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INTRODUCTION 

 

 

The Variable Star and Exoplanet Section of the Czech Astronomical Society organized traditional autumn 

conference on research and news in the field of variable stars. This year the conference celebrated of 50th 

anniversary, thats why conference held again at historic place of observing variable stars; Masaryk University in 

Brno. In addition to 31 contributions that were presented on site in Czech, Slovak and English language from 

participants from eight countries, we had an opportunity to hear lectures given by invited speakers from USA via 

Internet. More than 90 participants visited and participated the conference. The most of presented contributions 

can be viewed on our YouTube channel. I would like to thank all conference participants and all speakers for their 

contributions.  

I also would like to thank the Director of Department of Theoretical Physics and Astrophysics of Masaryk 

University, prof. Rikard von Unge, Ph.D. for providing venues for conference and to his colleagues from 

Department for helpful organisation (Assoc. Prof. RNDr. Miloslav Zejda, Ph.D.). 

 

Katerina Honkova 

president of Variable Star and Exoplanet Section of Czech Astronomical Society 

Praha, April 2019 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES 

 

The scientific content of the proceedings contributions was not reviewed by the OEJV editorial board. 
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The Basic Informatics approach applied to the Modeling and 
Observations of the QS Virginis System 

V. BAHYL1, M. GAJTANSKA2, TINH PHAM VAN3 

(1) Júlia observatory, Zvolenská Slatina, SZA, Slovak Republic, basoft@zv.psg.sk  

(2) KFEAM, DF TU vo Zvolene, Masarykova 24, 960 53 Zvolen, Slovak Republic 

(3) Fac. of Inf. Technol., Nong Lam Univ. Thu Duc Distric, Ho Chi Minh City, Vietnam 

Abstract: The paper presents our observations of the short period binary QS Virginis in the integral light. We 

have observed successfully in four nights. We have obtained two complete light curves. Our observations had been 

influenced with the rather low position of the variable over the horizon. We have realizer the model of the system 

too with the usage of the MB3 software. We have detected one flare too. 

 

Introduction  

We prefer the measurements in which we can obtain the full light curve of the variable in our effort focused on the 

close binaries observations. We concentrate us on the low observed variables. Even if there are well defined types 

of variables or types of variability we feel that there are or there may be many phenomena worth to be observed 

and studied in such rare or low observed variables. More if we have the complete light curve from the one night 

observations we can determine the model or the period with the higher precision. So we have decided to devote 

our observational time to the QS Virginis system.  

Observations and analysis 

The QS Virginis system is positioned on the coordinates: 

α = 13h 49m 52s, δ = -13o 13´ 37”. 

The system is rather low under the equator! The magnitude changes from 14.27 mag to 17.76 mag in the primary 

minimum.  

The basic parameters of the period of this variable are: 

M0 = 48689.18 d, Per = 0.1507576 d. 

We have observed in the integral light only as in the goals of our observations there were not included the colour 

indices studies. We have not supposed “drastic” changes of them. 

We have successfully observed in the subsequent nights in the year 2018. There has been very big problem for us 

– the rather low position of the variable over the horizon. According to our experience and opinion the object lower 

than 30 degrees relative to the horizon is not suite to observe with the exception of the excessive necessity of 

course. 

In our observatory “Júlia” we have used our Schmidt – Cassegrain telescope Celestron 9.25” equipped with the 

MI camera G2-1600. The exposition time we have done to 30 seconds. The interval between the expositions was 

30 seconds too. 
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Table1: Observation nights of QS Virginis. 

Month Day From To No. of files 

March  22 21-19-30 22-18-31 60 

April 8 19-19-03  270 

 9  00-31-32 32 

 22 19-49-01  239 

 23  00-30-48 15 

May 6 19-58-48 20-58-57 120 

 12 20-03-13 21-05-23 63 

The observational field is on the Fig. 1. The selection of the comparison and check stars is on the same figure too. 

 

Figure 1: There is here the selection of the stars in the SQ Virginis field.  

Variable = red; comparison = green; check star = blue. 

The best results we have from the night April 22, 2018 as there is given on the Fig. 2. But we can see here two 

phenomena. First in the range of phase (0.6; 0.8) there is clearly visible the influence of the low position of the 

system above the horizon. Second in the phase 1.8 we allow us to interpret the measurements not as a mistake but 

as the real flare! Of course, this conclusion we will (or we would like to) support with our observations in the 

season 2019. Rather unconventionally we have used here the phases from 0.4 to 2.2 with the aim to show fully 

without the mix of data from phases given according the classical formula.  
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Svetelná krivka QS Virginis Apríl, 22, 2018
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Figure 2: The Light curve of the QS Virginis from April, 22 2018. 

We would like to present the changes in the time of minima with the Fig. 3. 
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Figure 3: The positions of the primary minima relative to the secondary ones. 

 

According to our opinion the changes in the positions of the primary minima relative to the positions of the 

secondary minima are enough in their value to be interpreted not as the mistakes but as the real changes. The true 

interpretation of this phenomenon is the next challenge for us. 
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Model 

As we have at our disposal the BM3 software package we try to realize the model of the QS Virginis system too. 

The CALEB (Catalogue and Atlas of Eclipsing Binaries) is the integral part of the BM3 package. From this we 

have guessed that the QS Virginis is contact system so we have started our modelling effort from this point. Our 

results are in the Fig. 4. 

    

Figure 4: The QS Virginis light curve model (left) and the components shape model (right). 

Conclusions 

We allow us to conclude from our observations and modeling that the QS Virginis is suite system to be observed 

more and more. Next we conclude that the BM3 system is suite for the models of the component shapes from the 

observations of the light curves as a whole. 

The short periodic close binaries are very dynamical systems so we can not to be quiet if we have obtained the set 

of the primary minima or several light curves. These systems should be observed period after period and many 

years. This is the way to new and deep results and the way to higher improvement our knowledge in the field of 

fundaments of these systems.  

Of course the high professional astronomers cannot waste their time in the observations which are now accessible 

to the telescopes of the amateur or non- professional astronomers. Here there is the place where there is possible 

to obtain highly professional results with the enthusiasm and with the selfless work of the “non-professional” 

persons. 

Acknowledgement 
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Variability of the Spin Periods of Intermediate Polars: Recent 
Results 

V. BREUS1, I.L. ANDRONOV1, P. DUBOVSKY2, K. PETRIK3, S. ZOLA4,5 

(1) Department "Mathematics, Physics and Astronomy", Odessa National Maritime University, Mechnikova, 34, 65029 

Odessa, Ukraine, bvv_2004@ua.fm 

(2) Vihorlat Astronomical Observatory, Humenne, Slovakia 

(3) Astronomical Observatory and Planetarium, Hlohovec, Slovakia 

(4) Astronomical Observatory of the Jagiellonian University, Krakow, Poland 

(5) Mt. Suhora Observatory, Pedagogical University, Krakow, Poland 

Abstract: We present brief results of long-term monitoring of a group of intermediate polars. Some objects show 

period variations, at the same time other objects do not. Continuous photometric monitoring is needed to avoid 

cycle miscounting. We determined the values of characteristic time of period variations for different intermediate 

polars. 

 

Introduction 

Intermediate polars, often called DQ Her star, are close binary systems. Gravity of the primary component (a 

magnetic white dwarf) leads to the gravitational capture of the part of the matter of the secondary component, 

filling its Roche lobe, near the inner Lagrangian point. Due to high angular momentum of plasma leaving the 

Lagrangian point, the stream cannot be accreted directly by a compact star but it forms accretion disk around the 

white dwarf. The magnetic field is strong enough to destroy the inner part of the accretion disk and matter is being 

accreted along the magnetic field lines, leading to the formation of one or two accretion columns near the magnetic 

poles. The matter forms a shock wave, heats up, and eventually settles down on the surface of the white dwarf. 

The accretion columns in such systems are often the brightest sources of polarized radiation in a wide spectral 

range from X-ray to radio (cf. Patterson, 1994, Warner 2003). 

Usually intermediate polars show two kinds of optical variability which are caused by different physical processes. 

The orbital period is usually 3-7 hours. The spin variability is caused by the rotation of the white dwarf with one 

or two accretion columns with the period range from few to dozens of minutes. So, the light curve is a superposition 

of 2 different periodic variations and some aperiodic processes like flickering, outbursts, changes from high to low 

luminosity state etc. To determine parameters of the 2-period model, we have used the software MCV (Andronov 

& Baklanov, 2004). 

In this paper, we present brief results of long-term monitoring of different intermediate polars. 

Spin period variability  

In the case of V1323 Her, one may see no orbital variability, O-C is linear and it means that the spin period should 

be corrected. The final ephemeris was Tmax = 2454604.04449(14) + 0.017596986(3).E. The orbit inclination of the 

system is low (Andronov et al., 2011). 

In case of V709 Cas we may see no spin variability because the object is faint, spin period is very short and time 

resolution is not sufficient, but this system shows stable variability with a period of P = 0.d016449979(5) which 

was interpreted as a vibration of the accretion stream in the magnetic field (Hric et al., 2014). 

Using data taken during 10 years of photometric monitoring of the magnetic cataclysmic variable V2306 Cygni, 

we first discovered the spin period variability which shows a spin-up of the white dwarf with a characteristic time 

of (53 ± 5)104 years, which is typical for this kind of objects (the paper is preparing for publication). Also using 

O-C analysis we derived and improved the value of the orbital period of the system to be 4.371523 ± 0.000009 

hours which is more accurate than our previous result (Breus et al, 2015). Photometric data used in this research 

were obtained mainly with the 60-cm Zeiss-Cassegrain telescope at the Observatory and Planetarium in Hlohovec, 

Slovakia and 50-cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian 

University in Krakow, Poland. 

FO Aqr shows complicated O-C changes. Historical data show the spin-down of the white dwarf, which changed 

to a spin-up. After the 6-year gap in observations we started our monitoring. We suggested a spin-down again 

mailto:bvv_2004@ua.fm
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during recent years (see Breus et al., 2012) but using the data obtained during latest years in Kolonica and in 

Hlohovec, we see that the most probable fit to the O-C during 2008 – 2018 is linear with a cycle miscount around 

2 cycles per year. There are noticeable small amplitude periodic changes relatively to the linear fit which may be 

caused either by the evolution of the system or by the presence of the third body orbiting the close binary system. 

Previous studies of intermediate polars argue for smooth period variations rather than period jumps, but this case 

is extraordinary. The significant change of the period was rapid, during few years. These results are not final and 

we will continue the research of this system. 

Two models of possible O-C changes calculated for the intermediate polar V405 Aur were previously suggested: 

third order polynomial fit that corresponds to the spin-up of the white dwarf and periodic model of (O-C) changes 

that corresponds to the presence of the third body orbiting the inner binary system (Breus & Andronov, 2013). 

Recent data obtained in 2016-2018 in Hlohovec shows that the spin-up changed to spin-down few years ago like 

it was previously reported for FO Aqr. The third body was not confirmed. 

Conclusions 

Period variations are often observed in intermediate polars and are typically detectable at a time scale of decades. 

Some objects do not show a statistically significant period change (e.g. V1323 Her), some show a period decrease 

e.g. MU Cam (Kim et al., 2005a, Petrik et al., 2015), EX Hya (Andronov & Breus, 2013), V405 Aur (Breus & 

Andronov, 2013), BG CMi (Kim et al., 2005b), some show more complicated spin period variations like FO Aqr 

(Breus et al., 2012). 

From theoretical expectations, the spin periods of the white dwarf should be equal to some equilibrium value, 

which is equal to period of "Kepler" rotation of the inner accretion disk at a distance of the magnetosphere radius. 

Period variations may be caused by different physical processes and should be monitored (Andronov et al., 2017). 

O-C analysis on the time scale of decades usually allows us to obtain the value of characteristic time of period 

variations with high precision. 
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A new multi-periodic delta Scuti variable in the field of NS Cep 

V. DIENSTBIER1, 4, M. WOLF2 & M. SKARKA3, 4 

(1) Slovanské gymnázium, Jiřího z Poděbrad 13, 771 11, Olomouc, Czech Republic, vojtech.dienstbier@gmail.com 

(2) Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 

Praha 8, Czech Republic, wolf@cesnet.cz 

(3) Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, 

maska@physics.muni.cz 

(4) Astronomical Institute, Czech Academy of Sciences, Fričova 298, CZ-251 65 Ondřejov, Czech Republic 

Abstract: Discovery of a new variable star TYC 4246-883-1 in Cepheus constellation is reported. The star has 

mean brightness of about 11 mag in Johnson V. It appears to be a delta Scuti type pulsator with a dominant 

frequency of f=19.6174 c/d and amplitude changing from 0.025 to 0.065 mag. The strong amplitude variation 

suggests the existence of multiple pulsation modes, which we have not detected directly yet. 

 

Discovery 

During an unfiltered photometric observation of eclipsing binary NS Cep in the night 11/12 August 2018, subtle 

brightness variation of a nearby star TYC 4246-883-1 (RA 20:42:58.33s, DEC +60:38:06.3, J2000) was detected. 

No record of this star was found in the General Catalogue of Variable Stars (GCVS, Samus et al., 2018) or in the 

International Variable Star Index (VSX, Watson, Henden & Price, 2006). Two more observations were performed 

to confirm variability. The variability type was estimated as delta Scuti, based on the amplitude of light variations 

of 0.06 mag with period of about 0.048 d. The star received designation CzeV1361 in the Catalogue of new variable 

stars discovered by Czech observers (CzeV, Brát, 2006)1.  

 

Figure 1: Vicinity of CzeV1361 as seen by the used Newtonian telescope (NWT 150/750 equipped with G2-1600 CCD camera) 

with correct orientation. The Field of View (FOV) is 62.8x41.9 arcmin. Dark and Flat field frames have been applied. 

                                                           

1 http://var2.astro.cz/czev.php 

mailto:vojtech.dienstbier@gmail.com
mailto:wolf@cesnet.cz
mailto:maska@physics.muni.cz
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Data acquisition and reduction 

The data from the initial three observing nights were acquired with NWT 150/750 + G2-3200 CCD camera 

installed on HEQ5 mount at the Úpice observatory during the Astronomical summer school 2018. Exposures of 

60 s with binning 2x2 were used to get high enough S/N ratio for NS Cep (V=12.2 - 12.6 mag). Differential 

aperture photometry, as well as dark frame and flat field corrections were performed using the C-MUNIPACK 

package (Motl, 2009).  

TYC 4246-751-1 was chosen to be a comparison star as it has a similar B-V index and is a bit brighter (see Table 1). 

It does not show any observable variability in data from ASAS-SN (Shappee et al., 2014; Kochanek et al., 2017) 

in time span of 980 days. The ASAS-SN measurements scattering is approximately 0.015 mag, so possibility of 

smaller variations has to be taken into consideration.  

Table 1: Identification of the variable and comparison stars, their position and brigthnesses. Values are taken from the Tycho-

2 catalogue (Høg et al., 2000). 

Identification RA  (hh:mm:ss.ss) DEC (±dd:mm:ss.s) B (mag) V (mag) B-V (mag)  

CzeV1361 Cep 

(TYC 4246-883-1) 

20:42:58.33 +60:38:06.3 11.47 11.05 0.42 

TYC 4246-751-1 20:44:29.88 +60:38:36.7 11.20 10.80 0.40 

Since multiple pulsation periods are quite common in delta Scuti stars, more data were required for period analysis. 

The first idea was to use the survey data (ASAS-SN, NSVS - Northern Sky Variability Survey, Woźniak et al., 

2004), but it turned out that they were not usable because of low cadence and unsatisfactory quality. Another 

option was to acquire more data using the telescope of Variable Star and Exoplanet Section of the Czech 

Astronomical Society (NWT 150/750 + G2-1600, HEQ5) located at the Valašské Meziříčí observatory (ValMez), 

Czech Republic. The additional unfiltered photometry was performed in seven more nights. This gives us about 

2000 data points of unfiltered measurements with time span of 98 days. The full observation log is shown in Table 

2. During the ninth night the amplitude of variation was less than 0.03 mag, which means amplitude change of 

about 50 %.   

Measurements in Johnson B and V filters from D65 telescope at Ondřejov Observatory show that the variations 

are wavelength dependent, which is typical for the pulsating stars (Fig. 3). 

Table 2: List of measurements (C - Clear, B - Johnson blue, V - Johnson visual). Data from the unfiltered ninth and tenth 

nights have not been used for the presented period analysis. 

# Observatory Date (MJD) Time interval (JD) Data points Maxima Observed epoch 

C1 Úpice 58342 0.4989 – 0.6058 165 1 0 

C2 Úpice 58346 0.3417 – 0.5031 195 3 75-78 

C3 Úpice 58347 0.3759 – 0.6051 271 5 95-100 

C4 ValMez 58422 0.2789 – 0.5383 339 5 1565 – 1570 

C5 ValMez 58423 0.2972 – 0.5017 182 2 1584 – 1585 

C6 ValMez 58429 0.2835 – 0.4415 186 2 1703 – 1704 

C7 ValMez 58434 0.2317 – 0.3282 108 2 1799 – 1800 

C8 ValMez 58439 0.2384 – 0.3843 115 2 1898 –1899 

B1 Ondřejov 58439 0.2422 – 0.2954 76 1 1898 

V1 Ondřejov 58439 0.2440 – 0.2950 74 1 1898 

(C9) ValMez (58451) (0.2289 – 0.4127) (217) (4) (2132 – 2136) 

(C10) ValMez (58452) (0.1688 – 0.3496) (250) (4) (2151 – 2154) 

B2 Ondřejov 58452 0.2481 – 0.3199 107 2 2152 – 2153 

V2 Ondřejov 58452 0.2481 – 0.3199 107 2 2152 – 2153 

https://ui.adsabs.harvard.edu/?#search/q=author:


OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

12 

 

 

Figure 2: Two unfiltered observations with significant amplitude change. Data phased according to ephemerides from eq. 1 

 

Figure 3: The first colour observation. Measurements in the B filter were shifted by -0.1046 mag, so the values of minima 

match. This clearly shows the wavelength dependency of the variation. The data were fitted with a sine function with the 

derived frequency. 
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Period analysis 

A period analysis was performed using PerSea software (Maciejewski, 2001). This software employs the method 

for fast and statistically optimal period search in uneven sampled observations by Schwarzenberg-Czerny (1996). 

We also used Period04 software (Lenz & Breger, 2005) which uses discrete Fourier transform (DFT). Both 

methods give the same result for the strongest frequency: f=19.6174 c/d. The times of maxima, based on the 

dominant frequency, can be expressed as  

 

 Tmax = 2458342.5927(4) + 0.050975(2) d . E (1) 

 

Conformity of the results is especially important, because of known problems of DFT based methods (aliasing, 

S/N sensitivity,...) amplified by data features (low S/N, frequency close to 20 c/d, 24 hour sampling interval) result 

in extremely noisy Fourier spectra (Fig. 7). 

 

Figure 4: Acquired unfiltered measurements plotted in PerSea. As all measurements contain at least one whole period, this 

shows the amplitude variation quite clearly. 

  

Figure 5: PerSea periodogram. Figure 6: Data phased according to ephemerides from eq. 1 

 

Figure 7: Fourier spectra by Period04. 
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Discussion and Conclusion 

We reported discovery of variability of TYC 4246-883-1 and determined its type as a low amplitude delta Scuti. 

This claim is supported by the amplitude variation and wavelength dependency of the light curves. The brightness 

usually changes from mmin,V = 11.04 mag to mmax, V = 10.99 mag. The dominant pulsation frequency was found to 

be f1 = 19.6174 c/d. No other frequency could be identified, but the muliperiodicity is demonstrated by a high 

amplitude variation. 

Significantly more data and long term monitoring are required for a sufficiently better period analysis. We should 

consider using other methods than DFT, e.g. Bayesian inference. Spectroscopic observations would provide 

important insights in the characteristics of the star, mainly its temperature, and consequently help us better locate 

its position in the H-R diagram.  
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Abstract: AG Draconis is a strongly interacting binary system which manifests characteristic symbiotic activity 

of alternating quiescent and active stages. The latter ones consist of the series of individual outbursts repeating at 

about a one-year interval. After seven years of flat quiescence following the 2006–2008 major outbursts, in the 

late spring of 2015, the symbiotic system AG Dra started to become brighter again toward what appeared to be  

a new minor outburst. The current outburst activity of AG Dra was confirmed by the following three outbursts in 

April 2016, May 2017 and April 2018. The photometric and spectroscopic observations suggest that all these 

outbursts are of the hot type. Such behaviour is considerably peculiar in almost 130-year history of observing of 

this object, because the major outbursts at the beginning of active stages are typically cool ones. In the present 

work, the current peculiar activity of the symbiotic binary AG Dra is described in detail. 

 

Introduction 

AG Dra is one of the best studied symbiotic systems. Its cool component is a metal-poor cool giant of spectral type 

K3 and higher luminosity than that of standard class III (Smith et al., 1996). The hot component of AG Dra is 

probably a white dwarf (WD) sustaining a high temperature of (1–1.5) × 105 K and luminosity of (1–5) × 103 L 

due to the thermonuclear burning of accreted matter on its surface (Mikołajewska et al., 1995; Sion et al., 2012). 

The giant is under-filling its Roche lobe and the accretion most likely takes place from the stellar wind of the cool 

giant. Both components are in a circumbinary nebula, partially ionised by the WD. 

The period analysis of long-term photometric and spectroscopic observations confirmed the presence of two 

periods in AG Dra (Hric et al., 2014). The longer one (551 d) is related to the orbital motion and the shorter one 

(355 d) could be due to pulsation of the cool component in this symbiotic system (Gális et al., 1999; Friedjung 

et al., 2003). The orbital period is mainly manifested during the quiescent stages of AG Dra at shorter wavelengths 

(U band), while the pulsation period is present during quiescent as well as the active stages at longer wavelengths 

(B and V bands). 

The period analysis of active stages confirmed the presence of a period of around 360 d, which is the median of 

the time interval between outbursts. It is worth noting that these time intervals vary from 300–400 d without an 

apparent long-term trend. Most of the longer periods (e.g. 1330, 1580, 2350, 5500 d) are more likely related to the 

complex morphology of the light curve (LC) during the active stages than to the real variability present in this 

symbiotic system (Hric et al., 2014). 

The LC of AG Dra, available since 1890 (Robinson, 1969), manifests characteristic symbiotic activity with 

alternating quiescent and active stages (Fig. 1). The latter ones occur in intervals of 9–15 yr and consist of several 

outbursts repeating at about one-year interval with a brightening of about 1–1.4 mag in the V/visual band and up 

to 2.3 and 3.6 mag in the B and U bands, respectively. During the period 1890–2018, AG Dra underwent six (or 

seven?) stages of activity: A (1932–1939), B (1949–1955), C (1963–1966), D (1980–1986), E+F (1993–2008) and 

G (2015–). In total, we recognized 36 outbursts in this period. 
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Figure 1: The historical LC of AG Dra, which manifests 129 yr of the photometric history of this symbiotic system, was 

constructed based on photographic (1890–1966; Robinson, 1969) and B band observations (1966–2018; Hric et al. 2014; this 

work). The LC is divided into active (A–G) and quiescence (Q1–Q6) stages by vertical lines. Particular outbursts are assigned 

as A1–A7, B1–B5, C1, C2, D1–D5, E0–E10, F1, F2 and G0–G3. The thin curves show spline fits to the data points.  

UV and X-ray observations showed that there are two types of outbursts: cool and hot ones (González-Riestra et 

al., 1999). Major outbursts at the beginning of active stages (e.g. 1981–1983, 1994–1996 and 2006–2008) are 

usually cool, during which the expanding pseudo-atmosphere of the WD cools down and the He II Zanstra 

temperature drops. In smaller scale hot outbursts, the He II Zanstra temperature increases or remains unchanged. 

In the previous work, we demonstrated that the outbursts of AG Dra can also be clearly distinguished according 

to the behaviour of the prominent emission lines in optical spectra (Leedjärv et al., 2016). 

The nature of these periodical outbursts has been a matter of long-term debate. One of the promising explanations 

of at least some individual outbursts of AG Dra might be the combination nova model proposed for Z And by 

Sokoloski et al. (2006). In this model, thermonuclear reactions are ignited when accretion rate onto the WD 

exceeds some critical value, and luminosity of the hot component increases significantly. One of the subsequent 

tasks would be to study whether the recent outbursts of AG Dra will fit into such a picture. 

Observations 

In this study, we analysed the photometric and spectroscopic observations that cover the ongoing active stage of 

AG Dra. The new photometric measurements were obtained during 167 nights at the Liptovská Štiavnica 

Observatory using the Newtonian telescope 355/1600 equipped with CCD G2-1600 and the set of Johnson–

Cousins U, B, V, RC and IC filters. The AG Dra system was also observed for 358 nights using the 9-channel wide-

field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA, in operation at the 

Special Astrophysical Observatory of Russian Academy of Sciences in Caucasus. We also utilised the observations 

from AAVSO International Database (Kafka, 2018) acquired for 721 nights. To compare the behaviour of the 

latest outbursts of AG Dra with previous ones, we also used all photometric observations of this symbiotic system 

that had already been analysed and discussed in our previous study (Hric et al., 2014). 

The spectroscopic observations of AG Dra were acquired by ARAS Group2 observers mostly in the framework of 

two observing campaigns which we initiated and coordinated in 2017 and 2018. Although the spectra were 

obtained with small telescopes (25–35 cm, R  1800–11000), they provided us valuable information about the 

recent activity of AG Dra. In total, we used 278 spectra covering the time interval from JD 2 456 765 (April 17, 

2014) to JD 2 458 447 (November 24, 2018). Moreover, we analysed the new intermediate-dispersion spectra of 

AG Dra obtained at the Tartu Observatory in Estonia (4 spectra, 1.5-m telescope, R  6000 and 7000) and at the 

Observatory of the Astronomical Institute of ASCR in Ondřejov (16 spectra, 2.0-m telescope, R  13000). 

Our analysis was focused on the prominent emission lines in the wavelength regions under study: the hydrogen 

Balmer lines H ( 6563) and H ( 4861), the neutral helium He I ( 6678) line, the ionised helium He II ( 4686) 

line, and the Raman-scattered O VI line at  6825. Equivalent widths (EWs), fluxes in lines, peak intensities relative 

to the continuum and the positions of these lines were measured. 

Recent outburst activity of AG Dra 

After seven years of quiescence following the 2006–2008 major outbursts, the symbiotic system AG Dra started 

to become brighter again toward what appeared to be a new minor outburst in the late spring of 2015 (Fig. 2). The 

outburst activity of AG Dra was definitely confirmed by the following three outbursts in April 2016, May 2017 

and April 2018 (Gális et al., 2018). In the next sections, the photometric and spectroscopic behaviour of the 

symbiotic system AG Dra during ongoing outburst activity stage are described in detail. 

                                                           

2 http://www.astrosurf.com/aras/Aras_DataBase/Symbiotics.htm 
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Figure 2: The LCs of the symbiotic system AG Dra during the recent active stage (2015–2018) constructed on the basis of the 

U, B, V, RC and IC band observations. The new photometric measurements are depicted by red and purple symbols for 

observations obtained at the Liptovská Štiavnica Observatory and the Special Astrophysical Observatory in Russian Caucasus, 

respectively. The green and black symbols represent observations acquired from Munari et al. (2015, 2016, 2017) and AAVSO 

(Kafka, 2018), respectively. The thin curves show spline fits to the data points. The dashed vertical lines indicate the times of 

individual brightness maxima of AG Dra during the ongoing active stage. 

Photometric behaviour 

The first, less prominent outburst (G0) was observed in May 2015. The maximum brightness was achieved around 

JD 2 457 166 (10.7 and 9.6 mag in the B and V bands, respectively). It turned out that it was minor outburst of AG 

Dra, a precursor of its activity as it was observed in some of the previous active stages. The major outbursts were 

preceded by the pre-outbursts with brightness around 10.4 and 9.4 mag in B and V band, respectively, in the case 

of the active stages B, E and probably C. 

During the second, more prominent outburst (G1), the brightness around JD 2 457 517 (May 8, 2016) reached the 

maximum of 9.9 and 9.1 mag in the B and V bands, respectively. Actually, the outburst had double-peak structure 

with the first minor brightening occurring 15 days (JD 2 457 502) before the main one. 

