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Abstract

Since the first observation of triple-lens gravitational microlensing in 2006, analyses of six more events have been
published by the end of 2018. In three events the lens was a star with two planets; four involved a binary star with a
planet. Other possible triple lenses, such as triple stars or stars with a planet with a moon, are yet to be detected.
The analysis of triple-lens events is hindered by the lack of understanding of the diversity of their caustics and
critical curves. We present a method for identifying the full range of critical curves for a triple lens with a given
combination of masses in an arbitrary spatial configuration. We compute their boundaries in parameter space,
identify the critical-curve topologies in the partitioned regions, and evaluate their probabilities of occurrence. We
demonstrate the analysis on three triple-lens models. For three equal masses the computed boundaries divide the
parameter space into 39 regions yielding nine different critical-curve topologies. The other models include a binary
star with a planet, and a hierarchical star–planet–moon combination of masses. Both have the same set of 11
topologies, including new ones with doubly nested critical-curve loops. The number of lensing regimes thus
depends on the combination of masses—unlike in the double lens, which has the same three regimes for any mass
ratio. The presented approach is suitable for further investigations, such as studies of the changes occurring in
nonstatic lens configurations due to orbital motion of the components or other parallax-type effects.
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1. Introduction

The majority of observed Galactic gravitational microlensing
events are caused by single-star lenses passing close to the line
of sight to source stars in the Galactic bulge (Paczyński 1996).
Second in terms of frequency are events due to binary-star
lenses (Schneider & Weiss 1986). These lead to a higher
diversity of light-curve shapes, with particularly abrupt changes
in flux occurring when the source star crosses the caustic of
the lens.

Similar in their character are microlensing events with the
lens consisting of a star with a planet. First detected in 2003
(Bond et al. 2004), these events are the prime targets of the
ongoing microlensing surveys, which have discovered 75
planets so far.1 The main appeal of microlensing as a planet-
finding technique is that its sensitivity extends down to Earth-
mass planets, it is highest for planets at astronomical-unit-scale
separations from their host stars, and it is independent of host-
star type.

The first observed event unambiguously caused by a triple
lens was OGLE-2006-BLG-109 (Gaudi et al. 2008; Bennett
et al. 2010), with the lens consisting of a host star and two
planets. Two more microlensing events involving a star+two-
planet lens have been published so far: OGLE-2012-BLG-0026
(Han et al. 2013; Beaulieu et al. 2016) and OGLE-2014-BLG-
1722 (Suzuki et al. 2018). In addition, four events involving a
binary-star lens with a planet have been published: OGLE-
2007-BLG-349 with a circumbinary planet (Bennett et al.
2016), OGLE-2008-BLG-092 (Poleski et al. 2014), OGLE-
2013-BLG-0341 (Gould et al. 2014), and OGLE-2016-BLG-
0613 (Han et al. 2017b).

The events with a binary-star or star+planet lens can be
described by two-point-mass microlensing. The properties of
this lens model have been studied in detail and are well
understood (e.g., Schneider & Weiss 1986; Erdl & Schneider
1993; Witt & Petters 1993; Dominik 1999). There are three
lensing regimes with corresponding critical-curve topologies
and caustic structures occurring for different separations of the
point-mass lens components. The understanding of the variety
and parameter dependence of possible light curves greatly
facilitates the analysis of such events.
The analysis of triple-lens events is hindered by the lack of

similar insight. The great diversity provided by the under-
lying three-point-mass lens model has not been explored fully
yet: the overall range of different lensing regimes, critical-
curve topologies, and caustic structures remains unknown.
Note that the general triple lens includes not only the
observationally detected star+two-planet or binary-star+pla-
net systems but also lenses formed by two other types of
systems: triple stars, and stars with a planet with a moon.
Triple lenses thus also provide an interesting channel for
potential exo-moon detection.
Much of the published theoretical work on triple lenses

concentrates on the detectability of microlensing by specific
types of lenses: stars with two planets (e.g., Gaudi et al. 1998;
Bozza 1999; Han et al. 2001; Ryu et al. 2011; Song et al.
2014), binary stars with a planet (e.g., Han 2008a; Lee et al.
2008; Luhn et al. 2016; Han et al. 2017a), or stars with a planet
with a moon (e.g., Han & Han 2002; Han 2008b; Liebig &
Wambsganss 2010). In addition, the close and wide triple-lens
limits were studied analytically by Bozza (2000a, 2000b).
In our previous work we developed techniques for the

analysis of general n-point-mass lenses based on the properties
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of the lens-equation Jacobian (Daněk & Heyrovský 2015a). In
Daněk & Heyrovský (2015b) we applied these methods to
simple two-parameter triple-lens models and mapped the
critical curves and caustics in their respective parameter spaces.
Based on these results, we extend the approach further in this
work and map the different lensing regimes for a given
combination of three masses in an arbitrary spatial configura-
tion. In this way we may approach a similar level of
understanding of triple lenses to that achieved by the earliest
analyses of Schneider & Weiss (1986) for two-point-mass
lenses.

