Phys.
[13] S.R. Dolan, Instability of the Proca field on Kerr spacetime, Rev. D 84, 104043 (2011).

Phys. Rev. D 98, 104006 (2018). [18] V.P. Frolov and A.A. Shoom, Spinoptics in a stationary
[14] J. Plebanski, Electromagnetic waves in gravitational fields, spacetime, Phys. Rev. D 84, 044026 (2011).

Phys. Rev. 118, 1396 (1960). [19] V.P. Frolov and A.A. Shoom, Scattering of circularly
[15] B. Mashhoon, Scattering of electromagnetic radiation from polarized light by a rotating black hole, Phys. Rev. D 86,

a black hole, Phys. Rev. D 7, 2807 (1973). 024010 (2012).

044044-8


https://doi.org/10.1103/PhysRevLett.120.231103
https://doi.org/10.1103/PhysRevLett.120.231103
https://doi.org/10.1103/PhysRevD.98.104006
https://doi.org/10.1103/PhysRev.118.1396
https://doi.org/10.1103/PhysRevD.7.2807
https://doi.org/10.1103/PhysRevD.11.2679
https://doi.org/10.1103/PhysRevD.84.104043
https://doi.org/10.1103/PhysRevD.84.104043
https://doi.org/10.1103/PhysRevD.84.044026
https://doi.org/10.1103/PhysRevD.86.024010
https://doi.org/10.1103/PhysRevD.86.024010