As in the case of previous outburst (G0), its amplitude ranks this brightening to the minor outbursts of AG Dra. 

Such photometric behaviour of the active stage is very unusual in the historical LC of AG Dra. More often, the 

pre-outbursts of AG Dra are followed by major outbursts, during which the brightness can reach around 8.8 and 

8.4 mag in the B and V bands, respectively. A major outburst was not observed only during activity stage in 1963–

1966, which was the shortest one in the almost 130-year photometric history of this interacting symbiotic system. 

In May 2017, the third brightening (G2) during the recent activity of AG Dra was detected. It was a very sharp 

and short-lasting outburst of the hot type. Maximal brightness of the symbiotic system reached at JD 2 457 890 

(10.7, 9.5 and 8.6 mag in the B, V and RC bands, respectively) was similar to the case of G0. In the filter IC, the 

outburst G2 was not detected at all. Very low amplitude of this brightening would be related not only to specific 

physical conditions during this outburst but also to orbital motion since the symbiotic system AG Dra was in the 

photometric minimum according to the orbital emphemeris given by Gális et al. (1999). 

According to our statistical analysis of photometric observations, we determined that time intervals between 

outbursts of the symbiotic system AG Dra vary from 300 to 400 d (without an apparent long-term trend), with a 

median around 360 d. Therefore, we expected the next outburst in the interval from April 21, 2018 (JD 2 458 230) 

to May 31, 2018 (JD 2 458 270). 



OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

18 

 

Figure 3: The light curve of AG Dra during the recent active stage in the B band together with the curves of studied emission 

line EWs. The thin curves show spline fits to the data points. The dashed vertical lines indicate the times of individual brightness 

maxima of AG Dra during the ongoing active stage. 

Actually, the AG Dra system had already begun a rise in brightness, reaching 10.82, 10.95, 9.67, 8.77 and 8.13 

mag in the U, B, V, RC and IC bands, respectively, on April 14, 2018. The outburst was confirmed on April 20, 

2018 when the brightness of AG Dra increased to 10.53 and 9.42 mag in the B and V filters, respectively. We 

alerted the astronomical community (Gális et al., 2018) and initialised the observational campaigns to study 

photometric and spectroscopic behaviour of the recent outburst of AG Dra.  

The maximum of the fourth outburst of the ongoing activity stage was reached 353 days after previous one, on 

May 4, 2018 (JD 2 458 243), with brightness of 9.6, 10.2, 9.2, 8.4 and 7.9 mag in the U, B, V, RC and IC bands, 

respectively. As in the case of the G1 outburst, the latest one had double-peak structure with the first minor 

brightening occurring around 25 days (JD 2 458 228) before the main one. 

At the end of July 2018, the brightness of AG Dra almost returned to values typical for quiescence (11.4, 11.1 and 

9.8 mag in U, B and V bands, respectively), so the fourth outburst has finished (Merc et al., 2018). The photometric 

behaviour suggests that all four recent outbursts of AG Dra belong to the minor, hot type. Such classification is 

also supported by the increase of the EWs of studied emission lines detected during all these events. 

Spectroscopic behaviour 

We analysed variability of selected emission lines in the optical spectrum of AG Dra during almost 14 years (1997–

2011) using own intermediate-dispersion spectroscopic observations (Leedjärv et al., 2016). It is worth noting that 

these emission lines originate in the circumbinary nebula, which is generated by the stellar wind of the cool giant. 

Moreover, the nebula is partially ionized by short-wave radiation of the WD, resulting in its complex structure and 

variability. We studied the variability of EWs of the selected emission lines: H (λ 6563), H (λ 4861), He I (λ 

6678), He II (λ 4686) and the Raman-scattered O VI line at λ 6825. 

One of the most interesting features of this variability is the significant increase of the EWs of all the five emission 

lines considered, but in particular that of H and Raman-scattered O VI ( 6825), during some minor outbursts of 

this symbiotic system (e.g. E10). On the other hand, the major, cool outbursts of AG Dra (e.g. in July 2006) are 

not specifically distinct in the EWs of hydrogen and helium lines, but the weakening of the Raman-scattered O VI 

( 6825) line is very well seen.  
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A simple interpretation of this behaviour could be that during the cool outburst, the temperature of the hot 

component of the symbiotic system decreased considerably, so that the high excitation Raman-scattered O VI  

( 6825) line faded significantly and almost disappeared, however leaving the lower excitation emission lines of 

hydrogen and helium mainly unaffected. 

Direct comparison of the spectra of AG Dra obtained during the quiescence stage Q6 (JD 2 456 906) and the pre-

outburst G0 (JD 2 457 176) reveals significant increase of the EWs of all studied emission (Fig. 3). Such 

spectroscopic behaviour is typical for the hot outbursts of this symbiotic system. Moreover, the absorption 

component observed in the profiles of the emission lines He I (6678), Hand H completely disappeared during 

this outburst, which again testifies to its hot character. 

The EWs of emission lines H, H, He I ( 6678) and He II ( 4686) manifest an even more prominent increase 

during the minor outburst G1. Such behaviour would suggest that this brightening belongs also to the hot outbursts 

of AG Dra. On the other hand, the EWs of the Raman-scattered O VI ( 6825) line dropped to deep minimum 

during this outburst, which was observed only during the major, cool outbursts. By that manner, the outburst G1 

manifested the spectroscopic behaviour of both hot and cool outbursts of AG Dra (Merc et al., 2017). The open 

question remains whether it is a new type of outburst or some kind of transition between (or combination of) the 

hot and cool outbursts? 

Although the third outburst G2 during the recent active stage of AG Dra was similar to the pre-outburst G0 in its 

brightness, we detected the same prominent increase of all the emission line EWs as in the case of brightening G1. 

Only exception was the H line: its EWs were comparable to ones during the G0 pre-outburst. Other interesting 

feature of this outburst was the weakening of hydrogen emission lines just before the G2 outburst. Overall 

spectroscopic behaviour ranks this brightening as the hot outburst of AG Dra. 

The last outburst of the symbiotic system detected in April 2018 was also of the hot type. The maxima of the EWs 

were either comparable to the values reached during previous outbursts (in the case of H, He I ( 6678) and 

Raman-scattered O VI ( 6825) lines) or demonstrated the highest values detected during the ongoing active stage 

of AG Dra (H and He II ( 4686) lines).  

Conclusions 

Periodical outbursts and their relation to periodicities in the symbiotic system AG Dra have been a matter of long-

term debate. As mentioned in the introduction, González-Riestra et al. (1999) have distinguished between cool and 

hot outbursts of AG Dra according to the spectroscopic behaviour of this interacting binary observed in the far 

ultraviolet. In our previous study (Leedjärv et al., 2016), we showed that cool and hot outbursts of AG Dra can be 

clearly distinguished by the behaviour of the emission lines in the optical spectrum of this symbiotic system. 

To sum it up, photometric as well as spectroscopic behaviour suggests that the last four outbursts of AG Dra belong 

to the minor, hot type. Such classification is also supported by the results of our analysis of the hot component's 

temperature during the ongoing active stage of this symbiotic system (more details are given in Merc et al., 2019). 

On the other hand, some specific effects observed during the outburst G1 (e.g. the almost disappearance of the 

Raman-scattered O VI lines) are more typical for the cool outbursts, despite the fact that the WD's temperature 

reached the historical maximum during this event. 

The future evolution of AG Dra is an open question. Can we expect (finally) a major, cool or (again) minor, hot 

outburst? Another possibility is, that the symbiotic system will return to quiescence as we have already detected 

such behaviour during the weak activity stage 1963–1966. According to our detailed period analysis of photometric 

and spectroscopic observations we know that the median of the time interval between outbursts is around 360 days. 

It is worth noting that these time intervals vary from 300–400 d without an apparent long-term trend. Nevertheless, 

we are able to predict the time of next outburst of AG Dra during the spring of 2019. We can expect it in the 

interval from JD 2 458 581 (April 7, 2019) to JD 2 458 625 (May 21, 2019).  

In any case, AG Dra clearly demonstrates the importance of long-term monitoring of symbiotic stars in order to 

disentangle the nature and mechanisms of their active stages and outbursts. 
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Activity of flare star GJ 3236 

J. KÁRA1 

(1) Astronomical Institute, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic,  

kara@sirrah.troja.mff.cuni.cz 

Abstract: We present a report on monitoring of stellar activity of low-mass red dwarf eclipsing binary GJ 3236 

based on photometric data obtained during years 2012–2018 on various observing sites using various photometric 

filters. A total number of 296 flares were detected among the photometric data and will be used for statistical 

analysis. 

 

Introduction 

Red dwarfs are stars with masses less than 0.6 solar mass and of late spectral type. They are the most abundant 

group of stars in the Galaxy, but due to their low luminosity, only about 20 eclipsing binaries consisting of two 

red dwarfs are known. Properties of these systems can be determined with high accuracy up to 1 % by modelling 

photometric and spectroscopic data.   

Stellar flares are enormous releases of energy connected with the magnetic activity of stars, namely with the 

reconnection of magnetic loops in stellar atmospheres. This event manifests itself in the photometric observations 

as a rapid brightening followed by a slower decrease of brightness. Mechanism of flares can be studied on solar 

flares, which can be observed with high spatial resolution.   

We present a monitoring of stellar activity of red-dwarf eclipsing binary GJ 3236. This star was listed in a catalogue 

of flare stars located in the solar vicinity by Gershberg et al. (1999). It was classified as a spectroscopic binary by 

Pourbaix et al. (2004) and first detection of eclipses was reported by Irwin et al. (2009), who also derived its 

properties based on spectroscopic and photometric observations. The binary was studied also by Parimucha et al. 

(2016), who observed 7 flares. Most recent study of flare activity was performed by Šmelcer et al. (2017) based 

on 59 observed flares. 

Observations 

Photometric data were obtained at five different observing sites in different photometric filters. All observing sites 

are listed in the Table 1 accompanied by the time period of observations, used telescopes and used photometric 

filters. Observations in Ondřejov observatory during years 2012–2015 were obtained using photometric filter R 

and for subsequent observations photometric filter V was used, because flares proved to be more prominent in 

light curves obtained using V filter. 

Table 1: List of observatories where photometric data were obtained. 

Observatory Observers Time period Telescope Filters* 

Ondřejov H. Kučáková,  K. Hoňková, J. Kára, 

J. Vraštil,  K. Hornoch, M. Wolf 

2012–2018 65-cm R, V 

Valašské Meziříčí L. Šmelcer 2014–2018 25-cm, 35-cm, 28-cm R, V, C 

Trhové Sviny F. Bílek 2015–2017 20-cm C 

Kolonica Saddle P. Dubovský 2015–2016 36-cm R, V, I 

Piszkéstető M. Skarka 2016–2017 1-m B 

*Filter C corresponds to configuration with no optical filter. 
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Figure 1: Examples of V light curves of GJ 3236 containing flares obtained at the Ondřejov observatory in years 2016–2018. 

Data analysis 

Among all available photometric data 296 flares were detected. Figure 1 shows examples of V light curves 

containing flares which were obtained at the Ondřejov observatory in years 2016–2018. For 234 flares, which 

occurred outside of eclipses, an estimation of portions of released energy for given photometric filters is possible 

to be made. The set of flares will be used for a statistical analysis of a flare occurrence in time, a distribution of 

flares in phase, energy distributions of flares for different photometric filters and relations between released 

energy, duration and amplitude of flares. A paper covering findings of this study in detail is in preparation. 
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Abstract: Z Andromedae is a prototype of classical symbiotic variable stars. It is characterized by alternating of 

quiescent and active stages, the later ones are accompanied by changes in both photometry and spectral 

characteristics of this object. The current activity of Z And began in 2000, and the last outburst was recorded at 

the turn of years 2017 and 2018. An important source of information about the behaviour of this symbiotic binary 

during the ongoing active stage is photometric and spectroscopic observations obtained with small telescopes by 

amateur astronomers. In this paper, we present the results of analysis of these observations, with an emphasis on 

the significant similarity of the last outburst of Z And with the previous ones, during which jets from this symbiotic 

system were observed. The presented results point to the importance of long-term monitoring of symbiotic 

binaries.  

 

Introduction 

Symbiotic stars are strongly interacting systems, in which physical mechanisms related to transfer and accretion 

of matter cause observable activity. During their active stages, which may last from a few days to decades, they 

manifest increases of brightness (about 2–5 mag) and significant changes in their spectra. Usually, these systems 

consist of a cool giant of spectral type K–M and hot compact star, mostly a white dwarf. The mass transfer most 

likely takes place by the stellar wind of the cool giant, which is also the source of a dense circumbinary envelope. 

Symbiotic systems are detached binaries with orbital periods of hundreds to thousands of days. 

Z Andromedae is a prototype of classical symbiotic binaries. The binary consists of a late-type M4.5 III giant 

(Skopal, 2008) and a white dwarf with a strong magnetic field, BS ≥105G (Sokoloski & Bildsten, 1999) accreting 

from the giant’s wind. The orbital period of the binary system is 758 days (Mikołajewska & Kenyon, 1996). 

Sokoloski et al. (2006) proposed a combination of dwarf nova-like accretion disk instability and nova-like nuclear 

shell burning as an explanation for its outbursts. Distance estimates of Z And range from 0.6 to 2.19 kpc (average 

value 1.2 ± 0.5 kpc; Sokoloski et al., 2006). Recently, the parallax of (0.512 ± 0.030) mas was published for Z And 

in the Gaia DR2 (Gaia Collaboration et al., 2018) from which Bailer-Jones et al. (2018) derived the point distance 

of 1.84 kpc with uncertainty of (1.75–1.95) kpc representing 68% confidence interval. 

 

  

Figure 1: The light curve of Z And in the B filter over the period 1997–2018. Data from AAVSO and Skopal et al. (2002, 

2004, 2007, 2012) are depicted in black and blue, respectively. 
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Z And is also one of a few known symbiotic stars producing collimated outflows or jets (Brocksopp et al., 2004; 

Leedjärv, 2004). The jets were detected in the radio images obtained during the 2000–2002 outburst (Brocksopp 

et al., 2004). The jet signatures were also recognised in the optical spectra of Z And acquired during the maxima 

of outbursts in 2006 (Skopal & Pribulla, 2006; Burmeister & Leedjärv, 2007; Tomov et al., 2007; Skopal et al., 

2009) and 2009–2010 (Skopal et al., 2018). 

During more than a hundred years of monitoring, Z And manifested several active stages with brightness variations 

ranging from a few tenths of a magnitude to about three magnitudes (Formiggini & Leibowitz, 1994; Skopal, 

2008). The symbiotic system is in the active stage since the year 2000 (fig. 1). In this paper, we present the results 

of analysis of the spectroscopic observations obtained during the latest outburst of Z And which occurred at the 

beginning of the year 2018. 

Observations and analysis 

We have used medium resolution spectra of symbiotic star Z And obtained by the ARAS (Astronomical Ring for 

Amateur Spectroscopy) Group observers to study the activity and overall behaviour of Z And during the ongoing 

active stage. ARAS0F

3 is an initiative dedicated to promotion of amateur astronomical spectroscopy and 

professional/amateur collaborations. The observations of the group focus mainly on novae and symbiotic binaries. 

The network consists of independent amateur astronomers with small telescopes (20 to 60 cm) and spectrographs 

of different resolution (500 to 15000) covering the range from 3500 to nearly 8000 Å.  

In the present study, we have analysed 61 spectra obtained by 6 observers from the overall number of 127 spectra 

(including low-resolution spectra that were not used) available in the ARAS database. In addition, we have used 

the spectra acquired on Tartu Observatory (Burmeister & Leedjärv, 2007) and Ondřejov Observatory (Skopal et 

al. 2009, 2018) to compare the latest outburst of Z And with the previous ones. 

Our analysis was focused on the prominent emission lines in optical spectra of Z And: the neutral He I lines at  

λ 4471 Å and 6678 Å, ionized He II line at λ 4686 Å, the hydrogen lines Hβ at λ 4861 Å and Hα at λ 6563 Å. We 

measured equivalent widths (EWs) of these lines using the software PlotSpectra and computed the fluxes in lines 

using the photometric observations of Z And obtained from AAVSO International Database (Kafka, 2018) and 

from papers by Skopal et al. (2002, 2004, 2007, 2012).  

 

Figure 2: The EWs of prominent emission lines in spectra of Z And together with the AAVSO light curve in the B filter. The 

solid lines represent a spline fits to the data points. 

                                                           

3 http://www.astrosurf.com/aras/Aras_DataBase/DataBase.htm 
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Recent outburst activity of Z And 

Since September 2000, the symbiotic system has manifested a typical Z And-type outburst activity with multiple 

outbursts of which the major ones occurred in December 2000, July 2006, December 2009 and December 2011. 

The recent outburst was observed at the beginning of the year 2018, and since then the brightness slowly declines 

(fig. 1). Photometrically, it was the most prominent outburst since 2012 with the maximal magnitudes of 9.6 and 

9.0 in the B and V filters, respectively.  

At the same period, the EWs of studied emission lines in optical spectra of Z And showed significant decline 

anticorrelated with brightness changes (fig. 2). In the case of AG Dra, such behaviour is typical for its cool 

outbursts and is related to the decrease of ionization source’s temperature (Leedjärv et al., 2016). Moreover, the 

Raman-scattered O VI lines completely disappeared during the outburst. Other high ionisation lines such as  

[Fe VII] also disappeared during the outburst, but these lines reappeared at the time when O VI lines remained 

undetectable. The O VI lines are discussed in more details in separate section. 

Similar behaviour of the emission lines in optical spectra of Z And was observed during some of its previous 

outbursts. In 2006, the symbiotic system underwent the strong outburst accompanied by the ejection of bipolar jets 

(Burmeister & Leedjärv, 2007; Tomov et al., 2007; Skopal et al., 2009). During that outburst, the He  II line also 

practically disappeared. Despite the similarity of these two outbursts (in 2006 and 2018), no sign of the jet 

components around the Hα and Hβ lines was observed during the recent one (fig. 3). Their transient character is 

also supported by other observations: the jet components were detected during the outburst in 2008 and 2009–

2010, but not during those in 2012 or 2014 (Skopal et al., 2018). 

Temperature evolution of the white dwarf 

The behaviour of prominent emission lines in optical spectra of Z And suggests that the latest outburst of this 

symbiotic system could be of a cool type. We investigated the temperature evolution of the white dwarf in Z And 

using the method proposed by Iijima (1981) and modified by Sokoloski et al. (2006). Using some simplifications, 

which are discussed in detail in our recent paper (Merc et al., 2018), we can consider the He II/Hβ ratio as a proxy 

to the temperature of the hot component in symbiotic binaries: 

𝑇ℎ𝑜𝑡(104𝐾) ≈ 14.16√
𝐸𝑊4686

𝐸𝑊𝐻𝛽

+ 5.13 

Even though the applied simplifications allow to obtain only the upper limit of the temperature (Merc et al., 2018), 

this method can still be used to study the temperature changes of the hot component of symbiotic systems. 

Applying this method to Z And, we confirmed the decrease of the white dwarf’s temperature during and after the 

last outburst of this symbiotic system (Fig. 4). During the period 2014–2018, the average value of the ratio was 

0.44 which is corresponding to the white dwarf’s temperature around 145 000 K. In the course of the outburst 

2018, its value dropped to about 0.29 (about 129 000 K). 

 

 

Figure 3: The jet components (marked by the red triangles) around the Hα emission line occurred during the outbursts of  

Z And in 2006 and 2010. No sign of the jet components was observed during the recent outburst in 2018. The spectra from 

2006 and 2010 were obtained on Ondřejov Observatory, the spectrum from 2018 is from the ARAS database. 
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Figure 4: The EW ratio of the two strong emission lines He 
II and Hβ together with their EWs and AAVSO light curve in the 

B filter. The solid lines represent a spline fits to the data points. 

The Raman-scattered O VI lines 

The Raman-scattered O VI lines are broad emission features in optical spectra at 6825 and 7082 Å which are  

a product of Raman-scattering of the photons of the O VI resonance lines at 1032 and 1038 Å off the atoms of 

neutral hydrogen (Schmid, 1989). They occur almost exclusively in the spectra of symbiotic stars. During recent 

outburst of Z And, the Raman-scattered O VI line at 6825 Å disappeared due to cooling of the ionizing source (fig. 

2 and 4). Similar vanishing was observed during the outburst of AG Dra in 2006, confirming a drop in the white 

dwarf’s temperature (Leedjärv et al., 2016).  

It is worth to note, that similar disappearance of the O VI lines was also observed during the recent hot outbursts 

of AG Dra and AG Peg (Skopal et al., 2017; Merc et al., 2019) when the temperature of the ionizing source in 

these symbiotic systems has risen. In these cases, vanishing of the O VI lines could be probably caused by an 

increase of mass-loss rate from the hot component which makes O VI zone optically thick (Skopal et al., 2017). It 

is possible that a similar effect also played a role in the recent outburst of Z And because the O VI lines were 

undetectable long after other highly ionized lines reappeared in the spectrum. On the other hand, according to the 

new ARAS observations, during the current post-outburst decline of the new symbiotic star HBHa 1704-05 (Munari 

et al., 2018), the Raman-scattered O VI lines have appeared, while the [Fe VII] lines were still very weak. 

Conclusions 

In the present paper, we investigated the latest outburst of symbiotic binary Z And. We analysed photometric and 

spectroscopic observations covering this brightening with focus on the evolution of the EWs of selected prominent 

emission lines and their profile changes. As we have shown, the recent outburst manifested the decrease of the 

emission line EWs and the steep decrease of the ionising source temperature. Similar behaviour of Z And was 

observed in the past, especially during the major outburst in 2006 which was accompanied by the ejection of 

bipolar jets, signatures of which were observed in the profile of hydrogen lines. Despite the significant similarity 

between the outbursts in 2006 and 2018, no jet components were observed in the spectra during the latter one. 

Nevertheless, it is worth observing this interesting symbiotic system further. Only long-term monitoring can help 

to uncover the physical mechanisms responsible for the unusually long active stage of Z And lasting now for 

almost two decades. 

Moreover, the presented results showed also the importance of professional/amateur collaborations. ARAS Group 

is a perfect example that such collaboration can be very successful and can bring important results. Thanks to 

amateur photometric and spectroscopic data, we are now able to monitor the evolution of symbiotic systems on 

timescales which were not previously available. 
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Abstract: Astronomical data are typically irregular in time, e.g. the space (HIPPARCOS/TYCHO, KEPLER, 

GAIA, WISE etc.) and ground-based CCD (NSVS, ASAS, CRTS, SuperWASP etc.) and photographic (Harvard, 

Sonneberg, Odessa etc.) photometrical surveys. This leads to cancellation of the conditions, which lead to the 

orthogonality of the basic functions, and thus the simplified methods give biased parameters of the approximations. 

In the common methods, there is a "matrix-phoebia", as it was later called by Prof. RNDr. Zdeněk Mikulášek, 

CSc. (MUNI). 

We have elaborated a series of algorithms and programs for statistically correct analysis, and have applied them 

to 2000+ variable stars of different types. The data were obtained from an international collaboration in a frame 

of the "Inter-Longitude Astronomy" (ILA) campaign. Some highlights of our studies are presented, with an 

extended list of our original publications.  

The main improvements were done: 1) for the periodogram analysis - the parameters are determined from a 

complete set of equations containing the (algebraic polynomial) trend superimposed on the (multi-) harmonic 

wave, so no "detrending", no "prewhitening" are used; 2) for the approximations - we use additional (multi-) 

harmonic waves, and also "special shapes" (patterns) for parts of the light curve, which correspond to relatively 

fast changes (minima of the eclipsing binaries, minima and maxima for the pulsating variables); 3) "auto 

correlation analysis" (ACF) - taking into account the bias due to a trend removal (previously - only a subtraction 

of the sample mean was taken into account); ACF for the irregularly spaced data; 4) for the signals with bad 

coherence, the "scalegram" analysis is proposed, which allows to estimate a characteristic cycle length and the 

amplitude, as well as to provide a realistic approximation; 5) the extension of the Morlet-type wavelet for more 

periodic signals and 6) "running" (parabola, sine) approximations for aperiodic and “nearly periodic” variations, 

respectively. 

 

Introduction 

Time series analysis (recently more often called the “Data analysis”) is applied not only in astronomy, but also in 

geoscience, economics and other sciences. Among the best textbooks are the ones by Anderson (Anderson, 1971). 

The complexity of time series may vary from object to object and especially from one type of variable stars to 

another.  

The majority of the methods of the time series had been elaborated for some standard cases of temporal behaviour. 

For real cases of multi component variability, some authors apply simplified (or even "oversimplified") methods, 

neglecting apparent correlations between different components of variability. This leads to shifts of values of the 

model parameters, and, consequently, may lead to wrong physical conclusions. This is generally true, even for 

linear model, with a summation of different contributions of variability, due too the orthogonality of the basic 

functions. In this case, the matrix of normal equations becomes non-diagonal, and the estimated values of the 

parameters depend on the number of coefficients. Obviously, this challenges their physical meaning. 

We show some examples of wrong values of the coefficients and thus a mathematical model leading to wrong 

physical conclusions. 

The basic equations started from Carl Gauss two centuries ago, and are published many textbooks and monographs 

(e.g. Anderson, Terebizh) and reviews (Andronov, 1994, 2003, Andronov & Marsakova, 2006, Mikulášek, 2007, 

2015, Mikulášek et al., 2006, 2015). There may be some improvements, which are discussed below. 
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Least Squares 

Let the approximation 𝑥𝐶(𝑡; 𝐶𝛼) be the function with the corresponding parameters 𝐶𝛼 , 𝛼 = 1. . 𝑚 are, which are 

to be determined.  

In the vector notation, the test function is 

                                         𝛷(𝐶𝛼; 𝑡; �⃗�) = (�⃗� − �⃗�𝐶) ∙ (�⃗� − �⃗�𝐶),                                                                            (1) 

where  �⃗� = (𝑥𝑘 , 𝑘 = 1. . 𝑛) is the vector of observations obtained at times 𝑡 , and �⃗�𝐶 = (𝑥𝐶𝑘) = (𝑥𝐶(𝑡𝑘)) is the 

vector of calculated values at times 𝑡𝑘. The best “quality of the approximation” corresponds to the minimal value 

of 𝛷. Assuming  𝑛 − dimensional distribution of the error of observations, this corresponds to a maximum 

likelihood. As the data are fixed, the test function 𝛷(𝐶𝛼; 𝑡; �⃗�) is to be minimized in respect to the parameters 𝐶𝛼 

only. The generalized scalar product may be written as 

                     (�⃗� ∙ �⃗⃗�) = ∑ 𝑔(𝑡𝑗, 𝑡𝑘 , 𝑓; 𝑇0)ℎ𝑗𝑘𝑎𝑗𝑏𝑘

𝑛

𝑘,𝑗=1

 ,                                                                         (2) 

where ℎ𝑗𝑘 is an analog of the metric tensor, and 𝑔 is the function to make an approximations both local and 

dependent on the time scale and position of the central point (like in the wavelet and “running” approximations 

(Andronov, 1997, 1998).  

Mikulášek et al. (2003) proposed an additional weight function dependent on |𝑥𝑘 − 𝑥𝐶𝑘|, the aim of which is dump 

the outliers. In this case, the iteration is “robust” and should converge after several iterations. 

Assuming that the errors of the measurements have a covariation matrix 𝜇
𝑗𝑘

, it is usually recommended to use 

ℎ𝑗𝑘 = 𝜎0
2𝜇

𝑗𝑘
−1, where 𝜎0

2 is any positive constant, which is called “the unit weight variance”. The inverse relation 

is 𝜇
𝑗𝑘

= 𝜎0
2ℎ𝑗𝑘

−1.  

The simplest case of variability is the “linear model”   

𝑥𝐶(𝑡; 𝐶𝛼), = ∑ 𝐶𝛼𝑓𝛼(𝑡),                                                                               (3)

𝑚

=1

 

where 𝑓𝛼(𝑡) are basic functions, and the coefficients 𝐶𝛼 are generally dependent on 𝑓 and 𝑇0, if the additional 

weight function 𝑔 is not constant with time.  