We start in Section 2 by reviewing the main properties of the
triple lens, its critical curve, and the transitions between
different critical-curve topologies. We introduce our parame-
terization of the spatial configuration of the lens in Section 3,
choosing one parameter to define its size and two to define its
shape. In Section 4 we demonstrate how to map topology
changes for a given configuration shape as a function of its
size. This approach leads to the partitioning of the parameter
space into regions with different critical-curve topologies. We
describe the identification of the topologies within the
individual regions in Section 5 and the computation of the
relative probabilities of their occurrence in Section 6.

Our main results can be found in the next three sections, in
which we analyze three triple-lens models with different
combinations of masses: the Equal Masses model in
Section 7, the Planet in Binary model in Section 8, and the
Hierarchical Masses model in Section 9. For each model we
present the boundary surfaces partitioning its parameter space,
the sequence of critical-curve topologies from the close to
the wide triple regime, and their relative probabilities. We
summarize the results and discuss their implications in
Section 10.

2. The Triple Lens and Its Critical Curve

We model the three components of the lens by point masses
and assume the thin-lens approximation, in which all three lie
at a single distance from the observer. Following Witt (1990),
we identify the plane of the sky with the complex plane and
mark positions in the plane by complex numbers. Using the
angular Einstein radius of the total mass as a length unit,
we can write the lens equation relating the position of a
background source ζ and the position z of its image as
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Depending on the source position and lens configuration,
Equation (1) produces 4, 6, 8, or 10 images. Varying the
position of a point-like source leads to pairs of images
appearing and disappearing along the critical curve of the lens
(e.g., Schneider et al. 1992). In mathematical terms, the critical
curve is the set of points zcc at which the Jacobian of the lens

Equation (1) vanishes. Since the Jacobian can be expressed as
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where [ )f pÎ 0, is a phase parameter (Witt 1990; Daněk &
Heyrovský 2015a). The source positions corresponding to the
critical curve form the caustic of the lens ζc, obtained by setting
z=zcc in Equation (1).
The caustic consists of a set of closed cusped loops in the

source plane, which may intersect or self-intersect.2 The critical
curve consists of the same number of closed smooth loops in
the image plane. These loops may be separated, each enclosing
a different region of the image plane, or some loops may be
located (“nested”) inside other loops. The number of loops and
their relative spatial positions define the topology of the critical
curve. Transitions between topologies involve self-intersecting
loops, as discussed further below. In all other cases the loops of
the critical curve do not intersect.
The critical curve of a point-mass lens has one topology: a

single loop forming the Einstein ring of the lens. The critical
curve of the two-point-mass lens (Schneider & Weiss 1986;
Erdl & Schneider 1993) has three different topologies: an outer
loop with two inner nested loops for small separations of the
components (in the “close” regime), a single loop for
intermediate separations (“intermediate” regime), and two
separate loops for large separations (“wide” regime). Each of
the topologies thus defines a particular lensing regime with its
specific characteristics.
For a general n-point-mass lens, varying the lens parameters

zj and μj alters the shape and location of the loops of the critical
curve. Its topology remains unaffected, except when separate
parts of the critical curve come into contact. A lens in such a
special configuration has a critical curve with one or more self-
intersecting loops. With a further change of parameters the self-
intersections disappear, leading to the merger or splitting of the
involved loops and, thus, a different topology of the critical
curve.
The combinations of parameters at which such contact

occurs define the topology boundaries in the parameter space.
The special transitional topologies along the boundaries form a
link between topologies of different lensing regimes and thus
occupy lower-dimensional regions of the parameter space. In
the following we do not discuss them further and concentrate
purely on topologies occupying nonzero volume in the studied
parameter space. Examples of transitional topologies for a
simple triple-lens model can be seen in Figure 5 of Daněk &
Heyrovský (2015b).
The full set of topology boundaries partitions the parameter

space into topology regions. All lenses with parameter
combinations from such a region share the same critical-curve
topology. For the two-point-mass lens there are three topology
regions, each with a unique topology. However, in the case of

2 Intersections occur in n-point-mass lenses with n�3.
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the triple lens a given topology may correspond to one or more
separate topology regions within the full parameter space, as
shown in Daněk & Heyrovský (2015b) and in the present work.
Hence, the number of different topologies of a given lens
model is always less than or equal to the number of topology
regions.