Practically, such complicated expressions are not used for the periodogram analysis. The matrix is usually 

oversimplified to ℎ𝑗𝑘 = 𝑗𝑘 (e.g. in the approximations in the electronic tables), or to ℎ𝑗𝑘 = 𝑤𝑘𝑗𝑘, if assuming 

that 𝑤𝑘 = 𝜎0
2/𝜎𝑘

2,  𝜇
𝑗𝑘

= 𝜎𝑘
2𝑗𝑘. Such approximations are used typically for “global” approximations, when all the 

data are used.  

The cases of overlapping “running” approximations (improving the “running mean” = “moving average”) are 

discussed below. 
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Periodogram analysis 

“Point – Point” Methods 

The structural scheme of the methods of the periodogram analysis was presented by Andronov (1996). The main 

division is into the groups "point-point" (non-parametric) and "point-curve" (parametric). The first group has 

started from Lafler and Kinman (1965) and was modified by other authors. All these methods are based on 

minimizing weighted mean distance (or its square) between the points with times 𝑡𝑘, 𝑘 = 1. . 𝑛, values of the signal 

𝑥𝑘, which are sorted according to phases 
𝑘
 computed for a given trial period 𝑃 (or frequency 𝑓 = 1/𝑃). The test 

function may be generally expressed as a function of trial frequency and fixed (for a given sample) data: 

      (𝑓; 𝑡𝑘; 𝑥𝑘) = 𝐴 ∑ 𝜌(|𝑥𝑘 − 𝑥𝑘−1|; |
𝑘

− 
𝑘−1

|),

𝑛

𝑘=1

                                               (4) 

where the initial data (𝑥𝑘, 
𝑘

, 𝑘 = 1. . 𝑛) are extended by 𝑥0 = 𝑥𝑛 , 
0

= 
𝑛

− 1.  The scaling coefficient 𝐴 > 0. 

The summand 𝜌(; 𝑥) may be equal e.g. to |
𝑥

| with a power index  = 1 (appendix by T.J.Deeming to Bopp 

et al., 1970),  = 2 (initial proposal by Lafler and Kinman, 1965), or any other positive value. Few variations of 

functions with a real dependence of 𝜌 on  were proposed e.g. by Renson (1978) and Dworetsky (1983). 

Detailed review and comparison of these methods was presented by Andronov and Chinarova (1997). 

More general expression was presented in Eq. (3) by Pelt (1975) and may be reasonably rewritten using the 

“structure function”. 

(𝑓; 𝑡𝑘; 𝑥𝑘) =
∑ ∑ 𝑔(𝑓; |𝑡𝑘 − 𝑡𝑗|)𝜌(|𝑥𝑘 − 𝑥𝑗|)𝑛

𝑘=𝑗+1
𝑛−1
𝑗=1

∑ ∑ 𝑔(𝑓; |𝑡𝑘 − 𝑡𝑗|)𝑛
𝑘=𝑗+1

𝑛−1
𝑗=1

,                             (5) 

where 𝜌(𝑥) is the “distance” between the points (e.g. again |
𝑥

|), and the structure function may be split into 

two parts:   

                                                         𝑔(𝑓; |𝑡𝑘 − 𝑡𝑗|) = 𝑊(𝑓; |𝑡𝑘 − 𝑡𝑗|)𝐺(|
𝑘

− 
𝑗
|),                                         (6) 

where, in the simplest case, function 𝑊(𝑓; 𝑡) = 1, if  |
𝑡
| ≤ 𝑡,lim (else 𝑊(𝑓; 𝑡) = 0), and, similarly, 𝐺() =

1, if |

| ≤ ,lim or 1 − |


| ≤ ,lim (𝐺() = 0). In other words, the structure function is a sum of 𝜌(|𝑥𝑘 − 𝑥𝑗|) 

only for the data points close either in phase, or in time. Another improvement may be of a “wavelet – style”, if 

𝑊(𝑓; 𝑡) = 1, if |𝑓
𝑡
| ≤ 𝐸,lim. One may propose smooth functions, e.g. a Gaussian 𝑊(𝑓; 𝑡) = exp (−𝑐((𝑓𝑡)2) 

or a limited-width function proposed by Andronov (1997). For the second function, Pelt (1975) suggested a cosine-

type shape 𝐺() = (1 + cos(2𝜋))/2, which is a good choice for nearly sinusoidal oscillations, but is much 

worse for periodic variables with more complicated curves (e.g. eclipsing binaries). Because of long computational 

time needed, these methods are not widely used, except the initial method of Lafler and Kinman (1965). It was 

realized in many programs (e.g. Breus, 2003, 2007; Vanmunster, 2018). 

“Point – Curve” Methods 

The "point-curve" methods are typically based on the least squares method by comparing the data with the 

approximation (“computed curve”) 𝑥𝐶(𝑡; 𝐶𝛼), which is dependent on the frequence 𝑓 =
1

𝑃
 , where 𝑃 is a trial period, 

and (generally) on the initial epoch 𝑇0. Obviously, the test function 𝛷(𝐶𝛼; 𝑡; �⃗�) depends on these two parameters 

as well. The simplest type of variability is a cosine wave. For it, the optimal mathematical model is: 

 𝑥𝐶(𝑡; 𝐶𝛼) = 𝐶1 + 𝐶2 cos 𝜔𝑡 + 𝐶3 sin 𝜔𝑡 = 𝐶1 − 𝑅 cos(𝜔(𝑡 − 𝑇0)),                                                       (7) 

where  𝜔 = 2𝜋𝑓 = 2𝜋/𝑃, and 𝑇0 is the “initial epoch” corresponding to a minimum signal value (which, if being 

a magnitude (in astronomy), as a maximum of brightness). The relations between the coefficients are well known: 

𝐶2 = −𝑅 cos(𝜔 𝑇0), 𝐶3 = −𝑅 sin(𝜔 𝑇0), 𝑅2 = 𝐶2
2 + 𝐶3

2, 𝑇0 = arctan2(−𝐶3, −𝐶2) + 𝑃 ∙ 𝐾, where 𝐾 is any 

integer number. The function arctan2(y,x) calculates arctan(y/x), and returns an angle in the correct quadrant (is 

present in Python, Delphi and other computer languages). For further period corrections, Andronov (1994) 

recommended to use such a value of 𝐾, which makes 𝑇0 as closest as possible to a (weighted) sample mean of 

times of observations.  

For mono-periodic multi-harmonic signals (e.g. “regular“ pulsating variables and eclipsing binaries), this may be 

easily expanded to trigonometric polynomials (abbreviated Fourier series) of order 𝑠: 
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 𝑥𝐶(𝑡; 𝐶𝛼) = 𝐶1 + ∑(𝐶2𝑗 cos 𝑗𝜔𝑡 + 𝐶2𝑗+1 sin 𝑗𝜔𝑡) = 𝐶1 − ∑ 𝑅𝑗 cos(𝑗𝜔(𝑡 −

𝑠

𝑗=1

𝑠

𝑗=1

𝑇0𝑗))                  (8) 

with similar relations: 𝐶2𝑗 = −𝑅𝑗 cos(𝑗𝜔 𝑇0𝑗), 𝐶2𝑗+1 = −𝑅𝑗 sin(𝜔 𝑇0𝑗), 𝑅𝑗
2 = 𝐶2𝑗

2 + 𝐶2𝑗+1
2 , 𝑇0𝑗 =

arctan2(−𝐶2𝑗+1, −𝐶2𝑗) +
𝑃∙𝐾

𝑗
.  

The test function is recommended to be computed at a grid of test frequencies 𝑓
𝑖

= 𝑓
0

+ 𝑖 ∙ ∆𝑓, where ∆𝑓 =

∆/(𝑡𝑛 − 𝑡1), and the phase shift is recommended to be 0 < ∆ ≤ 0.1 (cf. Andronov, 1994b). After determination 

of the largest peak at the periodogram, the period may be corrected by differential corrections. The realizations of 

the method were made initially in the Fortran programming language, but then implemented in the MCV (“Multi-

Column Viewer”) by Andronov and Baklanov (2004).  

Examples of periodograms for different degrees 𝑠 and discussion on the statistically optimal degree of the 

trigonometrical polynomial are presented by Andronov et al. (2016).  

Based on the statistically optimal fits of a group of Mira-type stars, Kudashkina and Andronov (2017) compiled 

an atlas of behavior of the light curves at the (𝑥
𝐶

; d𝑥𝐶/ d) phase diagrams. 

Multi-Periodic Multi-Harmonic Oscillations with Trend:                                                 

Detrending / Prewhitening vs Complete Models 

Similarly to multi-harmonic approximations, the fit may be expanded to few (𝐿) independent periods  𝑃𝑙 , 𝑙 = 1. . 𝐿, 

with corresponding degrees of the trigonometrical polynomial 𝑠𝑙, and the possible trend may be represented by an 

algebraical polynomial of degree 𝑠0: 

𝑥𝐶(𝑡; 𝐶𝛼) = ∑ 𝐶𝑗 ∙ (𝑡 − 𝑇𝑚𝑒𝑎𝑛)𝑗−1

𝑠0+1

𝑗=1

− ∑ ∑ 𝑅𝑗𝑙 cos(𝑗𝜔𝑙 ∙ (𝑡 − 𝑇0𝑗𝑙)

𝑠𝑙

𝑗=1

𝐿

𝑙=1

)                       (9) 

In the software MCV (Andronov and Baklanov, 2004), the maximal number of independent periods is 𝐿 = 3.  

For the periodogram analysis, 𝐿 = 1, but one may use a trend and a multi-harmonic approximation. The test 

function is 

 𝑆 = 1 − 𝛷𝑠0+1+2𝑠1
/𝛷𝑠0+1,                                                                                     (10) 

where 𝛷𝑚 is the test function for the approximation with 𝑚 parameters. For simpler approximations (e.g. in the 

electronic tables etc.), the value of 𝑆 is expressed as 𝑟2. This value shows the ratio of the variance of the “signal” 

to the”signal+noise”, where the”signal” is in deviation of the “trend+periodic wave” approximation from the “pure 

trend”.  

Detrending is a special type of prewhitening, when the characteristic time scale is much longer than the 

observations, so an algebraic polynomial is used instead of multi-harmonic approximation. 

It is very important to note, that, due to the non-ortogonality of the basic functions, the coefficients 𝐶𝑗 of the 

“trend” are generally different from that of the “trend+periodic wave”. In the simplified methods, the “detrending” 

is applied, and then the periodogram analysis is applied as for the signal without any trend. This biases the 

periodogram and may produce peaks at false periods (frequencies), what produces fake results. Similarly, 

“prewhitening” is a subtraction of a periodic wave, and further application of the periodogram analysis. For a 

“good” distribution of times of the signal (approximately filling a complete phase curve), this may not be very 

significant. But for real observations of superhumps or pulsations of the  Sct-type stars, the periods of which are 

comparable with the duration of the observations, the errors may reach dozens of per cent. 

In the light curves of the intermediate polars, there are two periodic components (orbital and spin, e.g. Patterson, 

1994), thus it is effective to apply (e.g. Andronov and Breus, 2013). Andronov et al. (2008a) used trigonometrical 

polynomials to study night-to-night variations of the asynchronous polar BY Cam. 

The total number of parameters should not exceed a default value of 𝑚 = 21. Of course, all the parameters are 

computed with corresponding error estimates, as defined in the LSQ approximation. 
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Special Shapes for the Narrow Features of the Signal 

Polynomial Splines 

Trigonometrical polynomial fits are excellent approximating functions in a case of smooth curves. However, in a 

case of abrupt variations (eg. narrow eclipses in binary stars, or relatively short ascending branches of RR Lyr - 

type stars or HADS (high amplitude  Scuti stars)), the number of the parameters becomes very large, causing 

apparent waves at the light curve (the Gibbs phenomenon). In this case, it is recommended to use a smaller number 

of basic functions.  

In the case of one hump phase curves of pulsating variables, we have applied a two-interval model consisting of a 

parabola at the longer part and a cubic function in the smaller interval typically corresponding to a rapidly 

ascending branch. The function itself, and its derivative are continuous everywhere, including the borders between 

the intervals. There are 3 parameters obtained using linear LSQ, and 2 nonlinear parameters, including two 

positions of borders. 

These cyclic spline approximations of variable order 2 and 3 were used for a period search and parameter 

determination of the pulsating variables from the HIPPARCOS-TYCHO photometrical survey (Andronov, 

Cuypers & Piquard, 2000). 

Another approximation, based on splines of different order, is a "constant+parabola" one. There are also 3+2 

parameters. Such an approximation is an effective one not only for the EA-type stars, but also for EB and EW . 

The position of the minimum and the eclipse width are the free parameters (Andronov, Cuypers & Piquard, 2000). 

This approximation has much better quality than e.g. the approximation in 4 overlapping intervals, proposed by 

Papageorgiou et al. (2014), which is good for the maxima (out-of-eclipse) phases, but has systematic underestimate 

of the eclipse depth.  

Cubic splines with periodic bound conditions were used by Andronov (1987) for the periodogram analysis and 

studies of the period variations without using the (O-C) diagrams for the times of extrema, using a trial “time 

correction” to compute phases taking into account not only the initial epoch and period, but a term proportional to 

the period derivative. As the splines are dependent not only on the number of basic points, but also on the shift, 

there were two versions – the “shift-averaged” spline and the “shift-optimized” spline.  

Local Special Shapes (Patterns) 

Further improvements are due to using other functions rather than algebraic or trigonometric polynomials. 

Andronov (2010) proposed to use a combination of the trigonometrical polynomial of only second order with 

“eclipse parts” with a local “special shape” 𝐻(𝑧) = (1 − |𝑧|𝛼)+
1.5, where the index “+” denotes that negative values 

of the function are set to zero. The function may be scaled and shifted to fit the minimum, and the parameter 𝛼 

describes the shape at the center. The minimal (physically reliable) value 𝛼 = 1 corresponds to a total eclipse of 

stars with equal radii, and 𝛼 → ∞ corresponds to an extremely “flat” minimum. The fixed power index 1.5 

corresponds to asymptotic behavior of the light curve close to the phases of the outer contacts at the eclipse 

(Andronov and Tkachenko, 2013). 

This approximation was referred as to the NAV (“New Algol Variable”) one, and was initially appled to four 

newly discovered variable stars by Kim et al. (2010) and then to other “newbees”. Andronov (2012a) argued that 

this local approximation seems the best among others with the same number of parameters because, with the same 

quality of the fit, it allows to determine, in an addition to other parameters, an important characteristic for the 

“General Catalog of Variable Stars” (Samus’ et al., 2017) – the eclipse full half-width, Unfortunately, this 

important parameter (making a relation between the summary dimensionless size of the components and the 

inclination) is recently typically ignored, as the popular programs do not determine it. 

This parameter is, in principle, may not be determined using functions with formally infinite width, e.g. a Gaussian 

or its “hyperbolic cosine” improvement by Brat et al. (2012), implemented as a standard on-line tool at the 

B.R.N.O. (O-C gate) web page. For further details, see Mikulášek (2015) and Mikulášek et al. (2015), 

Andronov (2012b) compared the “NAV” function to others, including the function 𝐻2(𝑧) = (1 − 𝑧2)
+

𝛽
, which 

has a classical parabolic shape at the center |𝑧| ≪ 1: 𝐻2(𝑧) ≈ (1 − 𝛽𝑧2), contrary to the “NAV” shape with 

another 𝐻(𝑧) ≈ (1 − 1.5 ∙ |𝑧|𝛼). At the eclipse borders, |𝑧| ≈ 1, 𝐻(𝑧) ≈ 𝛼1.5(1 − |𝑧|)1.5, and 𝐻2(𝑧) ≈

2𝛽(1 − |𝑧|)𝛽 – both functions have power shape, but different. The function 𝐻2(𝑧) was applied to 26121 LMC 

and 6138 SMC eclipsing binaries from the OGLE III LMC database (Graczyk et al., 2011) photometric survey by 

Juryšek et al. (2018). 



OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

33 

The “New Algol Variable” (NAV) algorithm may be effectively applied not only to Algol-type stars, as was 

initially suggested, but also to  Lyr and even W UMa stars. The curves for the prototype stars of these subclasses 

are presented by Tkachenko et al. (2016). 

Contrary to the approximations of complete light curves, the phenomenological modeling of the partial light curves 

covering only the vicinities of extrema (to determine only the ToM=Time of Minimum/Maximum) is a more 

frequent task. The previous review on the statistically optimal determination of the characteristics of extrema (not 

only ToM, but the approximating function as well) was presented by Andronov (2005).  

The polynomial of a statistically optimal order was used for compiling the catalogue of the characteristic of 

individual extrema of 173 semi-regular variables by Chinarova and Andronov (2000). This method was later 

implemented by Breus (2003).  

For the intervals, completely covering the eclipses, Andronov et al. (2017) proposed few improvements of the 

methods proposed be Andronov (2012a) and Mikulášek (2015). For the intervals, covering the symmetric eclipses, 

or maxima of the pulsating variables, Andrych et al. (2015, 2017) proposed a series of which split the interval into 

two or three parts. These more recent methods were implemented in the software MAVKA, and are presented in 

the same volume by Andrych and Andronov (2018). The first version (Andronov et al., 2015) implemented the 

approximations using (general and symmrtric polynomials as well as the asymptotic parabola (Marsakova and 

Andronov, 1996).  

Andrych et al. (2017) introduced the "wall-supported” functions which are more effevtive for total eclipses and 

transits. Finally, the 3-interval parabolic spline was implemented. 

The program MAVKA allows to apply up to 20 functions for a given interval and may automatically choose the 

best approximation, which cortesponds to the best accuracy of the ToM. 

Previous versions of the program were applied to observations of some eclipsing binary stars (Savastru et al, 2017; 

Tvardovskyi et al., 2017, 2018) and symbiotic variables (Marsakova et al., 2015). 

An alternate approach is to determine moments of crossing of the approximation and some constant level (cf. 

Andronov et al., 2008b, Andronov and Andrych, 2014). 

“Running” Approximations  

Thus the one may use 𝑇0 as an argument of the "super-function", which is constructed from the middle points of 

the original functions computed by taking into account the Eq. (6): 

𝑥�̃�( 𝑇0), = ∑ 𝐶𝛼(𝑓; 𝑇0)𝑓𝛼(𝑇0).                                                                      (11)

𝑚

=1

 

A complete theory of the statistical properties of such functions and their derivatives was presented by Andronov 

(1997) with an application to “running parabola” (RP) with an additional weight function 

 𝑔(𝑡𝑗 , 𝑡𝑘, 𝑓; 𝑇0) = (1 − ((𝑡𝑗 − 𝑇0)𝑓)2)+ ∙ 𝑗𝑘.                                   (12) 

Here the bottom index “+” denotes that the value is computed in this way, only if the result is positive (else 𝑔 =
0). The statistically optimal value of 𝑓 = 1/𝑡 (in the original paper) may be determined using the scalegram 

analysis 

The application to the sine functions leads to two branches: the running sines and the wavelet analysis. 

Running Sines (RS) 

For the “Running Sines” (RS), the function is defined by Eq. (1), and is an effective tool for (nearly) periodic 

functions with a (relatively slow) trend, e.g. semi-regular variables, intermediate polars. The review on the “stress 

test” of the method for the signals with variable periods was presented by Andronov and Chinarova (2013).  

Running sines are an intermediate between the wavelet and a running parabola, discussed below. Contrary to the 

wavelet, the period is fixed, as well as as the filter half width. The weight functions is constant inside the interval 

of smoothing, i.e. the filter (weight) function is rectangular.  

The recommended filter half-width is 𝑡 = 𝑃/2, but the pulsational periods of many Mira-type stars are close to 

a year, thus seasonal gaps in the observations cause large errors if the smoothing function, thus, for these signals, 

the recommendation is 𝑡 = 𝑃. Generally, it is as a free parameter. Larger values of 𝑡 may be recommended for 



OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

34 

relatively stable light curves, in which the shape of the light curve changes at a time scale exceeding 𝑡, so will 

hide possible real variations of the characteristics of the light curve. 

Theoretically, for pure multiharmonic signal and an interval, uniformly filled with observations, the smoothing 

function is a purely sinusoidal function. For the data with gaps, the shape becomes a-sinusoidal. 

Wavelet Analysis 

Wavelet analysis is a popular tool for analysing nearly periodic data with time scale of variability of characteristics 

of the individual cycles, which exceeds the period by a factor of a few times. The over-simplified method is based 

on a simple replacement of the integrals from minus to plus infinity by discrete sums over the moments of 

observations, similarly to the method of Deeming (1975). Foster (1995) proposed the WWZ ("weighted wavelet 

Z – transform”), which is based on a determination of the parameters of the fit using the least squares method with 

weights. Andronov (1998) proposed improvements of the method, introducing the wavelet periodogram, and using 

for the period determination the test function S(f) similar in sense to that one, which was introduced by Andronov 

(1994a). 

Depending on the time distribution of the observations, the improvement of the "signal-to-noise" ratio may reach 

"gain" from dozens of per cent to dozens of times (for a very disjointed distribution in time). 

The recommendation for the wavelet analysis (based on the improved Morlet-type wavelet) is to use the 

logarithmically constant scale step for the trial periods, contrary to usually used periods. Also as an analog of the 

Nyquist interval between the data, for the Morlet type wavelet, the optimal time step for smoothing is 𝑃/3. 

Detailed reviews were presented by Andronov (1998, 1999). 

Running Parabolae 

This method was elaborated by Andronov (1997) for irregular signal and the signals of low coherence, e.g. quasi-

periodic oscillations (QPO) or regular outbursts with variable occurrence rate. The free parameter to be determined 

for the statistically optimal smoothing is the filter half-width 𝑡. Similarly to the periodogram analysis, the 

scalegram analysis is used. The corresponding test functions may be different. Among them - the unbiased estimate 

of r.m.s. deviation of the observations from the fit; the r.m.s. accuracy of the approximation at the arguments of 

the signal; the “signal-to-noise” ratio. The weight function (in the notation of the Eq. (12)) is: 

𝑔(𝑡𝑗, 𝑡𝑘, 𝑓; 𝑇0) = (1 − ((𝑡𝑗 − 𝑇0)/𝑡)2)+
2 ∙ 𝑗𝑘                                      (13) 

Andronov (2003) introduced an additional test function (𝑡), which may be interpreted as a “scalegram 

periodogram”. It may be used for determination of “period” (cycle length” of quasi-periodic signals (QPO) and 

effective amplitude. Obviously, for pure sinusoidal signals with “good” (dense, uniform) distribution of the times 

of observations, all these methods (global fit, running sines, wavelet analysis and the scalegram analysis) should 

result in the same (within accuracy estimates) parameters. However, for real data, the results may be significantly 

different. Also, the scalegram analysis an effective tool for the flickering (red noise, fractal) variability, e.g. in 

cataclysmic and symbiotic variables. 

Autocorrelation Functions (ACF) of Detrended Signals  

Autocorrelation analysis is widely used for the analysis of regularly spaced time series i.e. when the times of the 

observations are related as 𝑡𝑘 − 𝑡𝑗 = (𝑘 − 𝑗) ∙ 𝛿 (e.g. Anderson, 1971). 

This classical relation may be improved for the ACF analysis of the residuals of the observations from the 

smoothing function, what is an often case e.g. for cataclysmic variables with orbital variability and quasi-periodic 

oscillations (QPO) and/or flickering, as well as for binary systems with pulsations of one of the components 

The removal of the mean was studied by Sutherland et al. (1978), whereas the complete theory of statistical 

properties of the ACF was presented by Andronov (1994a). This may help to prevent false interpretation of 

flickering as the quasi-periodic oscillations. 

Acknowledgement  

We thank Lewis M. Cook and Prof. RNDr. Zdeněk Mikulášek for discussions. This work is related to the 

international projects “Inter-Longitude Astronomy” (ILA, Andronov et al., 2003, 2014, 2017) and “Ukrainian 

Virtual Observatory”, “Astroinformatics” (Vavilova et al., 2017).  

  



OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

35 

References  

Anderson T.W., 1971. The Statistical Analysis of Time Series, Wiley, NY - 704p. 

Andronov I. L., Publ. Astron. Inst. Czechoslovak Acad. Sci., 1987, 70, 161, 1987PAICz..70..161A  

Andronov I. L., 1994a, Astronomische Nachrichten, 315, 353, 1994AN....315..353A 

Andronov I.L., 1994b, Odessa Astronomical Publications, 7, 49, 1994OAP.....7...49A 

Andronov I.L., 1996, The Proceedings of the 27th Conference on Variable Star Research. November 10-12,1995. 

Brno, Czech Republic. editor M. Zejda. ISBN 80-85882-05-1, 6, 1996vsr..conf....6A 1994 

Andronov I.L., 1997, A&AS, 125, 207, 1997A&AS..125..207A  

Andronov I.L., 1998, Kinematika Fiz. Nebesn. Tel, 14, No. 6, 490, 1998KFNT...14..490A  

Andronov I.L., 1999, Self-Similar Systems, Dubna, Russia, 29 July – 3 August 1998, eds. V.B.Priezzhev and 

V.P.Spiridonov, Joint Inst. Nucl. Res., 1999, p. 57-70, 1999sss..conf...57A  

Andronov I.L., 2003, ASPC, 292, 391, 2003ASPC..292..391A 

Andronov I.L., 2005, ASPC, 335, 37, 2005ASPC..335...37A 

Andronov I.L., 2010, Int. Conf. KOLOS-2010 Abstr. Booklet, Snina, Slovakia, 1, 

http://www.astrokarpaty.net/kolos2010abstractbook.pdf  

Andronov I.L., 2012a, Astrophysics, 55, 536, 2012Ap.....55..536A 

Andronov I.L., 2012b, arXiv preprint arXiv:1212.6707; Częstochowski Kalendarz Astronomiczny 2013, ed. 

Bogdan Wszołek, Vol.VIII, p. 133-138, 2012CKA.....8..133A 

Andronov I.L., et al., 2003, Astron.Astroph.Trans., 22, 793, 2003A&AT...22..793A 

Andronov I.L., et al., 2008a, Central European Journal of Physics, 6, 385, 2008CEJPh...6..385A  

Andronov I.L., et al., 2008b, Astronomy and Astrophysics, 486, 855, 2008A&A...486..855A 

Andronov I.L., et al., 2017, ASPC, 511, 43, 2017ASPC..511...43A 

Andronov I.L., Andrych K.D., 2014, Odessa Astronomical Publications, 27, 38A, 2014OAP....27...38A  

Andronov I.L., Baklanov A.V., 2004, Astronomical School's Report, 5,  264, 2004AstSR...5..264A 

Andronov I.L., Breus V.V, 2013, Astrophysics, 56, 518,  2013Ap.....56..518A  

Andronov I.L., Chinarova L.L., 1997, Kinematika Fiz. Nebesn. Tel, 13, No. 6, 67, 1997KFNT...13f..67A 

Andronov I.L., Chinarova L.L., 2013, arXiv e-print (arXiv:1308.1129); Częstochowski Kalendarz Astronomiczny 

2014, ed. Bogdan Wszołek, Vol. X, p. 171-188, http://adsabs.harvard.edu/abs/2013CKA....10..171A  

Andronov I.L., Cuypers J., Piquard S., 2000, 2000ASPC..203...64A,  2000ASPC..203...64A  

Andronov I.L., Marsakova V.I., Kudashkina L.S., Chinarova L.L., 2014, AASP, 4, 3, 2014AASP....4....3A 

Andronov I.L., Marsakova V.I., 2006, Astrophysics, 49, 370, 2006Ap.....49..370A 

Andronov I.L., Tkachenko M.G., 2013, Odessa Astronomical Publications, 26, 204, 2013OAP....26..204A 

Andronov I.L., Tkachenko M.G., Chinarova L.L., 2017, Astrophysics, 60, 57, 2017Ap.....60...57A 

Andronov I.L., Shakhovskoj N.M., Kolesnikov S.V., 2003, NATO Science Series II – Mathematics, Physics and 

Chemistry, 105, 325, 2003whdw.conf..325A 

Andrych K.D., Andronov I.L., 2018, eprint arXiv:1812.06949, 2018arXiv181206949A; OEJV, this volume 

Andrych K.D., Andronov I.L., Chinarova L.L., Marsakova V.I., 2015, OAP, 28, 158, 2015OAP....28..158A  

Andrych K.D., Andronov I.L., Chinarova L.L., 2017, OAP, 30, 57, 2017OAP....30...57A 

Brát L., Mikulášek Z., Pejcha O., 2012, http://var2.astro.cz/library/1350745528_ebfit.pdf 

Bopp B.W., Evans D.S., Laing J.D., Deeming, T. J., 1970, MNRAS, 147, 355, 1970MNRAS.147..355B 

Breus V.V., 2003, Odessa Astronomical Publications, 16, 24, 2003OAP....16...24B 

http://adsabs.harvard.edu/abs/1987PAICz..70..161A
http://adsabs.harvard.edu/abs/1994AN....315..353A
http://adsabs.harvard.edu/abs/1994OAP.....7...49A
http://adsabs.harvard.edu/abs/1996vsr..conf....6A%201994
http://adsabs.harvard.edu/abs/1997A%26AS..125..207A
http://adsabs.harvard.edu/abs/1998KFNT...14..490A
http://adsabs.harvard.edu/abs/1999sss..conf...57A
http://adsabs.harvard.edu/abs/2003ASPC..292..391A
http://adsabs.harvard.edu/abs/2005ASPC..335...37A
http://www.astrokarpaty.net/kolos2010abstractbook.pdf
http://adsabs.harvard.edu/abs/2012Ap.....55..536A
http://adsabs.harvard.edu/abs/2012CKA.....8..133A
http://adsabs.harvard.edu/abs/2003A%26AT...22..793A
http://adsabs.harvard.edu/abs/2008CEJPh...6..385A
http://adsabs.harvard.edu/abs/2008A%26A...486..855A
http://adsabs.harvard.edu/abs/2017ASPC..511...43A
http://adsabs.harvard.edu/abs/2014OAP....27...38A
http://adsabs.harvard.edu/abs/2004AstSR...5..264A
http://adsabs.harvard.edu/abs/2013Ap.....56..518A
http://adsabs.harvard.edu/abs/1997KFNT...13f..67A
http://adsabs.harvard.edu/abs/2013CKA....10..171A
http://adsabs.harvard.edu/abs/2000ASPC..203...64A
http://adsabs.harvard.edu/abs/2014AASP....4....3A
http://adsabs.harvard.edu/abs/2006Ap.....49..370A
http://adsabs.harvard.edu/abs/2013OAP....26..204A
http://adsabs.harvard.edu/abs/2017Ap.....60...57A
http://adsabs.harvard.edu/abs/2003whdw.conf..325A
https://arxiv.org/abs/1812.06949
http://adsabs.harvard.edu/abs/2015OAP....28..158A
http://adsabs.harvard.edu/abs/2017OAP....30...57A
http://var2.astro.cz/library/1350745528_ebfit.pdf
http://adsabs.harvard.edu/abs/1970MNRAS.147..355B
http://adsabs.harvard.edu/abs/2003OAP....16...24B


OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

36 

Breus V.V., 2007, Odessa Astronomical Publications, 20, 24, 2003OAP....20...32B 

Chinarova L.L., Andronov I.L., 2000, Odessa Astronomical Publications, 13, 116, 2000OAP....13..116C 

Deeming T. J., 1975, Ap&SS, 36, 137, 1975Ap&SS..36..137D  

Dworetsky M.M. 1983, MNRAS, 203, 917, 1983MNRAS.203..917D 

Foster. G., 1996, Astronomical Journal, 112, 1709, 1996AJ....112.1709F  

Graczyk D., Soszynski I., Poleski R., et al., 2011, Acta Astron., 61, 103, 2011AcA....61..103G  

Juryšek J., Zasche P., Wolf M., Vraštil J., Vokrouhlický D., Skarka M., Liška J., Janík J., Zejda M., Kurfürst P,; 

Paunzen E., 2018, Astron. & Astrophys., 609, A46, 30 pp., 2018A&A...609A..46J  

Kim Chun-Hwey, Lee Jae Woo, Duck Hyun Kim, Andronov Ivan L. Odessa Astronomical Publications, 2010, 23, 

62, 2010OAP....23...62K 

Kudashkina L.S., Andronov I.L., 2017, Odessa Astronomical Publications, 30, 93, 2017OAP....30...93K   

Lafler J., Kinman T.D., 1965, ApJ Suppl., 11, 216, 1965ApJS...11..216L 

Marsakova V.I., Andronov I.L., 1996, OAP, 9, 127, 1996OAP.....9..127M 

Marsakova V.I., Andronov I.L., Chinarova L.L., Chyzhyk M.S., Andrych K.D., 2015, Częstochowski Kalendarz 

Astronomiczny 2016, 269, http://adsabs.harvard.edu/abs/2015CKA....12..269M  

Mikulášek Z. 2007, Odessa Astronomical Publications, 20, 138, 2007OAP....20..138M  

Mikulášek Z. 2015, A&A, 584A, 8, 2015A&A...584A...8M  

Mikulášek Z., Žižňovský J., Zverko J., Polosukhina, N.S. 2003, Contributions of the Astronomical Observatory 

Skalnaté Pleso, 33, 29, 2003CoSka..33...29M  

Mikulášek Z., Wolf M., Zejda M, Pecharová P., 2006, ApSS, 304, 363, 2006Ap&SS.304..363M  

Mikulášek Z., Zejda M., Pribulla T., Vaňko M., Qian S.-B., Zhu L.-Y., 2015, ASPC, 496, 176, 

2015ASPC..496..176M  

Papageorgiou A., Kleftogiannis G., Christopoulou P.-E., 2014, Contrib. Astron. Obs. Skalnate Pleso, 43, 470, 

2014CAOSP..43..470P 

Pelt J. Methods for search of variable star periods, 1975, Tartu Astrofüüs. Obs. Teated, Nr. 52, 24 p., 

1975TarOT..52....1P 

Renson P., 1978, A&A, 63, 125, 1978A&A....63..125R 

Samus' N.N., Kazarovets E.V., Durlevich O.V., Kireeva N.N., Pastukhova E.N.,2017,ARep,61, 80, ARep, 61, 80  

Sutherland P. G., Weisskopf M. C., Kahn S. M. 1978, ApJ, 219, 1029, 1978ApJ...219.1029S 

Savastru S.V., Marsakova V.I., Andrych K.D., Dubovsky P., 2017, OAP, 30, 126, 2017OAP....30..126S 

Tkachenko M.G., Andronov I.L., Chinarova L.L., 2016, JPhSt, 20, 4902, JPhSt, 20, 4902.   

Tvardovskyi D.E., Marsakova V.I., Andronov I.L., 2017, OAP, 30, 135, 2017OAP....30..135T  

Tvardovskyi D.E., Marsakova V.I., Andronov I.L., Shakun L.S., OAP, 2018, 31, 103, 2018OAP....31..103T  

Vanmunster T., 2018, Peranso software, http://www.cbabelgium.com/peranso/  

Vavilova I.B., Yatskiv Ya.S., Pakuliak L.K., Andronov I.L., Andruk V.M., Protsyuk Yu.I., Savanevych V.E., 

Savchenko D.O., Savchenko V.S., 2017, IAU Symposium,  325,  361, 2017IAUS..325..361V  

Wehlau W., Leung Kam-Ching, 1964, ApJ, 139, 843, 1964ApJ...139..843W 

http://adsabs.harvard.edu/abs/2003OAP....20...32B
http://adsabs.harvard.edu/abs/2000OAP....13..116C
http://adsabs.harvard.edu/abs/1975Ap%26SS..36..137D
http://adsabs.harvard.edu/abs/1983MNRAS.203..917D
http://adsabs.harvard.edu/abs/1996AJ....112.1709F
http://adsabs.harvard.edu/abs/2011AcA....61..103G
http://adsabs.harvard.edu/abs/2018A%26A...609A..46J
http://adsabs.harvard.edu/abs/2010OAP....23...62K
http://adsabs.harvard.edu/abs/2017OAP....30...93K
http://adsabs.harvard.edu/abs/1965ApJS...11..216L
http://adsabs.harvard.edu/abs/1996OAP.....9..127M
http://adsabs.harvard.edu/abs/2015CKA....12..269M
http://adsabs.harvard.edu/abs/2007OAP....20..138M
http://adsabs.harvard.edu/abs/2015A%26A...584A...8M
http://adsabs.harvard.edu/abs/2003CoSka..33...29M
http://adsabs.harvard.edu/abs/2006Ap&SS.304..363M
http://adsabs.harvard.edu/abs/2015ASPC..496..176M
http://adsabs.harvard.edu/abs/2014CAOSP..43..470P
http://adsabs.harvard.edu/abs/1975TarOT..52....1P
http://adsabs.harvard.edu/abs/1978A&A....63..125R
http://adsabs.harvard.edu/abs/2017ARep...61...80S
http://adsabs.harvard.edu/abs/1978ApJ...219.1029S
http://adsabs.harvard.edu/abs/2017OAP....30..126S
http://adsabs.harvard.edu/abs/2016JPhSt..20.4902T
http://adsabs.harvard.edu/abs/2017OAP....30..135T
http://adsabs.harvard.edu/abs/2018OAP....31..103T
http://www.cbabelgium.com/peranso/
http://adsabs.harvard.edu/abs/2017IAUS..325..361V
http://adsabs.harvard.edu/abs/1964ApJ...139..843W


OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

37 

The Informatics in the Doppler Tomography Modeling of the 
Envelopes of the Close Binaries Systems 

V. BAHYL1, M.GAJTANSKA2, P. HANISKO1, PHAM VAN TINH3 

(1) Júlia observatory, Zvolenská Slatina, Slovak Republic, basoft@zv.psg.sk 

(2) KFEAM, DF TU vo Zvolene, Masarykova 24, 960 53  Zvolen, Slovak Republic 

(3) Fac. of Inform. Technol., Nong Lam Univ. Thu Duc District, Ho Chi Minh City, Vietnam 

Abstract: We present our software which is able to realize the Doppler tomography models of the close binaries 

surroundings. We prove the correctness of our software and we suggest the possibilities and access for the 

tomographic modeling of the binaries with eccentric orbits and with rather high motion of the line of apsids. 

 

Introduction 

The effort to model the components of the close binaries is very old. The same is true for modeling the surroundings 

of these stars no matter if they are detached, semi-contact or contact. The list of authors which scientifically treated 

the problems of the dynamics and structures of the close binaries is very long so we allow us to select to mention 

the works of Z.Kopal (1959), T.B.Horak  (1974) and/or J.Hekela (1972). Of course since them a lot of time has 

passed and new scientists obtained new results, mainly T.M. Richards. We are allowed to build on this work in 

private our results. Before time we have realized the software which allowed us to study the internal structures of 

matter by the computer tomography methods.  

Very shortly, there is not important if the object under the computer tomography is not in move and the radiation 

source and detectors are going round the object as there is in the medical computer tomography or if the object is 

rotating and the detectors are stable. The software access is the same. And the binary system is the case in which 

the object is rotating and the detectors are nom mowing. In the computer tomography terminology the so called 

“projection” is the same. This is why there were no problems to transfer our software from technics to the Doppler 

tomography of the close binaries surroundings at all. 

We would like shortly remark that according to our opinion the mathematical principles of the computer 

tomography or the mathematical principles of the Doppler tomography are  widely known and described so we 

will not waste time and space to describe them. We present only the Figure 1 where there is the computer 

tomography picture of the circular and rectangular structures.  And on the tomograms the circle is a circle and the 

square is a square. 

 

Figure 1: The sample and its tomographic image. 

 

First attempts 

Of course we have not started these days the applications of the computer tomography methods in the astronomy. 

Already in the year 2004 (In the frame of the A Star Puzzle conference.) we have applied the computer tomography 
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reconstruction method on the changes of the primary minima of the β Lyrae system. Our results are here on the 

Figure 2. Left there are the changes in the primary minima structures and right there is the corresponding picture. 

Of course there is no miracle there but our result is well accepted proof that the application of the computer 

tomography methods is applicable in the study of the light curves changes and it is able to give us new results or 

it is able to give us new views on these systems too. 

Doppler tomography 

We have checked our software on the data of two selected binary systems. There are TT Lincis and U Sagittae 

systems. The corresponding data we have obtained from Dr. Jan Budaj from the Astronomical Institute of the SAV 

Skalnaté Pleso. These “line profiles we have inserted as the input data into our software and we have realized the 

back projections computations. Our results we have compared with the relevant results from the paper Richards et 

al (2014). The comparative images are given on the Figure 3 for the TT Hydrae system and on the Figure 4 for the 

U Sagittae system. 

From these results we allow us to conclude that our Doppler tomography software is correct and the back 

projections obtained with this software represents the true distribution of the velocity vectors (fields) in the 

surrounding of the studied close binaries. 

          

Figure 2: Our Computer tomography attempts with the sets of the β Lyrae minima photometric structures. 
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Figure 3: The velocity vectors distribution for the TT Hydrae system. Richards at al (2014) – left; our results – right. 

 

     

Figure 4: The velocity vectors distribution for the U Sagittae system. Richards at al (2014) – left; our results – right. 

The old Latin proverb tells us „Sic duum faecit idem, non est idem“. Of course our pictures are little different from 

those of Richard et al (2014) but not in the subject. The left and right pictures are different in details only according 

to our opinion. The differences (on the pictures) go out from the fact that the input data have not been the same 

(numerically) even if the algorithms are the same. This is, of course, natural. 

BM3 models 

We have realized the BM3 models of the both systems as we have at our disposal the photometric data for the both 

systems. The results are very interesting according to our opinion and to some extent they may be the suggestion 

of the way of research for the future in this branch of science. Our results are given on the next figures. The Figure 

5 represents the model of the TT Hydrae system and the Figure 6 represents the model of the U Sagittae system. 
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Figure 5: The BM3 model for the photometric data of the TT Hydare system. 

   

Figure 6: The BM3 model for the photometric data of the U Sagittae system. 

We guess that TT Hydrae and U Sagittae are both semi-detached systems according to the data given in the CALEB 

(Catalog and Atlas of Eclipsing Binaries) wthich is the integral part of the BM3 system. 

Even if the Doppler tomography of the close binaries surrounding and the BM3 modeling of the close binaries are 

quite different branches of science we allow us to express our opinion that they should be complementary and their 

results are to be added. And this there is easy to seen from the given above. 

Future ideas 

Let us have the binary system with the elliptical orbit. See e.g. the Figure 7 where there is binary system with the 

elliptical orbit. Of course the period is many years and such a systems are not suite to be studied with us in this 

moment. But there are many systems with the elliptical orbits in which the rotation of the apsidal line is expressed 

in the years. Such a system is e.g. SMC-ECL-1634 (Kyeongsoo Hong et al. 2016).  

These systems is according to our opinion worth to study with the methods of the computer tomography. 

 

Figure 7: The binaries (Not close of course) with an elliptical orbit. 
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Having this idea we realized the model of such a system and we have found that the secondary minimum should 

move itself on the light curve in agreement with the position of the line of apsids. So having the light curves which 

well cower the half the period of the apsid line we van quietly realize the computer tomography model of such 

kind a close binary system. Our preliminary and theoretical results are given on the final Figure 8. 

 

 

 

 

Figure 8: The theoretical light curve models for the close binaries with eccentric orbit. 

 

And back projecting of these theoretical light curves there is possible to obtain e.g. model given on the Figure 9. 
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Figure 9: The theoretical model for the eclipsing binaries with high eccentricity and with high movement of the apsid line. 

Conclusion 

We have succeeded in our work that we have fully working software for the Doppler tomography and that there is 

possible to model the close binaries components by the method of the computer tomography under special 

conditions, specifically if the eccentricity of the orbit is high and the apsid line rotates quickly. 

In future we would like to obtain the relevant and real astronomical data and to apply our software to them. 
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Abstract: Be stars are rapidly rotating non-supergiant B-type stars surrounded by equatorial Keplerian disks. The 

characteristic property of all Be stars is their multiperiodic variability driven for example by pulsations in isolated 

Be stars or by the effects of binarity. We assume in our models the equatorial decretion disk that stems from the 

angular momentum loss needed to keep the central object at or below the critical rotation. Using our hydrodynamic 

code, we calculate the 2D profile of Be stars’ disk structure under various physical and geometrical configurations 

of the star-disk system as well as various profiles of the circumstellar medium. The tidal interactions in binary 

systems facilitate the matter ejection from the equatorial region of the star, and there is also evidence of warping 

of the disk in binaries. The important subclass is the Be/X-ray binaries, consisting of a Be star and mostly a neutron 

star (NS), which belong to the brightest objects in the X-ray sky. Intensive matter accretion from the optical donor 

companion onto the compact object in a relatively close binary system produces transient phases of the high energy 

X-ray emission which dramatically vary in brightness and whose timescales may range from milliseconds to years. 

We calculate the effects of X-ray irradiation on the temperature structure of the Be stars’ disk. Using the Bondi-

Hoyle-Littleton approximation, we estimate the NS accretion rate and the excess of X-ray luminosity during 

various phases of NS-disk interaction. 

 

Introduction 

Be stars are “non-supergiant B-type (late O - early A) stars with Balmer spectral lines in emission.” The typical 

representatives are γ Cas, α Eri (Achernar), β Cmi, Χ Oph, ζ Tau, 28 Cma, etc. Be stars are the fastest rotators 

among all other (nondegenerate) types of stars on average, their equatorial rotation rate is closest to its critical 

limit (e.g., Rivinius et al. 2013). The mechanism that brings these stars so close to the critical rotation rate is 

uncertain. It is believed that the evolution of stellar angular momentum distribution results from the effects of 

convective motion, meridional circulation, etc. (Maeder & Meynet 2000). 

We identify two-component circumstellar envelopes of Be stars: fast polar wind + equatorial (nearly) Keplerian 

disk. Although the exact mechanism of disk creation is still unknown (probably non-radial pulsations, Rivinius et 

al. 2013), the viscosity is then responsible for the further outward transportation of the angular momentum and 

thus for the disk building and broadening (Lee et al. 1991). We regard the viscous decretion disks (VDD) as the 

typical examples of the equatorial stellar decretion disks with the Keplerian rotation velocity. 

 

Figure 1: Schematic spectra of various Be stars according to the line-of-sight orientation ordered from pole-on to the equator-

on line-of-sight directions (A - D). The Be star ο Aqr is a shell star (Hanuschik 1996). The upper part shows the equator-on 

scheme of critically rotating Be star with a flared disk. Adapted from Rivinius et al. (2013). 
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These are stellar pulsations that likely drive the multiperiodic variability of Be stars, besides other variabilities on 

basically all timescales. Only the variability of the early spectral subtypes is large enough to be observed from the 

ground, the late types pulsate as well but with smaller amplitudes (e.g., Saio et al. 2007). We divide the Be stars 

variability into numerous classes, according to different mechanisms that excite the pulsation modes. 

The binarity strongly affects the physics of Be stars’ disks. One estimates the fraction of Be stars binary (or 

multiple) systems to be 30 - 35% (Porter & Rivinius 2003). In “closer” systems (with the orbital period a year or 

less) the tidal interactions help to eject the matter from the equatorial region of Be star and feed the disk. The spin-

up of Be stars can also be strongly affected by binary interactions (Harmanec et al. 2002). The binarity causes the 

disk truncation at the radius where the tidal torque balances the viscous torque (Okazaki et al. 2002). The accretion 

of the disk material onto the compact companion (mostly a neutron star (NS)) in the Be/X-ray binaries produces 

the intense X-ray emission (Reig 2011). 

Dynamics of Be disks around single Be stars 

The viscosity is the fundamental factor in building the disk since it causes the mass and angular momentum 

outward transport throughout the Keplerian disk. However, the decretion disks are never steady; the positive 

viscous torque causes the growth of the disk while the negative or no torque causes the disk decay. 

 

 

 

 

 

 
 

Figure 2: Left panel - Schema of the rotationally oblate star with polar radius 𝑅★, equatorial radius 𝑅eq, and stellar surface 

element d𝑆★ whose position vector is 𝑟. Vector �⃗�eff, of the effective gravity (see Eq. 2) is normal to the stellar surface element 

d𝑆★. Right panel - Geometry of the irradiation of the disk by the central star. The disk “surface” element d𝑆 (with the central 

point B) is impinged by the stellar irradiation along the line-of-sight vector 𝑑 from the stellar surface element d𝑆★ (with the 

central point A). The angle 𝛼 denotes the deviation between vectors 𝑟 and 𝑑, the angle 𝛽 is the deviation of the inclination of 

the surface element d𝑆 and the vector 𝑑 (the angle 𝛽 is defined as the complementary angle to the deviation angle 𝛽′ of the the 

line-of-sight vector 𝑑 and the normal vector 𝜈 of the surface element dS). The angle 𝛾 denotes the inclination of the surface 

element d𝑆 from the 𝑥𝑦 plane (Kurfürst et al. 2018, the idea is adapted from Smak (1989)). 

The Be decretion disks are in an approximate thermal balance with irradiation from a central star. We can represent 

the irradiative flux that impinges the disk “surface” by the following relations: regarding the rotationally oblate 

star (see left panel of Fig. 2), we write the von Zeipel theorem that describes the latitudinally dependent stellar 

radiation �⃗�★ that emerges from each point on the star’s surface (von Zeipel 1924) as 

�⃗�★(Ω, 𝜗) = −
𝐿★

4𝜋𝐺𝑀★(1−
Ω2

2𝜋𝐺⟨𝜌⟩
)

�⃗�eff(Ω, 𝜗),                                                                                                (1) 

where Ω is the angular velocity of the stellar rotation, 𝜗 is the colatitude of the surface point, 𝐿★ is the stellar 

luminosity, 𝑀★ is the total mass of the star, 𝐺 is gravitational constant, ⟨𝜌⟩ is the mean stellar density. Assuming 

most of the mass of the star is concentrated to its center (Roche model), the effective gravity 

�⃗�eff = (−
𝐺𝑀★

𝑟2 + Ω2𝑟sin2𝜗, Ω2𝑟sin𝜗cos𝜗, 0),                                                                                                   (2) 

in the spherical coordinate directions 𝑟, 𝜗, 𝜙. The right panel of Fig. 2 illustrates the geometry of the disk irradiation 

by the central star. The irradiative flux that impinges each point B in the disk (Smak 1989) is 

𝐹irr =
𝐹★

𝜋
∬

𝜗,𝜙
𝑅★

2 sin𝜗
[1−𝑢(1−𝜇)]𝜇sin𝛽

(1−𝑢 3⁄ )𝑑2 d𝜗d𝜙,                                                                                             (3) 

where 𝜇 = cos𝛼, 𝑑 is the magnitude of the vector 𝑑, and 𝑢 is the coefficient of the limb darkening. The “linear 

limb darkening law” then takes the form 𝐼 = 𝐼0(1 − 𝑢 + 𝑢𝜇), where 𝐼 is the specific intensity of radiation and 

𝐼0 = 𝐹★ 𝜋⁄  (e.g., Heyrovský 2007). 
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Figure 3: Left panel - The composite graph of time snapshots of surface density, radial, and azimuthal velocity demonstrates 

the propagation of the transforming wave in the dynamical timescale 𝑡dyn and the final converged profiles of the surface 

(column) density Σ, radial velocity 𝑉𝑟  (scaled to the speed of sound a), and azimuthal velocity 𝑉𝜙 (scaled to the Keplerian 

velocity VK), of the isothermal model of B0-type (with parameters described in the text) star’s disk with constant viscosity 

parameter 𝛼. The first wave at the distance (roughly) 104 𝑟 𝑅eq⁄  represents 𝑡dyn ≈ 65yrs. The time 𝑡conv denoted in the graph, 

is the minimum time needed for the model to converge into the final stationary state. Right panel - Similar model with radially 

decreasing viscosity (𝛼 ∼ 𝑟−0.2) and decreasing temperature (𝑇 ∼ 𝑟−0.4). The first wave at the distance 105 𝑟 𝑅eq⁄  

represents 𝑡dyn ≈ 3800yrs. Adapted from Kurfürst (2015). 

 

 

Figure 4: Upper panel - 2D density graph of a self-consistently calculated circumstellar disk of a critically rotating B0-type 

star with the same parameters as for the 1D model. The disk mass-loss rate �̇� = 10−8𝑀⊙yr−1, the viscosity parameter 𝛼 = 0.1 

is constant. The sonic point radius 𝑟s ≈ 2.5 × 104𝑅eq. Contours mark the densities 2.5 × 10−8, 5 × 10−8, 10−7, 1.5 ×

10−7, 2 × 10−7 (in SI units), etc.  Lower panel - Corresponding graph with the constant viscosity coefficient𝛼 = 1. The density 

profile in the𝛼 ≿ 0.5models roughly periodically oscillates. The contours mark the densities 2.5 × 10−8, 5 × 10−8, 7.5 ×
10−8, 10−7, etc. Adapted from Kurfürst et al. (2018). 

 

We show the particular results of our time-dependent 1D calculations (see Fig. 3) of the fundamental quantities Σ 

(density), 𝑉𝑟  (radial velocity), and 𝑉𝜙 (azimuthal velocity) that determine the decretion disk hydrodynamic 

behaviour (Kurfürst et al. 2014) at least to the sonic point distance where 𝑉𝑟  equals the speed of sound a. We 

calculate the models either for isothermal disks with constant viscosity parameter 𝛼 (Shakura & Sunyaev 1973) or 

for the cases where one or both of these parameters vary with the distance. We also recognize in the models the 
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wave that converges the initial state to the final stationary state. Figure 3 represents two 1D models of a classical 

Be star’s disk, 𝑀★ = 14.5𝑀⊙, 𝑅★ = 5.8𝑅⊙, 𝑇eff = 25000K (Harmanec 1988), with the two different modes of initial 

temperature and viscosity profiles. 

We also performed the self-consistent (density+velocity vs. temperature) time-dependent 2D calculations of a disk 

structure up to 100 stellar radii in the R - z plane of a unique cylindrical - conical computational grid (see Fig. 4). 

We assumed the vertical hydrostatic and radiative equilibrium and calculated the irradiative flux taking into 

account the limb darkening as well as the stellar equatorial darkening that results from its rotational oblateness 

(Kurfürst et al. 2018). We calculate the thermal disk structure using the flux diffusion approximation (see, e.g., 

Mihalas 1978) and taking into account the radiative loss of energy in the optically thin approximation (e.g., Rosner 

et al. 1978). Figure 4 shows two 2D models of the density structure up to 5𝑅eq for two different parameters of an 

initial state. 

The 1D dynamic simulations (e.g., Haubois et al. 2013) of the disk growth and dissipation confirm the approximate 

validity of the analytical formula (cf. Pringle 1981) 

𝜕Σ

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
[

𝜕

𝜕𝑟
(𝑟2𝛼𝑎2Σ)

𝜕

𝜕𝑟
(𝑟2Σ)

].                                                                                                                                     (4) 

They show the time-evolution of the surface density of a newly formed disk with a constant rate of mass supply 

for more than 50 years. The steady-state solution Σ ∼ 𝑟−2 (Okazaki 2001) is shown as the temporally asymptotic 

limit; this implies that the disks are never steady except at the time 𝑡 → ∞. Moreover, the disk surface density 

grows with time but with entirely different rates according to the distance from the star. In the simplified model 

when a disk is supplied with the material at a constant rate, the viscosity parameter𝛼scales the disk growth and 

dissipation time up and down. According to Eq. (4), changes of the 𝛼 parameter lead to different scaling of the 

time at least in case of the constant ratio between the azimuthal speed and the sound speed. Therefore, the higher 

the 𝛼, the faster the growth of the disk. For instance, a disk with 𝛼 = 1 will evolve ten-times faster than a disk 

with 𝛼 = 0.1 (Haubois et al. 2013). 

These theoretical predictions are supported for example by the retroactive compilation of V-band photometric 

observations of ω (28) Cma, by Ghoreyshi et al. (2018). Older data were of poor quality, the study thus involves 

the measurements only since the year 1982. Since that time, ω CMa exhibited four quasi-regular cycles with 

lengths varying between 7.0 to 10.5 years. Each cycle includes two main sub-epoches: an outburst phase 

characterized by a brightening of 0.3 mag to 0.5 mag during about 2.5 - 4.0 years (corresponding to the disk growth 

phase) and a quiescence phase that lasts about 4.5 - 6.5 years (corresponding to the disk partial dissipation). 