Classification of critical-curve topologies and the mapping of
their topology regions in parameter space thus starts from
identifying the topology boundaries. The mathematical condi-
tion defining these topology-changing lens configurations
requires the critical curve to pass through a saddle point of
the Jacobian (e.g., Schneider & Weiss 1986). Saddle points are
stationary points of the Jacobian that have a negative Hessian,
the determinant of second derivatives (see Section3.2 of
Daněk & Heyrovský 2015a). The corresponding condition
z̄¶ = 0z

2 can be combined with Equation (1) to yield the
saddle-point equation
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which can be converted to a polynomial of degree 6 with roots
z=zsadd. As discussed by Daněk & Heyrovský (2015a), the
number of different saddles may be lower in special cases,
since some of the solutions of Equation (4) may represent
higher-order maxima rather than saddles. In addition, the
polynomial obtained from Equation (4) may have multiple
roots, which correspond to higher-order saddle points.3 As a
result, the three-point-mass lens has at most six different saddle
points. The topology boundaries then consist of sets of lens
parameters that allow a common solution z=zcc=zsadd of
Equations (3) and (4).

Several approaches to solve the problem were summarized in
Daněk & Heyrovský (2015a), Daněk & Heyrovský (2015b). In
this work we analyze critical-curve topologies by exploiting the
Jacobian contour correspondence pointed out by Daněk &
Heyrovský (2015a) for lenses consisting of n point masses.
According to the correspondence, a positive-value contour of
the Jacobian has the shape of the critical curve of a lens with
the same components placed closer together. A negative-value
contour has the shape of the critical curve of a lens with the
same components placed farther apart. The curves differ only in
their scale: in the former case the contour is larger than the
corresponding critical curve; in the latter case the contour is
smaller than the corresponding critical curve. The scaling of
this correspondence can be expressed by

( ) ( ) ( )m m l l= - -lz z z z, , 1 1 , 5j j j jcc
4 4

where zλ(μj, zj) is the det J=λ contour and zcc(μj, zj) is the
critical curve of a lens with fractional masses μj and positions
zj. The full set of contours ( )l Î -¥, 1 thus illustrates the
critical curves of all similar rescaled lens configurations with
component separations ranging from ¥ to 0.

For our purposes this property can be utilized as follows: if
we identify the Jacobian contour passing through a given
saddle point by setting z=zsadd in Equation (2), we can find a

lens configuration on a topology boundary by shifting the
component positions ( ) -z z J z1 detj j sadd

4 . For a given
shape of the triangle defined by the lens components with given
masses we can thus easily determine all rescaled configurations
that lie on topology boundaries. Since there are at most six
different saddle points, there will be at most six different
Jacobian contours passing through them, taking into account
that several saddle points may lie on the same contour. As a
result, the critical curve of a given triple-lens shape may
undergo up to six topology changes as we gradually reposition
the components from the close regime (resembling a single
combined-mass lens) to the wide regime (leading asymptoti-
cally to three independent lenses).

3. Parameter Choice

The static triple lens has eight degrees of freedom. In the
notation of Section 2 these are, for example, the real and
imaginary parts of the positions of the three components zj, plus
any two of the fractional masses μj. In this work we concentrate
on the topology of the critical curve. Therefore, we may reduce
the number of free parameters to five by setting the origin of
the complex plane (e.g., at the centroid of the configuration)
and its orientation. The conversion to such a preferred frame is
described in Appendix A.1.
Instead of attempting to visualize topology boundaries in a

5D parameter space, we fix the two fractional masses and
explore the dependence on the three spatial configuration
parameters in detail. Such a separation is natural, since one may
concentrate on astrophysically different types of triple lenses
(triple stars, binary stars with a planet, stars with two planets,
etc.). Moreover, a significant fraction of the microlensing
events with planets or multiple stars involves their orbital
motion and parallax effects, both of which can be described by
changing the positions of fixed-mass components. From the
numerical point of view, mapping critical-curve topologies in a
3D parameter space as described below is sufficiently robust to
permit determination of the full range of topologies that may
occur for the given combination of masses.
The configuration of the lens can be described by the

properties of the projected triangle formed by the components
in the plane of the sky. In order to utilize the Jacobian contour
correspondence described above, it is convenient to use one
scaling parameter to describe the size and two parameters to
describe the shape of the triangle. We chose the perimeter p of
the triangle as the scaling parameter. In the limit p→0 all
components approach a single point, while in the  ¥p limit
at least one of the components is asymptotically separated from
the others. Note that since p is the perimeter in units of the total
Einstein radius, increasing p may involve increasing the
physical separations of the components or decreasing the total
Einstein radius—and vice versa. Of our five parameters, p is the
only one affected by changes in the total lens mass (with fixed
fractional masses) and the line-of-sight distances to the lens and
source.
The most intuitive way to characterize the shape of the

triangle would be to use two of its angles. Unfortunately, such a
parameterization fails to distinguish between different collinear
configurations with the third component positioned along the
line connecting the first two (Daněk & Heyrovský 2015b). All
such configurations would correspond to the same set of angles
{0, 0, π}. Instead, we use any two lengths of sides a, b, c of the
triangle expressed as fractions of the perimeter: ºa a pp ,