Comparing the observational features to a theoretical model, the authors conclude that the VDD model is fully 

capable of reproducing the variability of the disk. Different values of 𝛼 (typically higher) are required during the 

disk growth phase than during the dissipation (𝛼 = 1vs.𝛼 = 0.1). A similar trend was also found for a sample of 

Be stars in the Small Magellanic Cloud by Rímulo et al. (2018). 

Dynamics of Be disks around binary Be stars 

We mainly focus to Be/X-ray binaries which are the largest sub-class of high mass X-ray binaries (more than 2/3 

of the identified systems). A Be/X-ray binary system usually consists of a Be star + NS while the X-ray emission 

comes from accretion onto NS (Reig 2011). The orbits are usually eccentric (𝑒 ⩽ 0.9) with periods 12d < 𝑃orb <
300d. Most Be/X-ray binary systems show only a transient activity. We identify the following schematic types of 

X-ray activity (Negueruela 1998): 

1) low-luminosity with persistent X-ray emission where the X-ray luminosity 𝐿𝑋 ⩽ 1027W, 

2) periodical (type I) outbursts with 𝐿𝑋 ≈ 1028-1030W, and 

3) giant (type II) outbursts with 𝐿𝑋 ⩾ 1030W. 

For example, the observations of X-ray source 2S 1417-62 (Bildsten et al. 1997) show the type II outburst where 

the X-ray flux increases 10-times during 20 days and then decreases during about 90 days back to the original 

value. This is succeeded by the sequence of quasi-periodic type I outbursts with average periods of about 50 days. 

The maxima of the type I outbursts are approximately 3-times lower than that of the type II outburst. It is believed 

that type I outbursts occur during the periastron passage of the NS. 

The binarity also causes a truncation of the disk. In systems with low eccentricity is expected the disk truncation 

at 3:1 resonance radius (Okazaki & Negueruela 2001), that is, 𝑟trunc 𝑟orb⁄ ≈ 0.48, where rtrunc is the disk truncation 

radius and rorb is the radius of the NS orbit. The truncation radius decreases with increasing eccentricity; the 
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Figure 5: Left panel - 2D temperature structure of Be/X-ray binary GRO J1008-57. The main sequence star is of spectral type 

B0eV with Teff  ≈ 32 000 K. The other parameters are: LX ≈ 3×1030 W, Ṁ = 2.85×10–9 M⊙ yr–1, D ≈ 390 R⊙ ≈ 45 Req , racc/H ~ 

104, TX ≥ 51 000 K. Right panel - 2D temperature structure of Be/X-ray binary HD215770. The main sequence star is of spectral 

type O9.7IIIe with Teff  ≈ 22 500 K. The other parameters are: LX ≈ 6.5×1029 W, Ṁ = 6×10–10 M⊙ yr–1, D ≈ 260 R⊙ ≈ 13.5 Req , 

racc/H ~ 104, TX ≥ 60 000 K. 

reason is that the disk radius has to be smaller than the periastron distance. Resonant truncation works for Be disks 

in misaligned systems (in the systems where the orbital plane is inclined from the disk plane) as well. 

We model the hydrodynamic situation of co-rotating aligned Be/X-ray binary systems with low eccentricity. The 

binary separation D thus constraints the outer disk radius as the disk truncation radius rtrunc. We use the Bondi-

Hoyle-Littleton (BHL) approximation where NS accretes within the range of accretion radius (cf. Krtička et al. 

2015) 

𝑟acc =
2𝐺𝑀𝑋

𝑉rel
2 , 

where 𝑀𝑋 is the mass of NS and 𝑉rel
2 = 𝑉𝑟

2 + 𝑉𝜙
2. If the accretion radius 𝑟acc > 𝐻 (where the disk vertical scale-

height 𝐻 = 𝑎 Ω⁄ , that is, the ratio of the sound speed and the local disk angular velocity), NS accretes all the disk 

material within racc. The X-ray luminosity in this case is 

𝐿𝑋 =
𝐺𝑀𝑋�̇�

𝑅𝑋

, 

where �̇� is the accretion rate and 𝑅𝑋 is the NS radius. 

 

Using the above principles, we calculated the density and temperature structure of the sample of Be/X-ray binaries 

with 𝑟acc > 𝐻 and �̇� ∼ 10−9-10−13𝑀⊙yr−1, listed in the following Table (see Krtička et al. 2015): 

 

Binary Spectral Type 𝑇eff[103K] 𝑅★[𝑅⊙] 𝐷[𝑅⊙] 𝐿𝑋[W] 

 V831 Cas B1V 24 

 
4.5 480 2×1028 

 IGR J16393-4643 BV 
24 

 

4.5 

 

18.8 

 
4×1028 

 V615 Cas B0Ve 
26 

 

4.9 

 

43 

 
5×1028 

 HD 259440 B0Vpe 
30 

 

5.8 

 

510 

 
1.2×1026 

 HD 215770 O9.7IIIe 
28 

 

12.8 

 

260 

 
6.5×1029 

 CPD-632495 B2Ve 
34 

 

7.0 

 

177 

 
3.5×1027 

GRO J1008-57 B0eV 30 5.8 390 3×1030 
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We show two examples of our models in Fig. 5 that illustrates the 2D temperature profile of the disk in radial-

vertical plane, in the direction of aligned co-rotating NS. For the self-consistent density vs. temperature calculation, 

we took into account the NS gravity and X-ray heating of the ambient disk gas. We denote TX the maximum disk 

gas temperature in the proximity of NS. 

Conclusions 

Be disks around single stars exhibit a long term photometric variability due to the disk growth and decay whose 

amplitude may reach up to 1 magnitude. The presence of a companion adds interesting complexities on the 

dynamics of Be decretion disks and their host systems. In the binary systems with low eccentricity the disk 

truncation begins approximately at 3:1 resonance radius while in more eccentric systems the truncation radius even 

decreases (Okazaki & Negueruela 2001). In Be/X-ray binaries also the accretion rate increases with eccentricity. 

Highly eccentric coplanar systems are believed to be the producers of Type I X-ray outbursts that occur during the 

periastron passage of the compact companion. The Mechanism(s) for Type II outbursts are uncertain; they are still 

one of the unresolved mysteries of Be stars study (Okazaki et al. 2013). 
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Abstract: Neural networks recently prove to be a very powerful tool in the field of machine learning and artificial 

intelligence. Neural networks operation principle is non-algorithmic and thus can be used for some tasks better 

suited for a human’s mind rather than traditional computer algorithms. One such task is a recognition of stars 

within astronomical images. However, an algorithmic recognition already reached a very good quality and requires 

significantly less computational resources and, therefore, the motivation to replace algorithms with neural 

networks is low in this case. Possibly more interesting application is a recognition of variable stars in a set of time-

based light curves of all stars within a field of view, for which neural networks provide better results compared to 

algorithm-based methods. At the same time, computational time of the neural network detection is comparable to 

the algorithm-based ones. 

 

Introduction 

Neural networks now often surpass humans in tasks which were traditionally considered to be solvable only by 

human intellect (e.g., the board game “Go”). Even though the first experiments with artificial neurons and neural 

networks closely followed the invention of practically usable computers, enormous demand for computational 

resources and a necessity to “manually” configure network parameters by human programmers prohibited the 

usage of neural networks in real applications. 

The first step to the current boom of neural networks was the introduction of the backpropagation algorithm for 

automatic learning (determining of network parameters) from learning data set (Werbos 1975). 

Still, achieving convincing results demanded a development of computational devices capable of handling a very 

large amount of calculations performed during neural network learning and inferring. Such devices proved to be 

graphical cards (GPU – Graphics Processing Unit), which evolved from simple rasterization accelerators to 

generally programmable vector processors, equipped with hundreds or even thousands floating point calculation 

units (Krizhevsky at al., 2012). With a rapid increase of neural network-based applications, more specialized 

hardware is introduced into commonly used computers – CPUs (Central Processing Units) are enhanced with 

wider vector instructions and new neural network optimized data types, GPUs are equipped with tensor processors 

and even specialized neural network handling co-processors are introduced. 

Principles of neural networks are described in many widely available publications (e.g., Nielsen 2015) and their 

description is beyond the scope of this article. 

Recognizing stars in astronomical images 

Finding stars in astronomical images seems easy for humans and virtually everybody is capable to mark stars even 

without any previous experience or special training. With some experience, humans can recognize stars with very 

high fidelity and distinguish them from non-star objects, for instance, background galaxies or various artifacts 

(traces of particles passing through the silicone detector, etc.). This makes the star recognition a good candidate 

for a neural network application. 

Experimental neural network for star recognition is implemented as a part of the Astrometry tool of the SIPS 

(Scientific Image Processing System) software package (Cagaš 2017). 

Simple 3-layer neural network is organized as follows: 

 First (input) layer of 961 neurons represents a matrix of 31×31 pixels. 

 Second layer consists of 240 neurons. 

 Third (output) layer contains only one output neuron. Its value in the range 0.0 to 1.0 represents the 

probability a star is contained within the input subframe. 

Input neurons are fed with pixels of the particular image sub-frame. While image pixels are typically in the integer 

range 0 to 65535 (astronomical cameras often provide images with 16-bit dynamic range), all input pixels are 
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scaled to span range from -1.0 to 1.0 (the used neural network handles all calculation in single-precision floating 

point numbers). 

The number of neurons in the middle layer is chosen according to neural network response. The ability to recognize 

stars decreases with lowering the number of neurons in the middle layer (networks with 40 and 100 neurons in the 

middle layer were tested). On the other hand, increasing of the number of the middle layer neurons does not bring 

any measurable increase in the network reliability. All neurons in the network use sigmoid activation function 

(Nielsen 2015). 

The crucial point in any neural network application is the ability to gather good learning set. Luckily, current 

algorithmic methods are reliable enough to provide thousands or tens thousands of stars within single image, 

depending on image resolution and position of the field of view on the sky. Training of the neural network needs 

both positive samples (this is a star) and negative samples (there is no star in this area). Algorithmically found star 

positions are, therefore, complemented with the same number of random patches within the image, in which no 

star is detected. 

Neural network is trained on real astronomical images, containing ~50000 detected stars. Including the same 

number of empty patches, representing non-star areas, the learning set contained ~100000 samples. Learning is 

performed using stochastic gradient descent (Nielsen 2015) with each mini-batch containing 10 samples. 50 

iterations are performed to achieve 98.5% reliability in recognition stars from the learning data set. 

The trained neural network is surprisingly efficient in recognition of stars. Still, using of neural network for this 

task did not prove to be a better way compared to algorithms from the following reasons: 

 Neural network can find more stars compared to algorithm. The reason is mainly the normalization of the 

network input bitmap – this efficiently equalizes weak and bright stars. However, the algorithm can be 

also modified to find weaker stars simply by lowering the threshold, expressed in terms of the standard 

deviation of the examined aperture. Still, finding more (weaker) stars is not desirable, because their S/N 

ratio is too low for extracting any valuable information. Their inclusion in the set, therefore, only increases 

the computational cost of the image processing. 

 Neural network cannot properly distinguish very close stars, because the network response to weak stars 

close to bright ones is low. However, it is worth noting that the same problem affects the algorithms also, 

because the bright stars within tested aperture strongly increases the aperture standard deviation and 

pixels belonging to nearby weak star do not pass the threshold. Therefore, algorithmic search uses two 

apertures in dense fields. The first pass is using a small aperture to find weak stars and the subsequent 

pass with greater aperture detects bright stars omitted during the first pass. Training two neural networks, 

one with smaller input bitmap and another one with greater bitmap would probably result in the same 

reliability in finding close stars. This approach was not tested because of the reasons mentioned below. 

 The main problem of the neural network used to find stars is a speed. Neural network results are not 

expressed, for example, as coordinates of the found star centroid. Instead, the network provides 

probability of star detection over every pixel in the image, i.e., a star probability map. Then, it is again 

necessary to algorithmically pass through the probability map to find points of the greatest probability, 

calculate centroids, and create data structures describing stars found on the image. So, inherent 

computational complexity of the neural network, combined with the overhead necessary to create data 

structures usable by other algorithms, results into very low efficiency of neural network in this task. 

Let us note that the neural network used in this example is implemented using CPU only with no GPU 

accelerated calculations. However, the code detects the level of the vector instructions supported by the 

used CPU and utilizes SSE3, AVX, or AVX2 instruction set to speed up calculations. If the CPU does 

not support at last SSE3 instruction set, the code falls back to using scalar instructions. All tests mentioned 

in this article use the AMD Ryzen 7 1700X CPU supporting the AVX2 instruction set. 

There certainly is a room for improvement of neural network execution speed, probably more than by an 

order of magnitude. Unfortunately, the algorithmic method is many orders of magnitude faster, depending 

on the particular image, so a neural network probably cannot match the speed of algorithm. There is no 

need to improve and speed up the processing based on neural networks.  
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Figure 1: Comparison of a portion of the field of view with stars found by SIPS algorithmic method (left) with the same field 

with stars found using a neural network. Notice that the neural network finds more stars within the field of view while misses 

some weak stars close to bright ones. Possible modifications of algorithm to find more stars or neural network to find weak 

stars close to bright ones are discussed above. 

Using neural networks to recognize variable stars 

Recognizing typical shapes of light curves of variable stars is another task, in which a human brain excels, even 

though some level of previous experience and knowledge is needed. If an image of a certain field contains tens or 

possibly hundreds of thousands of stars, software can generate the same number of light curves. Manually 

inspecting tens of thousands of light curves to check whether some light curve could indicate new variable star is 

time consuming, exhausting, and not much reliable, as the human’s ability to keep focus and concentrate on every 

single light curve is limited. 

Certain statistical methods were developed to distinguish brightness changes of variable stars from other steady 

stars within the field of view. Unfortunately, statistical methods struggle in wide and dense fields with a lot of 

stars, many of which are angularly close and mutually contaminate photometry apertures. Also, matching 

individual stars on such series can fail for weak stars, which are not reliably detected in all images of the series (as 

observing conditions change, weak star may not surpass detection threshold on some images, etc.). What is more, 

number of various artifacts, exhibiting very high statistical deviations compared to regular steady stars and thus 

very high “variability indexes”, typically exceeds number of real variable stars by an order of magnitude in such 

wide, dense fields. 

Neural network results are compared with two such methods in this article. 

 The “RMS method” calculates standard deviation of the time series for every star. For steady stars, the 

standard deviation increases with magnitude. Variable stars (and unfortunately also artifacts) show 

standard deviation above the average of steady stars of certain magnitude. Higher than average RMS of 

time series indicates possible variability. 

 The “VDI method” (Variability Detection Index – name chosen in SIPS to denote this method) is based 

on a method originally proposed to detect the Blazhko effect of RR Lyrae variable stars (Jaimes 2013). 

In SIPS, the VDI method is slightly modified to better indicate fast physical variable stars, which light 

curve crosses the mean brightness many times during a single observation. 

Simple neural networks have fixed structure. The neural network designed here for the detection of a star 

variability has three layers. All neurons use the sigmoid activation function. 

 First (input) layer of 512 neurons represents isochronous brightness points of the light curve. 

 Second layer consists of 256 neurons. 

 Third (output) layer contains only one output neuron. Its value in the range 0.0 to 1.0 represents the 

probability the input light curve belongs to variable star. 
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The 512-neuron input layer is chosen as this number exceeds typical number of brightness points recorded over a 

course of an observation night. Because the neural network requires exactly 512 input points and these points must 

be isochronous, the input light curve must be pre-processed (interpolated). Also, possible gaps in the input light 

curve (interruptions in observation, caused, e.g., by clouds, GEM pier swap, etc.) must be interpolated with 

equidistant brightness points. The brightness points are also scaled to fit range from -1.0 to 1.0 for each input light 

curve. 

   

Figure 2: Example of real light curve of randomly chosen star (left panel). Certain portion of the light curve is missing, because 

the star saturated the detector and photometry software removed these brightness measurements as unreliable. The same light 

curve interpolated to 512 equidistant brightness points and scaled to fit the range from -1.0 to 1.0 (right panel). 

Let us note that the interpolation of gaps may lead to false positives in some special cases. If both the last point 

just before the gap and the first point after the gap are below the average, interpolation fills the gap with points 

below the mean value and thus creates a false minimum, which can result in high output the neural network. 

Training of neural network to recognize variable stars 

As it is mentioned above, obtaining good training set is crucial for every neural network application. The empirical 

rule states that the learning set should contain at last thousands of individual samples. 

SIPS Photometry tool is extended to allow creation of a variable star detection learning set. The learning set is a 

simple text file, with each line containing desired output (1 for variable star, 0 for non-variable star) followed by 

512 equidistant brightness points, scaled to range from -1.0 to 1.0. 

After each observing night is processed with SIPS Photometry, the tool allows to add any chosen light curve to 

learning set as variable or non-variable. The current learning set presented here contains 2165 variable star samples 

and 2079 non-variable star samples from approx. 10 fields monitored at BSObservatory.4 

It is worth mentioning that the learning set is created iteratively. Neural network is trained on a smaller set, then 

the learning set is extended especially with non-variable stars (typically artifacts), to which the network assigned 

high variability index. This allows to subsequently train the network to limit recognition of particular artifacts as 

variable stars and to improve reliability. Still, such simple network cannot completely avoid false detection. 

The network was trained using the stochastic gradient descent with mini-batch size of 10 samples for 50 iterations. 

The achieved reliability of proper recognizing of 4000+ light curves, contained in the learning set, as variable or 

non-variable was 98.8%. 

Comparison of statistical and neural network methods of variable star detection 

The first example shows response from all three compared methods to newly found variable star UCAC4 554-

108577 (α = 20h 19m 45.27s, δ = +20° 40’ 20.2”) in a field in Sagitta. The star exhibits V-shaped minima only 

~60 mmag deep, which makes its detection by statistical methods particularly difficult. 

                                                           

4 http://www.bsobservatory.org/ 
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Figure 3: Light curve of the newly found Algol-type variable star UCAC4 554-108577, captured on October 31st, 2018. 

The position of the above-mentioned star is highlighted by a red circle in the following charts. Please note that the 

SIPS Photometry tool displays already known variable stars with red dots, comparison stars with green dots and 

all other stars with gray dots. 

 

 

Figure 4: Response of the “RMS” method to star on Figure 3. The red circle very close to zero value shows the very low 

response, not allowing to recognize this star as variable. Also note the high number of gray dots at the upper-right portion of 

chart – all these dots are artifacts with very high RMS index response. Already known variable stars are marked with red dots. 

 

Figure 5: Response of the “VDI” method to star on Figure 3. Despite the VDI shows much better results compared to RMS 

method (fewer artifacts and more actual variable stars have high response), the particular star response is still very close to 

zero, so it would probably remain undetected. 
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Figure 6: Neural network response to star on Figure 3 is 1.00 and clearly indicates this is a new variable star. 

The second example shows response of compared methods to a very shallow (only ~20 mmag) minimum of the 

star UCAC4 552-114582 (α = 20h 17m 57.49s, δ = +20° 20’ 50.7”) in the filed in Sagitta, mimicking possible 

exoplanet transit (further observations proved this is only a secondary minimum of Algol-type variable star). 

 

Figure 7: Light curve of the secondary minimum of a newly found Algol-type variable star UCAC4 552-114582, captured on 

October 10th, 2018. 

 

Figure 8: “RMS” method response to star on Figure 7 is among the lowest possible in this set. 



OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

56 

 

Figure 9: “VDI” method response to star on Figure 7 is also virtually zero. 

 

Figure 10: Neural network response to star on Figure 7 is 0.98, which allowed detection of this star as variable. 

Conclusion 

Neural network proves to be highly effective mean of detecting of new variable stars. Despite the neural network 

generate false positives, its reliability is much higher compared to statistical methods. 
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Abstract: Progenitors of core-collapse supernovae (SN) lose a significant fraction of their mass before explosion 

via stellar winds, circumstellar disks, or bipolar lobes. The kinetic energy of the SN ejecta may be partially 

converted into radiation, giving rise to luminous transients comparable to the luminosities of the actual SN. We 

study the hydrodynamics of collisions between expanding SN ejecta and circumstellar medium (CSM). We 

calculate the rate of deceleration as well as the behavior of density, pressure, expansion velocity and temperature 

structure in the interaction zone with various geometrical configurations and initial density structures of CSM. The 

theoretical conclusions of our models will help to improve the determination of SN progenitors properties and 

CSM density distribution. 

 

Introduction 

Explosions of supernovae (SN) are the well-observable and one of the most brilliant events within the whole 

universe. They also serve as the prominent source of data for studying the enormous range of physics. We 

investigate the interaction of the SN with the surrounding circumstellar matter (CSM) which may provide the 

fundamental information about the progenitor type and its pre-explosion mass loss. Although most of the type II 

SN progenitors are red supergiants (RSG) stars (Smartt 2009, Pejcha & Prieto 2015), there were also detected a 

few hydrogen-rich massive blue supergiant (BSG) progenitors of type II SNe (Vanbeveren et al. 2013). In this 

point, many studies found the interaction of SN with CSM may significantly boost the observed luminosity, and 

so the super-luminous SNe are believed to explode inside a dense (mostly anisotropic) circumstellar matter (e.g., 

Smith 2017). After the SN shock reaches the progenitor surface, it continues to propagate through CSM. If the 

CSM is optically thick, the radiation is absorbed, and the energy accumulates in the region of the shock (Svirski 

et al. 2012). After the CSM becomes optically thin, this energy releases as an overluminous shock breakout 

(comparing to SN without CSM), which is represented by the characteristic slowly increasing light curve (e.g., 

Chevalier & Irwin 2011). 

Expansion of SN envelope 

We perform the models of the interaction of expanding SN envelope with CSM including the dense equatorial 

disk. We use our 2D hydrodynamic code (Kurfürst et al. 2018) for the calculation. We assume the stellar 

parameters corresponding to a typical RSG star: 𝑀★ = 15𝑀⊙, 𝑅★ = 1012m, where the pre-explosion mass loss 

rate �̇� = 10−6𝑀⊙yr−1 (see the left panel of Fig. 1) or to a BSG star: 𝑀★ = 45𝑀⊙, 𝑅★ = 80𝑅⊙, where the pre-

explosion mass loss rate �̇� = 10−2𝑀⊙yr−1 (the right panel of Fig. 1, with Figs. 2 and 3). In both the models the 

explosion energy 𝐸 = 1044J. We initiate the simulation as the “thermal bomb” within the radius 0.1𝑅★ inside of 

which we set the initial photon gas pressure as 𝑝ini = 𝐸 (3𝑉)⁄ , where 𝑉 is the volume of the "bomb" region. We 

pre-calculate the initial stellar internal density and temperature profiles outside the “thermal bomb” region using 

the MESA models. The early phase of SN envelope expansion can be described in terms of a self-similar adiabatic 

process, using the equation of state of an isothermal ideal gas (Nadezhin 1985, Chevalier & Soker 1989). 

We neglect in our models the effects of radiative cooling, magnetic fields, or the energy input from the compact 

remnant. The enormous SN energy strongly overlaps most of these effects, and so their influence on the dynamics 

of the problem is minimal (Truelove & McKee 1999), or are connected only with a specific situation or remnant 

type (like magnetars, see, e.g., Metzger et al. 2017). 
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Circumstellar medium 

We consider a spherically symmetric CSM with an axisymmetric equatorial circumstellar disk. The initial density 

profile of a spherically symmetric CSM (which may be created by the stellar wind of the progenitor) is 𝜌 ∝ 𝑟−2 

while its initial base density 𝜌0 (the density of CSM near the surface of the star) corresponds to stars’ pre-explosion 

mass loss rate �̇�. Vertical density profile of the disk is Gaussian (e.g., Pringle 1981), 

𝜌disk(𝑟, 𝑧) = 𝜌eq,disk(𝑟)e
−

𝐺𝑀★

𝑎2𝑟3
𝑧2

2 , 

where 𝜌eq,disk is the disk midplane density that radially decreases as 𝜌eq,disk(𝑟) ≈ 𝜌0,disk(𝑅★ 𝑟⁄ )7 2⁄  (e.g., Okazaki 

2001), 𝑎2 ∝ 𝑇disk ∝ 𝑝disk 𝜌disk⁄  is the (squared) isothermal speed of sound, 𝐺 is the gravitational constant, and 𝑧 is 

the “vertical” distance from the disk midplane. The disk equatorial base density 𝜌0,disk roughly corresponds to the 

spherically symmetric CSM. We assume the constant disk temperature 𝑇disk as corresponding to the stellar pre-

explosion effective temperature that may be approximately 3500K for RSG and 25000K in case of BSG star. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Left panel - 2D density structure of the interaction of SN (RSG progenitor) with perfectly spherically symmetric 

CSM at 𝑡 = 30d. We describe the stellar and CSM parameters in the text. Right panel - density structure of interaction of SN 

(BSG progenitor) with asymmetric CSM that includes the dense circumstellar disk, at the time 𝑡 = 125h. Contours mark the 

densities 𝜌 = 10−7, 10−6, 10−5,and10−4kgm−3. Characteristic 1D sections of the model are in Figs. 5 and 6. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Left panel - 2D structure of expansion velocity of the model described in (right panel of) Fig. 1 at the same time. 

Contours mark the velocities 2500, 3000, 3500, and 4000 kms−1. Right panel - 2D temperature structure of the model 

described in (right panel of) Fig. 1 at the same time. Contours mark the temperatures 8 × 104, 105, and 5 × 105K. 
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Figure 3: Panel A - 1D slices of the density in the equatorial (solid line, x-coordinate) and polar (dashed line, z-coordinate) 

direction of the model described in Figs. (right panel of) 1 and 2. Panel B - 1D slices of the velocity in the equatorial (solid 

line, x-coordinate) and polar (dashed line, z-coordinate) direction of the same model as in Panel A. Panel C – corresponding 

1D slices of the temperature. Panel D – corresponding 1D slices of the specific entropy. 

Numerical models 

The left panel of Fig. 1 illustrates the 2D snapshot of the density profile (RSG progenitor) of the SN - CSM 

interaction for comparison. We show in the right panel of Fig. 1 the 2D snapshot of the density profile (BSG 

progenitor) of the SN - CSM interaction. We show in Fig. 2 the corresponding snapshots of the radial velocity and 

the temperature in the time 𝒕 ≈ 𝟏𝟖𝟎h since shock breakout (regarding the shock emergence from the surface of 

the progenitor star), up to the radius 𝟓𝟎𝑹★. We performed the numerical calculations on the 2D grid with 2400 

radial vs. 480 azimuthal grid cell intervals. We can distinguish the details of the selected quantities, especially the 

remarkable wings of over-dense and over-heated gas near the shear zone between the disk and the spherically 

symmetric CSM as well as the developing of Kelvin-Helmholtz and Rayleigh-Taylor instabilities. We also 

demonstrate the 1D equatorial and polar slices of the density and expansion velocity (panels A and B of Fig. 3) as 

well as the temperature and specific entropy (panels C and D of Fig. 3) that correspond to the instant time shown 

in Figs. 1 and 2. We quantify some of the particular values of the described quantities in the captions enclosed to 

the corresponding figures. 

Summary and future work 

The model demonstrates the aspherical expansion of the SN ejecta where the material preferably expands to the 

area outside the dense equatorial disk. In case of the disk initial base density values, such disk may effectively 

decelerate or even block the SN expansion with significant over-dense and over-heated regions near the SN-disk 

interaction zones. The density and temperature gradients also decrease with time, showing the steeper slopes for 

lower pre-explosion mass loss rates. The model also indicates the development of Kelvin-Helmholtz as well as 

Rayleigh-Taylor instabilities in the zone of shear between the disk and non-disk CSM where the flow of matter is 

re-directed to the regions of lower density, forming thus the over-dense gaseous wings along the disk - other CSM 

interaction zone. 

We plan to calculate the SN light curves powered by the excess of the thermal energy caused by the effects of SN-

CSM interaction as the following step. The comparison of the directionally split 2D light curve models with 

observations may significantly improve our understanding of the geometry and the details of the studied processes. 
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Abstract: We developed software for detection of variable stars using CCD photometry. It works with "varfind 

data" that could be exported after processing CCD frames using C-Munipack. Our goals were maximum 

automation and support of large fields of view with thousands of stars. The program chooses the comparison stars 

automatically, processes all time series using multiple comparison stars to get final light curves. Different filtering 

algorithms are used to reduce the impact of outlying points, imaging artifacts and low quality CCD frames without 

careful manual time series reduction. We implemented various variable detection indices and plotting two-channel 

diagrams of selected pair of indices and mean brightness of the star to distinguish variables from constant stars for 

further manual check of outlying points as variable candidates. 

 

Introduction 

An indisputable advantage of the CCD photometry vs. earlier technologies is that CCD observations allow us to 

measure brightness of thousands stars from the same field of view simultaneously. We may learn from the 

experience, that there is at least one more known variable star within 10-20 arc minutes of any primary object of 

investigation and sometimes we may be lucky and discover an unknown one. Over the years of using CCD 

photometry different techniques for detect variable stars were developed. It has improved in recent years also due 

to intensified interest to discovery of extrasolar planets using transit photometry. 

One of the simplest algorithms is based on the dependency of noise level to mean brightness of the star. According 

to the statistics, if all stars were constant, the dependence of standard deviation of brightness vs. mean brightness 

of an object would have a parabola-like shape. A variable star obviously should have larger standard deviation 

than a constant object of the same mean brightness. Particularly, this algorithm is implemented in the C-Munipack 

software package (Motl, 2011). It requires manual review of all suspected variable stars' light curves to approve 

or reject the candidate. 

However, this solution is sensitive to outlying points and sometimes fails if the data is noisy due to various reasons. 

In this case at the dependence of standard deviation on the mean brightness we may see variable stars in a heap of 

points corresponding to constant stars, and many constant stars with lack of data or outlying points will be located 

above the curve like they are variables. One of the reasons of this software development was the necessity of the 

solution capable to analyze few experimental CCD series with more then 10000 stars in each field of view for the 

purpose of searching unknown short period variables. 

This paper contains a brief description of Flexible Variable Star Extractor software (hereafter named FVSE) and 

methods used for detection of variable stars.  

Algorithms 

We used the basic idea of classical analysis of standard deviation on the mean brightness dependence. Usually this 

chart is based on the differential magnitudes and user can make a decision if a star is variable or not. This way we 

discovered eclipsing binary 2MASS J18024395 + 4003309 (Andronov & Breus & Zola, 2012, Andronov et al., 

2015). However, using of the artificial comparison star instead of the control star makes possible to increase 

accuracy estimates by a factor of 1.3-2.1 times for clear and cloudy nights, respectively (Kim & Andronov, 2004). 

The algorithm of the „mean weighted“ comparison star for the photometry using CCD-cameras was described by 

Andronov & Baklanov (2004) and implemented in MCV. Obviously, using final magnitudes obtained by this 

method instead of differential ones for standard deviation calculation allows to decrease the noise and influence 

of the scatter of some particular comparison star on the data. It is computationally more expensive so it takes 

relatively more time to process the same data set, but it does not require modern PCs even for large number of 

stars and long time series. 

During the process of developing it turned out that standard deviation does not distinguish variables significantly 

in case of big number of stars, so we decided to implement also other indices. Recently Sokolovsky et al. (2017) 

analyzed 18 statistical characteristics quantifying scatter and/or correlation between brightness measurements and 

mailto:bvv_2004@ua.fm
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compared their performance in identifying variable objects using time series obtained with different class 

telescopes. We choose Median absolute deviation, chi-squared, Robust median statistic, Normalized excess 

variance and von Neumann ratio based on performance and least computational expenses. 

Implementation 

FVSE reads magnitudes and error estimates from the “varfind” data exported from C-Munipack. The weighted 

mean magnitude and standard variance are calculated for every star in the data set where weight of each 

observation is inversely proportional to the square of the individual observation error estimates. 

The selection of comparison stars may be done manually or automatically. FVSE chooses the comparison stars 

using experimentally derived criteria, which could be adjusted at the settings tab. First the star should not be close 

to the frame border because these data usually has lower quality (default value: 50 pixels). The comparison star 

should be measured at least at 70% of CCD frames of the time series. Its standard variance must not exceed the 

value of the mean variance of all stars multiplied by the factor of 1.5. This allows us to select less noisy stars as 

the comparisons. The total number of selected comparison stars is limited (default: 1000). Since the stars are 

ordered from bright to faint in varfind data, this cuts the faintest objects that usually do not fit one of previously 

mentioned criteria. For some data sets it's necessary to limit the number of comparison stars to traditional 10-15. 

Following the algorithm of the „mean weighted“ comparison star, weights of selected comparison stars are 

determined and the final magnitudes of all stars are calculated using the obtained artificial comparison star and the 

known magnitude of selected comparison star (entered by user). Since this moment, user could view light curves 

of any star and export it to the text file. Here the raw instrumental magnitudes is presented with red points, final 

light curve with green points (see Fig. 1). 

 

Figure 1: A sample light curve of the EW-type system V442 Cam during one night of observations (Breus et al., 2010). Large 

scatter at the beginning corresponds to the partially cloudy weather conditions that changed to clear sky later. The scatter of 

the final light curve (green) is also larger, but the influence of clouds is reduced using artificial comparison star method. 

„Search Variables” menu item runs the calculation of variability detection indices used to distinguish variable stars 

from constant ones. We determine standard deviation  , chi-squared 
2 , Median absolute deviation, Robust 

median statistic, Normalized excess variance and von Neumann ratio. The chi-squared value is used in the form 

of square root and von Neumann ratio is calculated in inversed and simplified way. The detailed description of 

software and implementation of these algorithms was presented by Breus (2017). 

User can plot any pair of standard deviation, mean brightness and these variability detection indices at the diagram. 

In any case, most of constant stars will form a group of points, and any outlying point may correspond to a variable 

star. The decision whether an object is a variable or not is left to the user who can view or save a light curve of 

any star in one click. 
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On this step it’s necessary to mark the viewed star as variable or false alarm using context menu (see Fig. 2), this 

way it does not necessary to remember all objects in large field of view contrary to other solutions. At any step it 

is possible to remove some outlying points or even whole CCD frames from the data set and re-calculate the light 

curves and variability indices. 

 

Figure 2: Graphical user interface of FVSE. Collage shows the context menu which may be called clicking on the star at the 

image or clicking the point at the diagram. It’s possible to view the light curve of selected star, mark it as variable or false 

alarm. 

It’s possible to calculate periodograms of all stars in the data set. Originally there was an idea to use some 

parameters of the periodogram as one more variability detection index, but it has not yet been implemented. For 

this purpose, the Lafler – Kinman - Kholopov method was used (Lafler & Kinman, 1965, Andronov & Chinarova, 

1997) and the implementation was borrowed from Variable Stars Calculator software (Breus, 2003, Breus, 2007). 

Current version has hardcoded limits of the image size (5120x5120 pixels), 100000 points in the time series and 

40000 stars in the field of view (may be changed upon request). This was done to increase performance in avoiding 

using dynamic arrays. These values are enough for most of the data and setting higher limits will raise RAM 

requirements. 

FVSE is available as a freeware5. 

  

                                                           

5 http://uavso.org.ua/varsearch/ 

http://uavso.org.ua/varsearch/
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Figure 3: Samples of two-channel diagrams for the field of view of the intermediate polar MU Cam: dependence of MAD vs. 

chi-squared, NEV vs. standard deviation, chi-squared on the mean magnitude and NAV vs. mean magnitude. Green points 

correspond to MU Cam, V442 Cam and V440 Cam. 

Results and Conclusion 

We improved one of the most popular algorithms for variable stars detection in order to decrease the influence of 

noisy data and outlying points on the chart. “Flexible Variable Star Extractor” software was developed. It works 

with the data exported from C-Munipack, chooses the comparison stars automatically and processes all time series. 

We implemented different variability detection indices. It turned out that some variability detection indices are 

effective to distinguish a star of particular variability type; other indices do not show significant difference for 

variable and constant stars, at the same time for another types of variability the situation is opposite. Innovative 

solution of viewing two-channel diagrams of any pair of parameters allows marking variable stars of all types by 

viewing 2 or 3 diagrams if the first one is not sufficient. 

This style significantly improved the speed of semi-automatic search for variable stars in generic field of view of 

any size and time series of any duration.  

Software was developed in the framework of the Ukrainian Virtual Observatory project (Vavilova et al., 2012). 

This program will be applied to the observations obtained within the “Inter-Longitude Astronomy” (Andronov et 

al., 2017) and "AstroInformatics" campaigns (Vavilova et al., 2017). 

References 

Andronov I. L., Baklanov A. V., 2004, Astron. School Rep., 5, 264, 2004AstSR...5..264A 

Andronov I. L., Chinarova L. L., 1997, KNFT, 13, 67, 1997KFNT...13f..67A 

Andronov I. L., Breus V. V., Zola, S., 2012, OAP, 25, 145, 2012OAP....25..150A 

Andronov I.L. et al., 2015, JASS, 32, 127, 2015JASS...32..127A 

Andronov I.L. et al., 2017, ASPC, 511, 43, 2017ASPC..511...43A 

Breus V., 2003, OAP, 16, 24, 2003OAP....16...24B 

Breus V., 2007, OAP, 20, 32, 2007OAP....20...32B 

Breus V. V., Andronov I. L., Dubovsky P. A., Hegedus T., Kudzej I., Petrik K., 2010, OAP, 23, 19, 

2010OAP....23...19B 

Breus V., 2017, AASP, 7, 3, 2017AASP....7....3B 

Kim Y., Andronov I. L., Jeon Y., 2004, JASS, 21, 191, 2004JASS...21..191K 

Lafler J., Kinman T., 1965, Ap.J.Suppl., 11, 216, 1965ApJS...11..216L 

Motl D., 2011, C-Munipack project, http://c-munipack.sourceforge.net/ 

Sokolovsky K. V., Gavras P., Karampelas A. et al., 2017, MNRAS, 464, 1, 274, 2017MNRAS.464..274S 

Vavilova I.B., et al., 2012, KPCB, 28, 85, 2012KPCB...28...85V 

Vavilova I.B., Yatskiv Ya.S., Pakuliak L.K., Andronov I.L., Andruk V.M., Protsyuk Yu.I., Savanevych V.E., 

Savchenko D. O., Savchenko V.S., 2017, IAU Symposium, 325,  361, 2017IAUS..325..361V 

http://adsabs.harvard.edu/abs/2004AstSR...5..264A
http://adsabs.harvard.edu/abs/1997KFNT...13f..67A
http://adsabs.harvard.edu/abs/2012OAP....25..150A
http://adsabs.harvard.edu/abs/2015JASS...32..127A
http://adsabs.harvard.edu/abs/2017ASPC..511...43A
http://adsabs.harvard.edu/abs/2003OAP....16...24B
http://adsabs.harvard.edu/abs/2007OAP....20...32B
http://adsabs.harvard.edu/abs/2010OAP....23...19B
http://adsabs.harvard.edu/abs/2017AASP....7....3B
http://adsabs.harvard.edu/abs/2004JASS...21..191K
http://adsabs.harvard.edu/abs/1965ApJS...11..216L
http://c-munipack.sourceforge.net/
http://adsabs.harvard.edu/abs/2017MNRAS.464..274S
http://adsabs.harvard.edu/abs/2012KPCB...28...85V
http://adsabs.harvard.edu/abs/2017IAUS..325..361V


OPEN EUROPEAN JOURNAL ON VARIABLE STARS 

March 2019 http://var.astro.cz/oejv ISSN 1801-5964 

 

65 

MAVKA: Software for statistically optimal determination of extrema 

KATERYNA D. ANDRYCH1,2, IVAN L. ANDRONOV2  

(1) Department of Theoretical Physics and Astronomy, Odessa I.I.Mechnikov National University, 2 Dvoryanskaya St., 

Odessa 65026, Ukraine, katyaandrich@gmail.com 

(2) Department “Mathematics, Physics and Astronomy”, Odessa National Maritime University, Mechnikova, 34, 65029 

Odessa, Ukraine, tt_ari@ukr.net 

Abstract: We introduce the program MAVKA for determination of characteristics of extrema using observations 

in adjacent data intervals, with intended applications to variable stars, but it may be used for signals of arbitrary 

nature. We have used a dozen of basic functions, some of them use the interval near extremum without splitting 

the interval (algebraic polynomial in general form, "Symmetrical" algebraic polynomial using only even degrees 

of time (phase) deviation from the position of symmetry argument), others split the interval into 2 subintervals (a 

Taylor series of the “New Algol Variable”, “the function of Prof. Z. Mikulášek”), or even 3 parts ("Asymptotic 

Parabola", “Wall-Supported Parabola”, “Wall-Supported Line”, “Wall-Supported Asymptotic Parabola“, 

“Parabolic Spline of defect 1”). The variety of methods allows to choose the “best” (statistically optimal) 

approximation for a given data sample. As the criterion, we use the accuracy of determination of the extremum. 

For all parameters, the statistical errors are determined. The methods are illustrated by applications to observations 

of pulsating and eclipsing variable stars, as well as to the exoplanet transits. They are used for the international 

campaigns "Inter-Longitude Astronomy", "Virtual Observatory” and “AstroInformatics”. The program may be 

used for studies of individual objects, also using ground-based (NSVS, ASAS, WASP, CRTS et al.) and space 

(GAIA, KEPLER, HIPPARCOS/TYCHO, WISE et al.) surveys. 

 

Introduction 

Variable stars of different types are the most important sources of information about structure of stars and their 

evolution. Thus they are extensely observed in many countries. 

For some types, like eclipsing or pulsating variables, there are many short time series of observations, which do 

not cover the whole photometrical period of the object. Typically this is due to a separation of the tasks to analyse 

precise multi-colour observations to determine parameters and get only one parameter from the incomplete light 

curve the “Time of Minimum/Maximum” (ToM) (cf. Tsesevich, 1970, 1971). The moments of extrema (also 

referred as “minima/maxima timings”) are used for the “O-C” studies of the period changes due to mass transfer 

and/or presence of a third/fourth body. The largest compilations were published as a paper monograph by Kreiner 

et al. (2001), whereas further catalogs are regularly improved and are accessible on-line. Among the most famous 

are the “O-C gate” (project BRNO, Czech Astronomical Society & Masaryk University) with an on-line possibility 

to determine the ToM (Brát et al., 2012), and the AAVSO (2018) database with recommended external software. 

The popular methods of determination of ToM varied from “bisector” (Pogson’s) method using the light curve and 

its hand-written approximation to a polynomial (typically parabolic) approximation (e.g. Tsesevich 1970, 1971) 

or the method by Kwee and van der Woerden (1956). The software for determination of ToM using the polynomial 

fit, was presented e.g. by Breus (2006). The statistically optimal degree of the polynomial was used to compile a 

catalogue of characteristics of 173 semi-regular pulsating stars (Chinarova and Andronov, 2000). A review on 

long-period variables was presented by Andronov et al. (2014). The improvement of the “bisector” method (using 

only times of crossing of some constant value) was proposed by Andronov and Andrych (2014). 

Newer methods of the ToM determination are based on the least squares, and were reviewed by Andronov (1994, 

2005). For the complete light curves of intermediate polars, two-period (multi-)harmonic approximations were 

used (e.g. Andronov and Breus, 2013). For the complete light curves of the eclipsing binaries, Andronov (2010, 

2012) proposed the “New Algol Variable” (NAV) algorithm, which is effective not only for Algols, but also for 

EB and EW-type systems (Tkachenko et al., 2016). Andronov et al. (2017) tested many functions to make a 

statistically optimal phenomenological approximation of the complete eclipse. 

We focused on approximations for a common case, when time series are close to the extremum of brightness of 

the object. From such data needed to determine characteristics of extremum: moment, magnitude, width of flat 

part of eclipse (if there is transit) and corresponding accuracy estimates. Moreover, some types of functions are 

asymmetrical, what is generally the case for the pulsating variables, and may also be applied for eclipses of the 

binaries with the O’Connell effect. 
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For this task, the program MAVKA (“Multi-Analysis of Variables by Kateryna Andrych”) was elaborated initially 

in the Excel/VBA environment (Andrych et al., 2015) and then was rewritten in the Delphi 7 environment 

(Andrych et al., 2017) with adding these approximations to the Delphi version of the “Observation Obscurer” (OO) 

software, which was originally written in Free Pascal (Andronov, 2001). The software MAVKA allows to compute 

necessary parameters of the extrema using one out of nine realized methods. 

In this paper, we discuss this program and algorithms, realised in it.  

Methods of the analysis 

Nine different methods were realized in program. 

For all approximations linear parameters are determined by the method of least squares, snd for non-linear - by the 

method of differential corrections. 

 (1) Algebraic polynomial approximation of different degrees α. The program automatically chooses the 

most precise degree, which corresponds to the best accuracy of the moment of extremum. 

𝑥𝑐(𝑢) = ∑ 𝐶𝛼 ∙ 𝑓𝛼(𝑢),  𝑓𝛼(𝑢) = 𝑢𝛼−1 

 (2) "Symmetrical" algebraic polynomial approximation, which use only even degrees of deviation from 

point of symmetry. 

𝑥𝑐(𝑢) = ∑ 𝐶𝛼 ∙ 𝑓𝛼(𝑢), 𝑓𝛼(𝑢) = (𝑢 − 𝑢0)2(𝛼−1) 

The next two methods are 

 New Algol Variable, that was proposed by Andronov (2010, 2012): 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2 (1 − (1 − (
𝑢 − 𝐶3

𝐶4

) 𝐶5)
1.5

) 

 the function proposed by Mikulášek (2015), Mikulášek et al. (2015): 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2 (1 − (1 − exp (1 − ch (
𝑢 − 𝐶3

𝐶4

))) 𝐶5) 

In these forms, the functions are applied for approximation of the whole light curve. In the case, where the data 

are just close to the extremum, the matrix of normal equations becomes degenerate. The interval does not contain 

out-of-eclipse parts, and therefore we do not have enough data. Formally, the amplitude becomes infinite, and the 

error estimates are not available because of rounding errors. 

To avoid degeneration of the matrix of the normal equation, the last two functions were expanded into the Taylor 

series, and the following approximations are used: 

 (3) New Algol Variable (Andronov et al., 2017) 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2|𝑧|𝐶6  + 𝐶3|𝑧|2𝐶6 , 𝑧 = 𝑢 − 𝐶5 

 (4) the function proposed by Prof. Z. Mikulášek (2015) 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2|𝑧|𝐶6  + 𝐶3|𝑧|𝐶6+2, 𝑧 = 𝑢 − 𝐶5 

These forms of functions realized in MAVKA. 

In some cases, for example approximation of flat eclipses and exoplanet transitions, it is more precise to divide 

our data into three intervals, each of them is approximated by its own function. In this case, an additional parameter 

is the duration of the bottom part of the eclipse (total eclipse or a transit). This parameter is suggested to be listed 

in the “General Catalogue of Variable Stars” (GCVS, Samus’ et al., 2017).  

The additional parameters (the borders between the three intervals) are determined by minimizing the test function 

(sum of the squares of the residuals of the data from the approximation) in respect to these parameters, and then 

corrected using differential equations. For the visualization, we have applied an own “gradient zebra” – type colour 

scheme (Andrych et al., 2017) instead of a classical “lines of constant level” (e.g. Tkachenko, 2016). 

We have proposed some new methods for this case. 
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 (5) The Wall-Supported Parabola method (Andrych et al., 2017): part of data that is very close to 

extremum is approximated by parabola, but branches are approximated by a sum of a parabola and a 

contribution of another degree. 

Let C5 and C6 be transition points from one function to another. 

In the case of transition or eclipse for a small deviation of time from the point of the inner or outer contact, 

the flux increases/decreases proportionally to the difference (𝐶5 − 𝑢) or (𝑢 − 𝐶6) in the non-integer 

power 1.5. 

If u < C5 then    

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2 (𝑢 −
𝐶5 + 𝐶6

2
) + 𝐶3(𝐶5 − 𝑢)1.5 

If u > C6: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2 (𝑢 −
𝐶5 + 𝐶6

2
) + 𝐶3(𝑢 − 𝐶6)1.5 

If C5 < u < C6: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2 (𝑢 −
𝐶5 + 𝐶6

2
) 

 

 (6) Wall-Supported Line (Andrych et al., 2017): it is nearly similar, but instead of the parabola, there is a 

constant line for the central interval. This method is useful for flat minima and it allows one to calculate 

the duration of the full eclipse or transition if the limb darkening effect can be neglected. 

If u < C5 then    

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2(𝐶5 − 𝑢)1.5 +  𝐶3(𝐶5 − 𝑢)3.5 

If u > C6: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2(𝑢 − 𝐶6)1.5 + 𝐶3(𝑢 − 𝐶6)3.5 

If C5 < u < C6: 

𝑥𝑐(𝑢) = 𝐶1 

 (7) Wall-Supported Asymptotic Parabola (this paper). The method improves the method of “Asymptotic 

parabola” (Marsakova and Andronov, 1996) by adding two parameters describing terms at the left and 

right interval, which correspond to ascending and descending branches. This method may be effective for 

approximation of the symmetric eclipses. For pulsating variables, it may be computed, but has no physical 

meaning. 

If u < C5 then    

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2(−𝐷2 − 2𝐷𝑣) + 𝐶3(𝐶5 − 𝑢)1.5 

If u > C6: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2(−𝐷2 + 2𝐷𝑣) + 𝐶3(𝑢 − 𝐶6)1.5 

If C5< u < C6: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2𝑣2 

where 𝐷 =
𝐶6−𝐶5

2
, 𝑣 = 𝑢 −

𝐶6+𝐶5

2
. 

 (8) Parabolic Spline (this paper). This approximation has more parameters than previous ones. Therefore, 

transition points from one function to another are C6 and C7. The method improves the method of 

“Asymptotic parabola” (Marsakova and Andronov, 1996) by adding two parameters describing parabolic 

terms at the left and right interval. This method allows to extend the width of the interval (and so to 

increase the number of points) to get a same accuracy, as the “Asymptotic parabola”. 

If u < C6 then:    
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𝑥𝑐(𝑢) = 𝐶1 + 𝐶2u + 𝐶3u2 + 𝐶4(𝐶6 − 𝑢)2 

If u > C7: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2u + 𝐶3u2 + 𝐶5(𝑢 − 𝐶7)2 

If C6 < u < C7: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2u +  𝐶3u2 

 (9) Asymptotic Parabola.  

There are two lines “asymptotes”, which are connected with a parabola, so the function and it’s derivative 

are continuous. Previous experience had shown, that this is one of the best methods for asymmetrical 

maxima of generally pulsating variables. This method was originally proposed by Marsakova & 

Andronov (1996). 

The transition points from one interval to another are C4 and C5. 

If u < C4 or u > C5 then:    

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2(2 abs(𝑣) − 𝐷)𝐷 + 𝐶3𝑣 

If C4< u < C5 then: 

𝑥𝑐(𝑢) = 𝐶1 + 𝐶2𝑣2 + 𝐶3𝑣 

where 𝐷 =
𝐶5−𝐶4

2
, 𝑣 = 𝑢 −

𝐶5+𝐶4

2
. 

MAVKA interface 

The program was elaborated in the programming environment Delphi 7. 

In MAVKA, the user can choose few methods and the algorithm automatically defines the method, which 

corresponds to the best accuracy of the moment of extremum (Fig. 1).  

In an addition, the user can control results, because while the approximation may be mathematically accurate, 

formally the values of parameters may be out of physically realistic intervals (Fig. 2). 

 

Figure 1: MAVKA submenu for choosing some approximation methods.  
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Figure 2: The possibility of visual control of approximation and results. 

Application to Variable Stars of Different Types 

Previous versions of the program, which was being improved for difficult cases of the distribution of the times 

(phases) of the observations in selected intervals near extrema, were applied to observations of some eclipsing 

binary stars (Savastru et al, 2017; Tvardovskyi et al., 2017, 2018) and symbiotic variables (Marsakova et al., 2015). 

This new version of the program is planed to be used for compilation of the characteristic of extrema of pulsating, 

eclipsing and interacting binary stars based on data from photometric surveys and own monitoring. 

Discussion and Conclusion 

We have introduced the program MAVKA. It allows the user to choose statistically optimal phenomenological 

approximation for a given data sample and determine characteristics of extrema with the best accuracy in case, 

when the data are just close to the extremum. This is the main mode of the observations by the “hunters” for the 

“extrema timings” = ”Times of Minima/Maxima” = ToMs”. Besides the ToM, the brightness at the extremum is 

determined, and (for the “3-interval” functions (5,6,7,9)) the duration of the full eclipse/transit. The error estimates 

for each parameter are determined. 

The program allows one to determine the parameters either for the data at the screen, or by using a list of previously 

marked intervals – in this case, one may automatically determine the statistically optimal phenomenological 

approximations for all intervals and then check the quality of approximation by comparing with the data. 

We have presented 9 different approximation functions,  but we allow the determination of the statistically optimal  

degree of the polynomial or “symmetric polynomial”, so currently there are 20 functions to be used for the 

comparison. 

The methods (1, 8, 9) may be recommended for approximation of generally asymmetric extrema, whereas the rest 

(2-7) are focused on the theoretically symmetric extrema.  
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New tool with GUI for fitting O-C diagrams 

P. GAJDOŠ & Š. PARIMUCHA 

(1) Institute of Physics, Faculty of Science, Pavol Jozef  Šafárik University, Košice, Slovakia, 

pavol.gajdos@student.upjs.sk 

Abstract: There are many different methods for fitting and analysing O-C diagrams. We present a new fitting tool 

for an analysis of O-C diagrams. Our package use Genetic Algorithms (GA) and Markov Chain Monte Carlo 

(MCMC) methods. Unlike many others fitting routines, our method does not need any initial values of fitted 

parameters. Fitting using presented software is quite simple thanks to a very intuitive graphic user interface. 

Currently, nine most common models of periodic O-C changes are included in this software. 

 

1. Introduction 

The precise timing of minima of eclipsing binaries (EBs) or extrema times of any other periodic events, which is 

a quite simple observational task and is also achievable with amateur's technique, could help us to discover 

interesting processes in the studied system. The most common phenomena are connected with a mass transfer 

between the components of EB, the presence of another body in the system, apsidal motion or angular momentum 

lost from the system. 

Unfortunately, the exact physical model of many of these effects is complicated and strongly non-linear. Using 

classical fitting routines is problematic. The good initial values of parameters are needed by many of them. One 

can use the approximation of the model by Taylor or Fourier series but the physical properties of the model are 

loosening. In this paper, we present a new fitting tool for analysing the changes of times of minima of EBs or 

exoplanetary transits. We use Genetic Algorithms to remove the necessity of any input values of the model's 

parameters. Final values of them together with their statistically significant uncertainties are obtained using 

Markov chain Monte Carlo fitting. The combination of these two algorithms allows us to analyse the exact physical 

model of the observed variations. 

2. Period changes models of eclipsing binaries and exoplanets 

Minima times TC of EBs or transits of extrasolar planets can be simply calculated by the linear ephemeris 

𝑇𝐶 = 𝑇0 + 𝑃 × 𝐸 (1) 

which predicts minima times TC of EB with orbital period P. Here E is an epoch of the observation and it counts 

how many eclipses elapsed since the zero epoch (i.e. from time T0).  

Minima times determined from observations for the same epoch (TO) are in general different to times TC. The 

behaviour of this difference (O-C), often shown in O-C diagrams, is caused by perturbation δT 

𝑇𝑂 − 𝑇𝐶 ≡ 𝑂 − 𝐶 = 𝛿𝑇 (2) 

This perturbation is generally a sum of different effects and it indicates period changes of the binary system. 

Formally, we can write 

𝛿𝑇 = (𝛥𝑇0 + 𝛥𝑃 × 𝐸) + 𝑄 × 𝐸2 + 𝛿𝑇𝑖  (3) 

where the part in bracket generates linear trend in (O-C)s and it is caused by wrong linear ephemeris (Equation 1), 

a quadratic term (𝑄 × 𝐸2) describes changes due to mass transfer and δTi means more complex periodic variations 

in (O-C)s (described in the next sections). 

2.1 The light-time effect 

The apparent changes of binary stars period caused by the distance variation of the system from the observer are 

often called the light-time effect (LiTE). The EB moves around the common barycentre of a wider triple system. 

It produces periodic variations in the observed minima times with respect to linear ephemeris of the EB with a 

period corresponding to the period of the third body. The secondary minima have identical behaviour in (O-C)s 

with primary ones. 

Irwin (1952) determined analytical formula for O-C changes caused by LiTE, which can be written in the form 
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𝛿𝑇𝐿𝑖𝑇𝐸 =
𝑎12𝑠𝑖𝑛𝑖3

𝑐
[

1−𝑒3
2

1+𝑒3𝑐𝑜𝑠𝜈3
𝑠𝑖𝑛(𝜈3 + 𝜔3) + 𝑒3𝑠𝑖𝑛𝜔3] (4) 

where a12 sin i3 is the projected semi-major axis of the binary star around the barycentre of a triple system, i3 is the 

inclination of the third body's orbit, e3 is the eccentricity, ν3 is the true anomaly of the binary orbit around the 

system's barycentre and ω3 is the longitude of pericenter. Two another orbital parameters, the period of the third 

body P3 and the time of pericenter passage t03 are hidden in ν3 calculation, which have to be solved using Kepler 

equation. Equation 4 can be simply extended for another body(ies) in the system. 

Because we are not able to find inclination of the orbit i3 only from O-C analysis, we can determine only so-called 

mass function 

𝑓(𝑀3) ≡
(𝑀3𝑠𝑖𝑛𝑖3)3

𝑀2 =
(𝑎12𝑠𝑖𝑛𝑖3)3

𝑃3
2  (5) 

of the third body. Here, M = M1 + M2 + M3 is a total mass of the system (Mi - masses of components). 

Semi-amplitude of changes on O-C diagram generated by LiTE is given by equation: 

𝐾3 =
𝑎12𝑠𝑖𝑛𝑖3√1−𝑒3

2𝑐𝑜𝑠𝜔3

𝑐
 (6) 

2.2 Agol's models 

Agol et al. (2005) presented two models of O-C changes concerning on transits of exoplanets. O-C variations are 

caused by gravitational interaction with another body (planet) in the system. They assumed that the orbits of 

transiting exoplanet and the third body are coplanar with inclination i = 90°. 

The first one is the model of perturbations due to an interior planet on small orbit: 

𝛿𝑇𝐴𝑔𝑜𝑙𝐼𝑛 = −𝑃
𝜇3𝑟3𝑐𝑜𝑠(𝜈+𝜔3)√1−𝑒2

2𝜋𝑎(1−𝑒𝑠𝑖𝑛𝜔)
 (7) 

where P is a period of transiting planet, a is its semi-major axis, e eccentricity of its orbit, ν its true anomaly and 

ω its longitude of pericenter; r3 is the radius of the orbit of the 3rd body, ω3 its longitude of pericenter and 𝜇3 ≡
𝑀3 𝑀⁄  (𝑀 = ∑ 𝑀𝑖 is a mass of the whole system) is its reduced mass. Semi-amplitude of changes on O-C diagram 

generated by Agol's interior perturber is given by the equation: 

𝐾3 = 𝑃
𝜇3𝑟3√1−𝑒2

2𝜋𝑎(1−𝑒𝑠𝑖𝑛𝜔)
. (8) 

For perturbations due to an exterior planet on a large eccentric orbit, Agol et al. (2005) determined the formula: 

𝛿𝑇𝐴𝑔𝑜𝑙𝐸𝑥 =
𝜇3

2𝜋(1−𝜇3)

𝑃2

𝑃3
(1 − 𝑒3

2)−3 2⁄ (𝜈3 − 𝑙3 + 𝑒3𝑠𝑖𝑛𝜈3) (9) 

where P3 is the period of the 3rd body, e3 eccentricity of its orbit, ν3 its true anomaly and l3 its mean anomaly. Other 

parameters are the same as for a case of interior perturber. Semi-amplitude of changes on O-C diagram generated 

by this model is given by the equation: 

𝐾3 ≈
𝜇3

2𝜋(1−𝜇3)

𝑃2

𝑃3
(1 − 𝑒3

2)−3 2⁄ 2 [𝑎𝑟𝑐𝑡𝑎𝑛
𝑒3

1+√1−𝑒3
2

+ 𝑒3]. (10) 

2.3 Apsidal motion 

Apsidal motion is the precession of the orbit due to a gravitational quadruple moment induced by tidal distortion 

in a binary star. The secondary minima are in antiphase with primary ones in the O-C diagram. The pericenter 

position ω  at epoch E is defined by the linear equation 𝜔 = 𝜔0 + �̇� × 𝐸 where ω0 is initial position of pericenter 

and �̇� is angular velocity of line of the apsides. 

Giménez & Bastero (1995) determined the formula for O-C changes in the form 

𝛿𝑇𝐴𝑃𝑆 =
𝑃

𝜋
∑ (−𝛽)𝑛∞

𝑛=1 (
1

𝑛
+ √1 − 𝑒2) 𝑠𝑖𝑛𝑛𝜈 (11) 

where P is anomalistic period of EB (i.e. time between two primary or secondary eclipses), ν = θ - ω +π/2 is true 

anomaly (θ = 0 for primary minima and θ =  π for secondary minima) and 𝛽 = 𝑒 (1 + √1 − 𝑒2)⁄ .  

Semi-amplitude of changes on O-C diagram is 
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𝐾3 ≈
𝑃𝑒

𝜋
. (12) 

The sidereal period of EB is given by the equation 

𝑃𝑆 = 𝑃 (1 −
�̇�

2𝜋
) (13) 

and the period of apsidal motion (and also period of the variation in O-C diagram) is 

𝑈 = 𝑃𝑆
2𝜋

�̇�
= 𝑃 (

2𝜋

�̇�
− 1). (14) 

3. Fitting methods 

Many classical numerical methods based on the iterative minimization of the sum of squares (e.g. Levenberg-

Marquardt algorithm or Simplex method) are used to obtain the optimal set of model's parameters. These 

algorithms can be simply implemented in many programming languages and data analysis packages and solution 

can be found relatively fast. However, the quality of the results (i.e. their convergence to the global optimum) is 

strongly dependent on an initial guess of fitted parameters which have to be close enough to the final one.  

Here we introduce our approach to improve it. Our method does not require any starting values. It needs only 

searching interval where the values of parameters should be. The Genetic algorithms (GA) are used to obtain the 

first guess of parameters. They are improved by Markov Chain Monte Carlo (MCMC) fitting. MCMC is also used 

to calculating the realistic statistically significant estimation of uncertainties of the fitted parameters. These errors 

are underestimated in many cases if some classical fitting method, which calculates errors using the covariance 

matrix, is used. 

3.1 Genetic Algorithms 

Genetic Algorithms are commonly used for solving optimization problems which could not be solved using 

classical optimization methods (Weise, 2011). The basic scheme of GA is inspired by biologic evolution. The 

general principles of evolution could be summarized in several points: 

1. There is a population of individuals. 

2. There is a variability of properties of individuals. 

3. Individuals with different properties have a different reproductive capacity. 

4. Properties of descendant are correlated with properties of parents. 

Similarly to biologic evolution, generating a new generation of individuals in GA include the impact of crossover 

and mutations which change individuals in the next generation. When fitting data using GA, individuals are made 

up of values of fitted parameters of the model. Crossover is realized by changing the values of some parameters 

between two individuals in parent generation. Mutations cause changing of the parameter by adding random value 

from a Gaussian distribution.  

The main advantage of fitting data with GA is that start values of fitted parameters are unnecessary. We only need 

to know search limits for these parameters. In our case, we could set really wide limits which could be simply set 

from physics of the EBs or directly from O-C diagram. Fitting is not very computationally intensive and takes a 

relatively short time comparing to Monte Carlo method. On the other hand, GA fitting does not give any 

information about the errors of fitting parameters. This problem could be solved using  MCMC fitting. 

3.2 Monte Carlo method 

Monte Carlo is one of the most used stochastic optimization methods (Brooks et al., 2011). The basic idea is to 

obtain states of the studied system which are from the required distribution, by generating random numbers from 

the uniform distribution. We use Metropolis algorithm which generates Markov chains. The MCMC method 

converges to the normal distribution of states. Uncertainties of all parameters can be easily estimated from this 

final distribution. 

MCMC method gives us, unlike the GA, the estimation of errors of fitted parameters. However, MCMC fitting 

needs to know the initial values of parameters. For this reason, we have to use another fitting method before using 

MCMC itself. Fitting with MCMC is very computationally intensive and takes approx. five times longer than 

fitting with GA (with the same number of calculations of the model). 
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4. Package description 

We developed a stand-alone package written in python for fitting O-C diagrams of EBs and exoplanets. Its name 

is OCFit. The package contents four main classes for fitting linear (FitLinear) and quadratic trends (FitQuad) and 

complex changes on O-C diagram (OCFit) and for loading the saving state of O-C analysis (OCFitLoad). There 

are also three auxiliary classes for working with GA and for analysis of GA and MCMC sampling.  

The parameters of class OCFit could be saved to file using its function Save. After that, the state of class OCFit 

could be fully restored using function Load or using class OCFitLoad. 

Our python package allows performing the complex study of O-C changes. Its detail description is above the scope 

of this paper. The manual for using our class in own python script could be found on our GitHub page6. 

5. Graphic user interface 

Our graphic user interface (GUI) can be used to basic control of class OCFit (see Sec. 4). Not all functions and 

control parameters are available here. However, the combination of this GUI with your own python script to work 

with OCFit class is still possible. 

Design of GUI is quite simple (see Figure 1). It is created using standard python package Tkinter7. Many buttons 

are available only after successful executing previous necessary actions (e.g. showing the results is not available 

before fitting). 

Figure 1: Main window of GUI (left). Window for loading data (right).  

 

5.1 Loading data and linear ephemeris 

Input O-C data can be loaded from any text file in which are data stored in columns. The columns could be 

separated by any character which is not used in data columns. Using header with an optional number of rows is 

also possible. Rows marked as python comments (i.e. started with "#") are skipped automatically.  

The columns in input file could be: 

 observed times of minima in Julian dates 

 calculated times of minima in Julian dates 

 epochs 

                                                           

6 https://github.com/pavolgaj/OCFit 

7 https://wiki.python.org/moin/TkInter 

https://github.com/pavolgaj/OCFit
https://wiki.python.org/moin/TkInter
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 O-Cs in days 

 errors of O-C in days 

 weights 

 used methods of O-C determination 

Not all of them are necessary. The minimal required data are observed times of minima or calculated times with 

O-Cs. The setting of errors is also recommended. If the column with the used methods is presented, the error or 

weight of each individual method will be set in the next step. It is better to use errors of O-C measurements instead 

of their weights. Figure 1 shows the window for loading data. The parameters in this figure are set for loading data 

from a text file with O-C data from on-line database O-C gateway operated by the Czech Astronomical Society8 

(Paschke & Brat, 2006). 

The next step of the basic workflow is to enter the linear ephemeris of the studied system. The linear ephemeris 

should be very accurate. After that, the O-C diagram calculated from this ephemeris could be shown. If the linear 

ephemeris is not correct or also the quadratic trend is presented on the O-C diagram, it could be fitted separately 

before analysing more complicated changes. Now, the OCFit class could be initialized. 

These steps could be skipped by loading already saved OCFit class from the file. 

5.2 Parameters of model 

Currently, there is nine model available for fitting. Adding other models is, of course, possible and it is planned. 

Available models are 

 LiTE3 - LiTE caused by the 3rd body (see Sec. 2.1) 

 LiTE34 - LiTE caused by the 3rd and 4th body (see Sec. 2.1) 

 LiTE3Quad - combination of LiTE3 model and quadratic trend 

 LiTE34Quad - combination of LiTE34 model and quadratic trend 

 AgolInPlanet - model of inner perturber (see Sec. 2.2) 

 AgolInPlanetLin - combination of AgolInPlanet model and linear trend 

 AgolExPlanet - model of exterior perturber (see Sec. 2.2) 

 AgolExPlanetLin - combination of AgolExPlanet model and linear trend 

 Apsidal - model of apsidal motion (see Sec. 2.3) 

It is necessary to set the values of all the fixed parameters of the model. If only the MCMC method (see Sec. 3.2) 

will be used, the values of fitted parameters are also required. The limits (minimum and maximum) and steps of 

all fitted parameters are needed in a case of using any of fitting method.  

The limits of the parameters could be set extremely large in many cases (see Figure 2) and could be guessed from 

the O-C diagram. For example, eccentricity (e) and longitude of pericenter (w) could run in their whole possible 

range, i.e. e from 0 to 1 and w from 0 to 2π. The relative width of the interval of a period of the 3rd (or 4th) body 

could be about 40% and the same for its time of pericenter passage. The values of the projected semi-major axis 

of the binary star around the barycentre (a_sin_i) could go from very small values to values a few times larger 

than the real value. However, the interval for linear ephemeris should be as small as possible. In general, we 

recommend not to fit linear ephemeris together with more complicated models at all. 

5.3 Fitting model 

For the successful fitting of the model, setting good parameters of the fitting method is needed (see Figure 2). The 

parameters (together with their suggested values) of GA (see Sec. 3.1) are 

 generation - the number of generations; 100 for testing and at least 1000 for final fitting 

 size - size of one generation; 100 for testing and at least 1000 for final fitting 

                                                           

8 http://var2.astro.cz/ocgate/ 

http://var2.astro.cz/ocgate/
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The values of both parameters are the same in many cases. Generally, the extending the size of generation would 

produce a better solution than increasing the number of generation by the same value. The number of calculations 

of the model is the number of generations×the size of one generation. 

Figure 2: Windows for setting parameters of the model (left) and that of the fitting methods (right). 

The setting of the good values of the MCMC method (Sec. 3.2) could be more complicated. They are 

 n_iter - number of iterations; 1000 for testing and at least 106 for final fitting 

 burn - number of the removed MC steps (before equilibrium); 0 for testing and at least 1000 for final 

fitting  

 bin - size of one block for binning; 1 for testing and at least 10 for final fitting 

In both fitting methods, it is necessary to set an appropriate number of iterations. This number is a compromise 

between computing time and the quality and accuracy of the results. The fitting routine (obtained sampling of the 

parameters) could be saved to file for later analysis. We use our own set of functions written in python for this 

purpose for GA sampling. Functions of python modules pymc (Patil et al., 2010) and PyAstronomy could be used 

to analyse MCMC sampling. These analyses are useful for evaluating the quality of the fitting. 

The separate fitting using GA and MCMC is possible. We recommend using GA as a first fitting method. The first 

guess of values of parameters is obtained in this step. Their final values together with the estimation of their 

uncertainties are gotten using the MCMC method. It is possible to run fitting also on the background or to a 

generate fitting script which could be run later and/or on another computer (e.g. on computing server). 

5.4 Working with results 

We use python module matplotlib (Hunter, 2007) for displaying the final O-C diagram. The original O-C data 

together with model values could be displayed, e.g. O-C diagram of AD And in Figure 3. To check the quality of 

the fitting, the plot of residual O-Cs could be used. 

All model's parameters are listed in a separated window (see Figure 3). The amplitude of (O-C)s (K) is also 

determined according to the used model (using the equations in Sec. 2). We also calculate the basic statistical 

indicators for evaluating the goodness of fit. They are the chi-squared error (χ2), reduced chi-squared statistic (χr
2), 

Akaike information criterion (AIC), corrected Akaike information criterion (AICc) and Bayesian information 

criterion (BIC). 

The model (O-C)s and residual (O-C)s could be saved to a text file. Eventually, the parameters of whole class 

OCFit could be saved to file and be used for later analysis. We strongly recommend to do it. 
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Figure 3: Graphic window with fitted O-C diagram of AD And (left) and window with summary of the model's parameters for 

the same O-C diagram (right). 

6. Conclusion 

The presented python package OCFit combines the advantages of GA and MCMC method to analyse O-C 

diagrams. The only disadvantage could be quite long computing time but this is not so big problem considering 

the current state of computer technology. We currently included nine models of O-C changes but it is possible to 

add other ones. We developed simple GUI to make work with our module easier. Both of them, python package 

and GUI, are available on our GitHub page9. 

Our method gives very good results which are at least comparable with any other method. We already used it in 

two our papers (Gajdoš et al., 2017; Parimucha et al., 2018). 
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Abstract: The investigation of extrasolar planets in Czech Republic is relatively new field. Recently, in times of 

many new exoplanetary discoveries, it is a very actual and prestigious topic. We focus on a brief summary of the 

research of exoplanets in Czech Republic, possible involvement of Czech observers in the exoplanetary research, 

and first results of observations with the Ondřejov Echelle Spectrograph regarding exoplanets.  

 

Introduction 

The motivation for studying exoplanets is closely tight with the basic natural questions about human origin and 

about the place of mankind in the Universe. However, there are, of course also questions related to the pure science 

such as: Is our Solar system unique? How many exoplanets are there? How do they look like? How do the planetary 

systems form and evolve? Investigation of exoplanets has a huge demands on the instrumentation and pushes the 

development of new instruments and analytical methods forward. 

At the end of November 2018, we know almost 4000 exoplanets and about 3000 exoplanetary candidates (see e.g. 

https://exoplanets.nasa.gov). The diversity of the observed planets and planetary systems is stunning – we know 

planets of the size of Jupiter that orbit its host star with period of less than day (e.g. WASP-19b, Hebb et al. 2010), 

we know planets smaller than the Earth (e.g. Vanderburg et al. 2015), we can directly see alien planetary systems 

(e.g. Marois et al. 2008) and study the chemical composition of the planets themselves, as well as of their 

atmospheres (e.g. Zeng, Sasselov & Jacobsen 2016, Wyttenbach et al. 2015, Sedaghati et al. 2017). 

The size of the needed telescope, the stability and capability of the instrument are defined by the purpose of 

observations and the desired accuracy. Study of Earth-sized planets and their characterization needs large 

telescopes and state-of-the-art instruments. However, Jupiter-size planets around bright low-mass main-sequence 

stars can be investigated with instruments and telescopes that are accessible to Czech observers. This is the topic 

that will be discussed in this proceedings.   

Transit detection and observations.  

Since the CCD cameras have become sensitive and cheap enough, the observations of exoplanetary transits is 

naturally the easiest way how to get involved in the exoplanetary research using small telescopes. Because the 

drop in brightness during the transit is defined as 

                                                                         𝛥𝐹 = (
𝑅𝑃𝑙𝑎𝑛𝑒𝑡

𝑅𝑠𝑡𝑎𝑟
)

(2)

,                                                                 (1) 

even amateur observers can easily detect and monitor exoplanetary systems with large planets compared to their 

host stars. Even a telescope with a few centimeters in diameter is sufficient for detection of an exoplanetary transit. 

This was well demonstrated during the summer school organized by the Czech Variable Star and Exoplanet Section 

of the Czech Astronomical Society (VSES CAS) in 2008 when the joint observation of HD 189733 took place (see 

Fig. 1). Transit observation is the most widespread activity of amateur observers regarding the exoplanetary 

research in the Czech Republic. 

mailto:maska@physics.muni.cz
https://exoplanets.nasa.gov/
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Figure 1: Joint observations of the transit of HD 189733. Figure taken from Sobotka (2008).  

In 2008, the ETD and TRESCA databases maintained by VSES were launched (Poddaný, Brát & Pejcha 2010). In 

January 2019, ETD contains more than 8500 transit observations (336 exoplanets) similar to the one shown in Fig. 

2. Most of the observations are produced by amateur observers not only from the Czech Republic but from all over 

the world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of transit observation performed by Czech amateur observer F. Lomoz. Figure is taken from the web page 

of VSES (http://var2.astro.cz/tresca/transit-detail.php?id=1533369990&lang=cz). 

http://var2.astro.cz/tresca/transit-detail.php?id=1533369990&lang=cz
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Transit method is the most efficient method for searching for new exoplanets because many target stars can be 

observed simultaneously. Exoplanetary candidates must be carefully evaluated. It can happen that the observed 

transit is actually shallow secondary minimum of an eclipsing binary (Fig. 3). Also, blends with background 

eclipsing binaries must be rejected. Blending can cause troubles in crowded fields and in large-field-of-view 

surveys that have broad point spread function such as SuperWASP (14”/px, Butters et al., 2010) or TESS (21”/px, 

Ricker et al., 2015).  

Figure 3: Example of a shallow secondary minima of an eclipsing binary that can mimic exoplanetary transit. The data were 

taken with a 30cm telescope from the ground (BSO, Zlín, Czech Republic). 

Radial velocity measurements 

The orbital movement of the exoplanet reflects in the movement of the star. The higher the mass of the exoplanet, 

the larger amplitude of the movement of the star. This translates in the same manner also to the velocity of the star, 

which can be measured unless we observe the system from pole of the orbit. Thus, measurements of radial 

velocities (RVs) can give us information about the minimal mass of the exoplanet. In case of transiting exoplanets, 

we can get the absolute mass of the exoplanet because we know the inclination from the shape of the transit.  

RVs are measured from the Doppler shift of the spectral lines. The precision of the measurements increases with 

better signal, with the number of lines that are used for the RV estimation (the size of the used spectral region) and 

with resolving power of the spectrograph. Thus, larger telescopes equipped with an echelle spectrograph are 

advantageous. In Czech Republic, the 2-m Perek telescope in Ondřejov (the left panel of Fig. 4) can be used 

because it is equipped with the Onřejov Echelle Spectrograph (OES, the right-hand panel of Fig. 4), which has 

broad spectral range (~360-950 nm) and high resolving power R=50000 (Koubský et al. 2004). Since 2017, this 

instrument is used by the exoplanetary group from the Astronomical Institute of CAS for monitoring of exoplanets 

and exoplanetary candidates. 

The procedure from raw frame to RVs is very sophisticated and every step matters. First it is necessary to process 

the frames. Bias and flat-field corrections need to be applied, cosmic hits, bad pixels and columns need to be 

removed. Then, the spectrum from echelle orders is extracted, pixels are transformed to wavelengths by using 

Thorium-Argon lamp with well defined emission lines spread over a large spectral range. Then the spectra are 

normalized and stitched together to produce 1-d spectrum. However, this is still only the beginning.  

The instrumental issues must be removed by shifting the spectra with respect to some stable lines. This can be, in 

the simplest way, done by using telluric absorption lines which are produced mainly by water vapour in the Earths’ 

atmosphere. These lines are stable within 20 m/s. After this correction, the effect of the movement of the Earth 

around the Sun (30 km/s) and its rotation (465 m/s) are removed. Only then the RV measurements can be 

performed by comparing the shift between stellar lines. 
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Figure 4: The Perek telescope in Onřejov (left panel) and the Ondřejov Echelle Spectrograph (right-hand panel). 

From the tests performed on a bright radial velocity standard star HD 109358 (spectral type G0V, V=4.25 mag, 

exposure time 600 seconds) follows that we are able to reach stability of about 80 m/s over 8 hours, about 120 m/s 

over a few weeks and about 350 m/s over a year (Kabáth et al. 2019, submitted to AJ). This shows that we can 

monitor bright exoplanetary host stars and exoplanetary candidates hosting hot Jupiters producing RV variations 

with amplitudes of few hundreds of m/s. However, reasonable observations are limited to stars brighter than about 

10 mag because below this limit the signal is too low even with 1-hour exposure. 

Additional improvement of precision can be achieved by using iodine cell. It is a glass bulb filled with iodine 

vapour. During the observation, the cell is placed to the path of the light. The vapour absorbs light at precisely 

defined wavelengths. The disadvantage is the loss of light that can be half of the original intensity. Thus, it is 

usable only for bright stars. However, with this device, the stability down to about 10-20 m/s can be achieved for 

bright stars (tested on sig Dra and tau Cet). 

In Ondřejov, we observed a few exoplanetary candidates from K2 mission (Howell et al. 2014) to evaluate their 

planetary nature. In three of them we found that the companions must be of stellar mass (Kabáth et al. 2019, 

submitted to AJ). We also discovered that one of the additional candidates is actually an Ap star showing delta 

Scuti pulsations which is orbited by low-mass star creating the first eclipsing binary system with Ap star (Skarka 

et al. 2019, submitted to MNRAS). 

Other research and future prospects 

Astronomers from the Astronomical Institute in Ondřejov work also on the exoplanetary atmospheres. Data from 

large telescopes (VLT, 3.6m telescope at La Silla) are used for this kind of investigation. However, in the brightest 

and largest exoplanets, the atmosphere should be theoretically detectable also in data taken with 2-m class 

telescopes (Kabát et al. 2019, submitted to AJ). We will monitor the candidates identified by the TESS mission 

(Ricker et al. 2014), which started to produce lots of new bright candidates. Perek telescope with OES can, thus, 

become a valuable instrument for the exoplanetary research. Identification of new bright exoplanetary candidates 

opens space for amateur observers to be involved. Czech astronomers plan to build a new echelle spectrograph 

PLATOSpec and mount it to 1.52-m telescope at La Silla in Chile. This telescope will be primarily dedicated for 

the spectroscopic follow-up for the PLATO mission. 
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Abstract: Binaries of different types are frequent objects of long-term photometric and spectroscopic observations 

in the long history of the Astronomical Institute, Charles University in Prague. The overview of selected current 

results with significant contribution of SPHE members is briefly summarized. This research is part of an ongoing 

collaboration between professional astronomers and the Czech Astronomical Society, Variable Star and Exoplanet 

Section. 

 

Introduction 

Binaries of different types are traditionally targets of many systematic studies in history of the Astronomical 

Institute at Charles University in Prague for many years. In this paper we focused on the results obtained in 

collaboration with the Czech Astronomical Society, Variable Star and Exoplanet Section. Binaries of various types 

are on our current observing list: the most interesting are triple eccentric and eclipsing binaries with apsidal motion 

and light-time effect, multiple low-mass eclipsing binaries, cataclysmic variables, and symbiotic binaries. 

Observations 

There are two reflecting and computer-controlled telescopes devoted to CCD photometry of binaries at our 

disposal. For selected brighter systems, the photometric observations are also completed by spectroscopic 

measuremets, mostly using the 2-m telescope in Ondřejov Observatory.  

Telescope D65 at Ondřejov Observatory, Czech Republic  

The 65-cm reflecting telescope located at Ondřejov Observatory near Prague is one of the most efficient telescopes 

used for the binary star research in our country (see Fig. 1a). It has been designed originally in 1972 by late Dr. 

Pavel Mayer as a Cassegrainn telescope with a classical photoelectric photometer. In 1995 it was upgraded and a 

new CCD camera was placed to the primary focus. Nowadays there are several ongoing observing programs 

included photometry of near-Earth and binary asteroids (conducted by P. Pravec, AsÚ AVČR), new discoveries 

and follow-up of novae in M31 and M81 galaxies (K. Hornoch, H. Kučáková), flyby monitoring of the 

International Space Station (CIIRC ČVUT Praha), and bachelor, diploma and PhD theses of our students. The 

telescope has mounted a new G2-3200 CCD camera (chip KAF-3200ME, size 2184×1472, Moravian Instruments) 

and a set of BVRI photometric filters. The VNC/VPN connection enables a remote acces to the telescope and CCD 

camera practically from anywhere. 

Danish telescope D154 at La Silla in Chile 

The 154-cm reflecting telescope located at La Silla observatory in Chile on the southern hemisphere was former 

ESO instrument (see Fig. 1b). Since 2012 it has a status of the Danish national telescope. The observing time is 

splitted between Niels Bohr Institute in Copenhagen and several groups of observers in the the Czech Republic: 

Ondřejov observatory, Prague and Brno universities, with different observing programs. The Large and Small 

Magellanic Clouds (LMC, SMC) are the main area of eclipse monitoring of several eccentric eclipsing binaries 

and multiple stellar systems. The binary asteroids are the subject of a study of investigators from Ondřejov led by 

also Petr Pravec. The VNC/VPN connection enables a remote acces to the telescope and camera in Chile.  
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Figure 1: The 65-cm Charles University reflecting telescope at Ondřejov Observatory was built in 1972 by late Dr. Pavel 

Mayer (left, current photo by Kamil Hornoch). The Danish national telescope DK154 is located at La Silla observatory in 

Chile (right). Both telescopes are equipped with a CCD camera with a set of photometric filters and enable remote access.  

Eclipsing binaries 

Eclipsing binaries of various types are very frequent objects of our current detailed studies.They still represents a 

most general method how to derive the precise basic stellar parameters of the individual components such as radii, 

masses, or luminosities. With these quantities, we are able to improve and calibrate the existing stellar models 

(Torres et al. 2010). Moreover, the eclipsing binaries can serve as a suitable distance indicator, even for near-by 

galaxies in the Local Group (Hilditch et al. 2005). Monitoring of eclipses is very simple and efficient tool 

especially for the period studies and enables participation of advanced amateur astronomers with small telescopes 

and modern detectors. Several different groups of binaries are discussed bellow.  

Triple eccentric systems 

The eccentric eclipsing binaries with an orbiting third body belong to ideal laboratory of celestial mechanics. The 

study of apsidal motion in eccentric eclipsing binaries provides an important observational test of theoretical 

models of stellar structure and evolution (Claret & Giménez 1993). A detailed analysis of the period variations of 

eccentric binary can be performed using the times of minimum light observed throughout the apsidal motion cycle, 

and from this, both the orbital eccentricity and the period of rotation of the periastron can be obtained with high 

accuracy. Rapid apsidal motion of eccentric oribit connected with the light-time effect (LITE) presents interesting 

variety of O-C diagrams with the superposition of both phenomena. The deviation of the observed values (O-C)obs 

from the linear ephemeris is given simply by 

(O-C)obs = (O-C)aps + (O-C)LITE, 

where (O-C)aps  and  (O-C)LITE are contributions from the apsidal advance of the eccentric orbit and the light-time 

effect caused by a third body, respectively. The theory of the third body motion and the LITE analysis was 

reviewed several times in the literature; see Mayer (1990), Sterken (2005), or Wolf (2014). For example, in case 

of the eclipsing binary V0456 Oph the apsidal motion with short period U = 22.6 yr is superimposed with the light-

time effect caused by the third body orbiting the eclipsing pair with the period of about 7.38 yr in a highly eccentric 

orbit (e3 = 0.8, Fig. 2a). See more details in Wolf et al. (2017). The similar case is well-known eccentric eclipsing 

binary DR Vul, where the apsidal motion with relatively short period U = 36 yr is modulated by the LITE with a 

longer period of 66.4 yr (Fig. 2b). Due to both relatively short periods (apsidal motion as well as the third-body 

orbit), the both systems exhibit the most interesting O−C diagrams known so far (Wolf et al. 2019). These results 

were published together with several active SPHE members, who contributed significantly by new CCD 

measurements.  
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Both above mentioned systems belong to the group of early-type eccentric and triple eclipsing systems with 

relatively short apsidal-motion and third-body orbital periods (e.g. V889 Aql, V539 Ara, GL Car, V974 Cyg, RU 

Mon, U Oph, AO Vel). It is highly desirable to obtain new high-dispersion spectroscopic material to obtain the 

radial-velocity curves and derive accurate masses of these triple systems. 

       

Figure 2: The historical O-C diagrams of two eccentric eclipsing binaries: V0456 Oph (left panel) and DR Vulpeculae (right). 

In case of V0456 Oph the rapid apsidal motion is influenced by the third body with relatively short orbital period of 7.4 years. 

In case of DR Vul the longer third body period (66 yr) is modulated by the apsidal motion with a short period of about 36 yr.  

 

Table 1. Selected eccentric eclipsing binaries with third bodies studied photometricaly by SPHE members in the past. 

System Sp. type  Vmax [mag] P [day] P3 [yr] M3, min [Msun] Uaps [yr] 

CG Aur A7V 11.4 1.805 1.89 1.4 700 

V974 Cyg A3V 11.9 3.204 30.6 0.40 1470 

V345 Lac B5V 11.3 7.492 23.9 2.0 1580 

RU Mon B7V+B7V 10.5 3.585 59.8 1.63 361 

AO Mon B3V+B5V 9.6 1.885 3.56 2.5 33.8 

V456 Oph F1V+F2V 10.0 1.016 7.38 0.27 22.6 

YY Sgr B5V+B6V 10.2 2.628 18.6 0.81 294.7 

DR Vul B0V+B0.5V 8.64 2.251 66.4 7.15 36.1 

V0361 Lyr 

One of our long-term observing projects is devoted to an enigmatic eclipsing binary V0361 Lyrae. With the orbital 

period of roughly 7 hours creates a close near-contact binary system with a mass transfer from the evolved primary 

to the secondary. It was discovered as a variable star by Cuno Hoffmeister (1966). Later, Andronov & Richter 

(1987) noted a significant difference between heights of maxima of the light curve. The first spectroscopic and 

eclipse-mapping investigation was presented by Hilditch et al. (1997). They concluded, that light curve presents 

very probably a long-standing, elongated and shape-changing large hot structure or a hot region on the secondary 

component with temperature of about 10 000 K. The extraordinary brightening of 0.4 mag in V- band close to the 

phase 0.38 is well visible on Fig. 3a. 

Regular photometric monitoring of V0361 Lyr and mid-eclipse timings since 1996 give us possibility to solve the 

different seasonal light curves using the well-known Phobe code (Prša & Zwitter, 2005). Up to 2016 the beter 

results and cost function values were found for a semidetached configuration, later the light curves prefer a contact 

model (Fig. 3b). The corresponding changes of its orbital period are also visible on the current O-C diagram. 
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Figure 3: The light curve of V0361 Lyrae in V-band obtained during several nights in 2018. The brightening close to the 

phase 0.38 is clearly visible as well as variations of the light curve around phase 0.6 (left panel). The current solution of 

V0361 Lyr obtained in Phoebe leads to a contact binary configuration with a large hot region on the secondary component 

(right panel) instead of a previous semi-detached model.  

Low-mas binaries 

Low-mass binaries are a next interesting group of late-type main-sequence binaries, where masses of both 

components are usually less than 0.6 solar mass. Although M dwarfs are the most numerous stars in our Galaxy, 

their masses and radii are insufficiently calibrated. The origin of low-mass stars and brown dwarfs is still an 

unresolved question in star formation theory. Moreover, observations of low-mass stars show a discrepancy 

between estimated and modeled parameters, where the models give 5-10% smaller radii than observations. The 

identification and characterization of low-mass multiples is also highly relevant to exoplanet studies. Thus, low-

mass stars and their multiple systems play an important role in stellar astrophysics. 

Our long-term photometric program reveals that substantial number of these objects is in fact a multiple stellar 

system. In case of eclipsing binaries YY Gem (= Castor C) and GU Boo we discovered a substellar companion 

(probably a brown dwarf) with the mass of about 50 Jupiter mass only. Our results on five selected systems are 

summarized in Table 2; see also Wolf et al. (2016, 2018) for more details. These papers were published together 

with several advanced SPHE members, who contributed significantly by new CCD measurements.  

Table 2. Low-mas eclipsing binaries with third bodies studied photometricaly with contribution of SPHE members. 

 

System  V [mag] P [day] P3 [yr] M3, min [MJup] 

NSVS 01286630 13.08 0.38 3.61 108 

NSVS 02502726 13.41 0.56 6.87 38 

NSVS 07453183 12.50 0.37 1.14 434 

GU Boo 13.11 0.49 11 54 

YY Gem 9.27 0.81 54 49 

Cataclysmic variables 

Cataclysmic variables (CVs) are semidetached interacting binaries, consisting of a late-type star (secondary) and 

more massive white dwarf (primary). The secondary overfills its Roche lobe and the matter from the secondary is 

being transferred to the white dwarf. Around the primary with a relatively weak magnetic field is formed an 

accretion disc. The transferring matter hits the accretion disc and creates a shock-heating area called the bright 

spot. The CVs must lose their angular momentum to sustain the mass transfer process. There are two possible 

mechanisms of loosing angular momentum: gravitational radiation (for Porb < 2 h) and magnetic braking via the 

secondary star wind (Porb > 3 h). This process of decreasing orbital period can be seen in O-C diagrams. The 

solution of the light curve of CVs thus belongs to rather more complicated task, including all four components: 

white dwarf, accretion disc with the bright spot and a late type secondary component. Four well-known systems 
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of similar brightness and short orbital period were studied for their possible period changes in the past: EX Dra, 

V2051 Oph, OY Car and Z Cha. 

The dwarf nova EX Draconis is a frequently studied eclipsing binary system with an orbital period of about 5 h 

and deep eclipses (~1.5 mag). EX Dra was first detected in the Hamburger Quasar Survey (Bade et al. 1989) and 

was shown to be an eclipsing dwarf nova by Barwig et al. (1993). See also history of investigation of EX Dra in 

Pilarčík et al. (2012). The residuals with respect to the linear ephemeris show a cyclical behaviour. The current O–

C data present a 21 yr period modulation with semi-amplitude of 2.5 min. Nevertheless, eclipse timings show 

significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not the only and complete 

description of the data. 

For three southern objects V2051Oph, OY Car and Z Cha we have also found cyclic period changes lasting 25, 29 

and 43.5 years, respectively.  Our results confirm that all three CVs below the period gap are interesting systems 

showing the cyclic period modulation, see Table 3 (Pilarčík et al. 2018). The most promising explanation of these 

cyclical changes seems to be existence of a solar-type magnetic activity in the secondary star (Applegate 1992, 

Lanza et al. 1998).  

Our current observing list on the D65 telescope contains more than dozen of relatively well-known cataclysmic 

binaries for photometric monitoring: V1315 Aql, SDSS1435 Boo, AC Cnc, HT Cas, HS0455+8315 Cep, 

SDSS1544 CrB, Lan386 Cyg, EX Dra, newly discovered SU UMa-type CzeV404 Her (Cagaš & Cagaš, 2014),  

BH Lyn, SW Sex, RW Tri, TT Tri, and DW UMa. 

   

          

 

Figure 4: The differential light curves of EX Dra in V-band obtained during 2018 in Ondřejov (left). Variations in eclipse curve 

profile are given in different colors, the changes in brightness is about 2-3 mag (picture created by Jan Kára). The current O-C 

diagram for V2051 Oph shows cyclical changes with a period of about 25 years. The quadratic plus sinusoidal fitting is also 

suitable (bottom right panel). 

 

Table 3. Cataclysmic binaries studied photometricaly in the past. 

 

System Type  V [mag] P [day] Pcycle [yr] 

EX Dra dwarf nova 14.0-16.2 0.20994 21.1  

V2051 Oph SU UMa 13.5-16.5 0.06242 25.2 

OY Car SU UMa 12.4-16.3  0.06312 29.1 

Z Cha SU UMa 11.9-16.2 0.07450 43.5  
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Conclusions 

We completed several period studies of selected eccentric eclipsing binaries, low-mass eclipsing binaries and 

cataclysmic variables by performing an O-C diagram analysis. In many binaries we have found an additional body 

(MS star or brown dwarf) orbiting the eclipsing pair and confirm the multiplicity of these systems.  All our studies 

clearly prove that systematical monitoring of different types of short-period binaries gives us interesting results 

deserving regular publications. The participation of observers associated in the Variable Star and Exoplanet 

Section of the Czech Astronomical Society is significant.  
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Double eclipsing systems: from observer’s perspective 
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Abstract: Double eclipsing systems are still rather rare objects. Due to this reason their observations are still very 

welcome. However, how to observe them? How to choose which one to observe? Or even, how to discover some 

new ones in the star field? 

 

Introduction – what are the double eclipsing binaries? 

Double eclipsing systems (sometimes also called doubly eclipsing systems) are those ones showing two sets of 

eclipses with different periods. It means one can only need photometry to detect any such star. This double 

eclipsing behaviour necessarily means that there are two independent eclipsing binaries orbiting with different 

periods, but one do not know whether these two binaries are bound to each other and constituting a 2+2 quadruple 

system. In general, both these binaries can also be very distant from each other, only projected into the same 

position on the sky. 

During the last ten years there were discovered several such systems, some of them are quite well-known 

nowadays. This is for example the case of V994 Her, which was discovered in 2008 by Lee et al. (2008). Much 

later (Zasche & Uhlař 2016) it was proved that the two binaries orbit around each other on their mutual orbit with 

the period of about 2.9 years only, hence constitute a multiple system. Another quite well-known and often 

observed double eclipsing system is the one called 1SWASP J093010.78+533859.5 (see e.g. Lohr et al. 2015), 

containing one contact and one detached binary. 

However, these two systems (plus V482 Per) are the exceptions from the rule. Huge majority of the known double 

eclipsing systems were discovered thanks to the large photometric surveys monitoring the southern fields, the 

Magellanic Clouds and the Galactic center. Due to this reason, we have quite unfavourable statistics, see Fig. 1. 

As one can see on this picture, the large majority of systems is located in the south, hence quite unreachable for 

the northern-hemisphere observers. 

Observations – what can observer do? 

Altogether we know nowadays more than 140 such systems, but only for several of them their mutual motion 

(hence also the quadruple nature) was proved up to date. Hence, any new observation for these interesting objects 

is very welcome and can lead to new proof that also another system is in fact a quadruple. 

Observing the double eclipsing system can be quite tricky. The main problem is that there exist two periods, which 

entangle to each other and out task is to disentangle the complete photometry into two separate binaries. The main 

advantage is a fact that the two periods are known. Hence, we can plan our observation according to the predictions 

of particular phase to be observed and also to calculate the phase of the second binary. Here comes the main aspect 

of the whole issue – please be aware of the pair which you are observing! Sometimes the contribution of the other 

pair can be neglected (in case of “flat” part of the light curve outside of minima), but sometimes it is not possible. 

This is the case of the already mentioned system 1SWASP J093010.78+533859.5, where one of the pairs is contact 

and its magnitude is steadily changing over the whole phase. It means, this contribution easily cannot be ignored 

and has to be subtracted somehow. This is usually not a task for observer, but for some professional astronomer to 

do so. Hence, a tight collaboration between the two is usually necessary. 

Another quite important aspect is a fact that due to large fraction of the third light, the individual eclipses can be 

quite shallow. This is particularly important when considering the way how to observe such a target. It means that 

sometimes the two binaries have quite similar eclipse depths (in the case where the binaries are similar to each 

other also in masses and luminosities), but sometimes the two binaries have very different photometric amplitudes. 

The first (similar) case is e.g. 1SWASP J093010.78+533859.5, while the second (very different) case should be 

e.g. KIC 4247791. In some special cases when the second binary has its eclipses only very shallow, one can ignore 

them. But more secure is to obtain the photometry in that part of the light curve, when the second pair is outside 

of its minimum, has flat parts outside of eclipses and we are also sure about its ephemerides. However, this can be 

quite tricky - to plan proper observations according to both of these ephemerides. See our Fig. 2, where an attempt 

to plot this was done. The system V994 Her was used to construct the diagram showing the two sets of eclipses 
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and how they interfere with each other. The observer should take care of it and observe only proper eclipses, or be 

aware of it and subtract the contribution of the other pair. 

 

Figure 1: Plot of the distribution of double eclipsing systems known yet. The huge majority of the targets on the southern sky 

is evident, mainly due to large surveys. 

 

Figure 2: Plot of the combined light curve of V994 Her according to the ephemerides of both pairs. The contributions of both 

pairs are being combined in every time of observation. But as one can see, only some of the eclipses of the particular pair can 

be observed with no disturbance of the other pair with also a short part of the constant phase (good ones indicated by arrows). 

List of potential targets for courageous observers 

The list of potential targets for observations is nowadays more extensive, but still has several limitations. Besides 

the fact of position on the sky as mentioned above (Fig.1), also other limitations can play a role. One important 

fact is the magnitude of the target. There are not so many brighter systems, most of them is fainter than 12 mag, 

which makes them more difficult to observe by amateur observers with their medium-size telescopes. Another 

limiting factor is also the value of period – sometimes we deal with quite long orbital periods. And in some cases 

the period is shorter, but the light curve is of W UMa or Beta Lyr type, hence is changing over the whole phase. 

Therefore, it is necessary to subtract this contribution. 
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In Table 1 there are given the targets satisfying the criteria (DEC ≥ -10 deg), which can be observed with smaller 

telescopes. Their position, periods, magnitude ranges of both pairs, as well as their GCVS classification types are 

given. For more detailed information about the shape of the light curve, a reference for particular system is given. 

Sometimes the estimation of “D” or “d” (duration of the eclipse or length of totality) is a crucial factor for particular 

system and observatory whether to observe the target or not. One has to be very careful when observing and during 

subsequent interpretation (time of eclipse of particular pair, when the eclipses are similar and one can easily 

interchange them). 

 

Name 
Position Pair A Pair B 

Type Reference 
[RA  DE] PeriodA [d] Mag.range PeriodB [d] Mag.range 

EPIC 220204960 00 48 32.65  +00 10 18.5 13.2735 17.1-17.104 14.4158 17.1-17.104 EA + EA 2017MNRAS.467.2160R 

V482 Per 04 15 41.33  +47 25 19.9 2.44675265 10.25-10.55 6.001749 10.25-10.27 EA + EA 2017ApJ...846..115T 

CzeV343 05 48 24.01  +30 57 03.6 1.209364 13.68-12.86 0.806869 13.68-13.83 EA + EA 2012A&A...544L...3C 

CoRoT 223993566 06 41 49.17  +10 07 19.4 1.18067 14.14-14.20 0.934856 14.14-14.15 EA + EA 2017MNRAS.471.1230H 

CoRoT 110829335 06 49 04.86  -05 51 31.3 8.9304 13.65-13.70 50.3075 13.65-13.66 EA + EA 2017MNRAS.471.1230H 

1SWASP J093010.78+533859.5 09 30 10.75  +53 38 59.8 0.2277142 9.54-9.72 1.3055472 9.54-9.82 EW + EA 2015A&A...578A.103L 

EPIC 212651213 13 55 43.46  -09 25 05.9 5.07655 10.98-11.09 13.1947 10.98-11.00 EA + EA 2016MNRAS.462.1812R 

V994 Her 18 27 45.90  +24 41 51.0 2.083265783 7.14-7.46 1.42003948 7.14-7.25 EA + EA 2016A&A...588A.121Z 

CoRoT 310266512 18 31 19.74  -05 49 54.6 7.421 14.23-14.42 3.266 14.23-14.24 EA + EA 2015PASP..127..421F 

CoRoT 310284765 18 33 51.26  -05 39 23.5 2.371125 14.79-15.01 1.8754 14.79-14.85 EA + EA 2017MNRAS.471.1230H 

KIC 3832716 19 01 34.60  +38 54 17.7 1.14187687 13.34-13.74 2.1702736 13.34-13.47 EA + EA 2018Ap&SS.363..267F 

CoRoT 211659387 19 04 00.93  +03 30 32.2 0.393957 15.42-15.60 4.00 15.42-15.57 EW + EA 2017MNRAS.471.1230H 

KIC 4247791 19 08 39.56  +39 22 36.9 4.100871 11.58-11.78 4.049732 11.58-

11.598 
EA + EA 2012A&A...541A.105L 

TYC 2693-926-1 20 26 43.83  +35 20 30.0 1.350447 12.08-12.28 1.099203 12.08-12.28 EA + EW 2018PZ.....38....3K 

NSVS 154567 22 31 41.96  +68 46 22.3 11.4838 13.29-13.54 2.93956 13.29-13.47 EW + 

EW 
2018PZ.....38....3K 

Table 1: List of targets visible from the northern observatories. Their position, designation and periods are given together with 

the approximate magnitude ranges (in V filter) for both pairs. The reference in the last column is given for closer look to the 

shape of the light curve of both pairs to estimate the duration of the eclipses, etc. 

How to discover new systems 

As was already plotted above in Figure 1, the number of systems on the northern and southern part of the sky is 

very different. Hence, one can expect that much more systems are still waiting to be discovered also on the northern 

part of the sky. Maybe some of these targets are already located in the observed fields in the vicinity of some well-

known variable star. Hence, one has to pay attention on some unexpected behaviour of our photometric data for 

particular system. Sometimes there appear special humps, dips, or asymmetries of the light curves (see the Fig 3 

below). However, it is also advisable to observe the whole curve near eclipses, not only the central part – but also 

the constant phase outside of minimum itself. 

Also when uploading the observation of minimum into the databases like e.g. http://var2.astro.cz/ one has to be 

very careful and not to delete every data point which is somehow deviating or not following the assumed trend. 

Any such distortion can be caused by the other pair, and the two eclipses can interfere with each other (as 

schematically plotted in Fig. 2). 

Discussion and Conclusion 

Recent discoveries of new double eclipsing binaries brought to us an important finding – a huge majority of these 

systems are really bound to each other and constitute rare quadruple systems. Such systems are of large importance 

in the stellar structure and evolution theories. However, their mutual orbits (of both pairs around a common 

barycenter) can be rather short sometimes – only a few dozens of the orbital periods of the inner pairs. Hence, 

periods of about 50-200 days can only hardly be detected when observing the particular target only once per a 

year. Therefore, a much more dense photometry (e.g. one minimum every other week?) would be needed to detect 

the outer period of both pairs more conclusively. 

http://var2.astro.cz/
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Figure 3: An example of different shapes of eclipses of V994 Her as observed during our photometric campaign. As the two 

pairs interfere with each other, the normal symmetric shapes of the eclipses became very distorted due to the presence of the 

second pair during one particular observing run. 
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Abstract: I give a personal account of some of the discoveries involving citizen astronomers and the lessons they 

teach us on how to best adapt to the changing landscape of astronomy in the future. 

 

Introduction 

We are now experiencing revolution in time-domain astronomy. The amount of available data in the time domain 

has been growing exponentially owing to the projects like Sloan Digital Sky Survey (York et al. 2000), All-Sky 

Automated Survey (Pojmanski 2002), Catalina Real-Time Transient Survey (Drake et al. 2009), Palomar Transient 

Factory (Law et al. 2009), Zwicky Transient Factory (Bellm 2014), Asteroid Terrestrial-impact Last Alert System 

(Tonry et al. 2018), Pan-STARRS (Kaiser et al. 2002), All-Sky Automated Survey for Supernovae (Shappee et al. 

2014, Kochanek et al. 2017) and many others. These efforts will culminate with the Large Synoptic Survey 

Telescope (Ivezic et al. 2008), which will begin discovering tens of millions of variable stars and millions of 

transients starting in 2023. Given this progress, it is imperative to ask how will the members of our Section – 

citizen astronomers with small optical telescopes and CCD cameras – maintain contact with the forefront of 

astronomical research? 

The first answer to this question is rather trivial: citizen astronomers, whose time on the sky is not paid by public 

funds, are not required to be involved in any research at all and can devote their time to whatever enterprise they 

find intriguing. Nonetheless, our Section has for a long time maintained a very close contact with astronomical 

research and many members find this involvement very attractive. For this audience and to celebrate our long and 

esteemed history, exemplified by the 50th anniversary Conference on Variable Star Research in 2018, I provide an 

outlook to the future.  

The title of this paper refers to the distant future 50 years from now. It is impossible to know what exciting 

discoveries are awating and how will astronomy and society look like at that time; even the largest infrastructure 

projects are planned on 20- to 30-year timescale. But we can use our past to guide us in the future. In this paper, I 

review few discoveries, where citizen astronomers played an important part and which were important for me 

personally. For each discovery, I try to come up with skills or technological advancements that made them possible 

and generalize them for the future. Obviously, this is a very personal account and the views expressed are only of 

my own. 

Lessons from past discoveries 

The first discovery happened before my time in astronomy, but I heard about it from those involved as well as 

other contemporaries. In April 1993, Kamil Hornoch and Jan Kyselý were visually recording brightness of 

supernova SN1993J and each of them independently noticed that one of the stars in the vicinity of the supernova 

(actually one of the recommended comparison stars) was changing brightness. Hornoch alerted nearby 

observatory, where their discovery was quickly confirmed with photoelectric photometer. The result was published 

soon afterward (Hanžl et al. 1993). Their discovery must have influenced on some level many optical observations 

of SN1993J, which turned out to be one of the most studied supernovae with unusual spectral evolution (spectral 

type IIb) and with its progenitor detected in pre-explosion images (e.g., Schmidt et al. 1993). The primary lesson 

I take from this discovery is that in addition to our primary goal we must be aware of our surroundings and notice 

what is happening elsewhere. Such an auxiliary discovery might be even more important than our primary goal. 

The second event is an independent discovery of the main outburst of V838 Mon made by Ladislav Šmelcer on 

February 2, 2002. On that night I was being trained how to use 40cm telescope at Brno observatory by Petr 

Sobotka. We received a phone call from Šmelcer and immediately altered our program to continuously monitor 

this object. The observations were published (Sobotka et al. 2002). Later, this outburst of V838 Mon gave rise to 

prominent light echoes, which were recorded in some of the most spectacular images from the Hubble Space 

Telescope. The nature of V838 Mon outburst has been debated, but the prevailing opinion attributes the brightening 

to the merger of two stars, making V838 Mon a prototype of “luminous red novae” (e.g., Soker & Tylenda 2006). 

Observations of transients were not systematically organized by our Section in those days and Šmelcer’s discovery 

therefore illustrates that it is important to try new things and the luck might follow. 
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The third lesson is based on the work of Kamil Hornoch summarized in his paper (Hornoch et al. 2008). Hornoch 

made an industry out of discovering classical novae in nearby galaxies such as M81 and M31. He has done this 

with a large variety of telescopes, some of them similar to what citizen astronomers have access to. Although I 

have never followed this field closely, I learned that professional astronomers hold respect for Hornoch and his 

work. I think the reason for this success is the combination of intuition for identifying a subfield not entirely 

cornered by professional astronomers due to lack of resources or interest and the diligence and persistence in 

painstakingly taking observations, comparing them to archives, finding collaborators, and reporting on the 

findings. Doing things better than everybody else is a good path to success. 

The fourth lesson is the discovery of double eclipsing binary CzeV343 by Pavel Cagaš in 2012 (Cagaš & Pejcha 

2012). While few double eclipsing binaries were known before, and many more were identified afterward, 

CzeV343 is special by having the orbital periods of the two binaries close to 3:2 resonance. The result is a complex 

light curve that slowly changes as the signatures of the two binaries shift with respect to each other. What enabled 

this discovery? Even when professional astronomers aggressively pursue time-domain surveys, there are still 

combinations of cadence, depth, field of view, and wavelength that have not been fully explored. One should 

identify these areas, even if intuitively, and go all in. In this case, Cagaš used large field-of-view telescope and 

camera to image a single field few hundred times every night in many consecutive nights. The transient-oriented 

surveys would likely have missed this object, because the usual pattern of revisiting a field every day or every few 

days combined with the near-resonance of periods and with the long-term changes in the system parameters would 

scramble the light curve beyond recognition. On a personal note, this discovery inspired me to pursue more deeply 

issues related to stellar dynamics and collisions of stars. 

Conclusions 

An important question concerns with the fundamental difference between time-domain surveys and citizen 

scientists, who often use similar hardware. It is the software that transforms raw images into human-readable data 

and ultimately science. Although software is a challenge for professional astronomers as well, I worry that citizen 

astronomers might be falling behind and that this lag is starting to restrict the variety of projects that could be 

executed with the existing hardware. To give an example, image subtraction and machine learning would greatly 

simplify many of the menial tasks faced by citizen astronomers in the time domain. Developing or adapting 

existing software is conceptually similar to building a small observatory in the sense of starting with the design, 

continuing with the assembly from existing and perhaps modified components, and finally debugging. Both take 

a lot of time, effort, and there is a learning curve. Yet, there seems to be a barrier to software development among 

citizen astronomers, which might be connected to wider societal issues. I do not have a magic solution, but I feel 

that everybody should try to get involved. Since much of the software developed by professional astronomers is 

now open source and publicly available, there is a great underutilized potential of reusing the available tools. 

I think our Section and our members are uniquely positioned to continue making impact on astronomical research. 

Of course, there are challenges, primarily related to software, but these are not show-stoppers. In fact, the Section 

leadership has been continuously working on the software issues. More participation from the membership at large 

would of course be very beneficial.  

To conclude, I would like to recommend that all of our members follow new developments in astronomy and 

actively try to observe the same or similar phenomena to stay in contact with the forefront of the astronomical 

research. I also suggest that everybody devotes ~10% of their observing time to try new things to actively nurture 

discovery. This is such a small amount of time that the primary goal will not be significantly affected: 90 or 100 

minima timings do not make that big of a difference. I also suggest to report on these experiments at our annual 

conference to get feedback, inspiration, and to continuously enhance the intellectual environment of our Section. 
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