3 As shown by Daněk & Heyrovský (2015b), triple-lens Jacobians may have
monkey saddles, at which three loops of the critical curve connect.
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ºb b pp , ºc c pp . Note that all three are connected by
+ + =a b c 1p p p . Due to the triangle inequality, each of the

fractional side lengths ranges from 0 to 1/2. As a consequence,
the sum of any two fractional side lengths ranges from 1/2 to 1.
When one of the side lengths is equal to 1/2, the triangle
is reduced to a collinear configuration with the two outer
components separated by 1/2 and the position of the third
component specified by the other two “side” lengths. When two
of the side lengths are equal to 1/2, the third is equal to 0, so that
the positions of two components coincide and the triple lens is
effectively reduced to a two-point-mass lens. The conversion
between these triangular parameters and the preferred-frame
component positions is described in Appendix A.2. Their relation
to parameters typically used in the analysis of triple-lens
microlensing events can be found in Appendix A.3.

In order to visualize the division of the 3D parameter space,
we may use projected plots of the boundary surfaces, or—for
more detail—a series of 2D sections. In our choice of
parameters we use p=const. sections, with ( )Î ¥p 0, . Such
a section represents triangles of all different shapes with fixed
perimeter p. In order to retain the full symmetry of the model,
we use ternary plots to depict these sections. The ternary plot is
an equilateral-triangle-shaped plot with three slanted axes
representing three variables (in our case ap, bp, cp) that add up
to unity. In most applications, each variable runs from 0 to 1,
with 0 corresponding to a side of the plot and 1 to the opposite
vertex. However, in our case each variable runs from 0 to 1/2.
The axis labeling that maintains the unit sum in this case runs
from 0 at a vertex to 1/2 at the opposite side of the plot.

As shown in Figure 1, any point in such a ternary plot
unambiguously determines the shape of the lens configuration,
with all shapes being represented. Each of the small red
triangles illustrates the shape corresponding to the ternary point
at its centroid. Sides a, b, and c denote the right, left, and
bottom sides of the small triangles, respectively. We labeled the
ticks on the axes in twelfths in order to include the equilateral

configuration (the central point of the plot with ap=bp=
cp=1/3=4/12), as well as the axis limits (1/2=6/12),
and to provide better orientation than if we just used sixths.
The medians of the ternary plot correspond to isosceles
triangles, the sides correspond to collinear configurations,
and the vertices correspond to two-point-mass lenses (i.e.,
degenerate triple lenses with two components coinciding). By
adding the perimeter ( )Î ¥p 0, as an axis perpendicular to
the ternary plot, we represent the parameter space of a triple
lens with fixed masses by a semi-infinite ternary prism. This
can be seen in the figures starting from the top left panel of
Figures 2 and 3.

4. Tracking Critical-curve Changes from Close to Wide
Regime

For a given combination ap, bp defining the shape of the
triple-lens configuration, we compute = - -c a b1p p p and
use Equation (15) to compute the component positions for a
unit perimeter p=1. We then identify the Jacobian saddle
points from Equation (4) and compute the corresponding
perimeter values ( )= -p J z1 det sadd

4 at the topology
boundaries. As described in Section 2, generally there are six
such values for a given ternary point, although the number may
be lower—mostly in symmetric configurations. There may be
as few as two values, e.g., for three equal masses in an
equilateral-triangle configuration (TE model with mass para-
meter μ=1/3 in Daněk & Heyrovský 2015b) or for a linear
configuration with two equal masses symmetrically bracketing
a third component with sufficiently large mass (LS model with
mass parameter μ=1/9 or μ�0.2 in Daněk & Heyrovský
2015b). Varying the perimeter of a triple lens with a fixed
configuration shape may thus yield from three to seven
different topologies of the critical curve. For comparison, note
that the two-point-mass lens has two boundaries separating
three topologies for any mass ratio (Erdl & Schneider 1993).
We illustrate the sequence of topology changes with perimeter

in Figure 2 on the example of a lens with equal-mass components
and fractional sides (ap, bp, cp)=(0.25, 0.35, 0.4). The positions
of the lens components are marked by crosses in the image plane
in the bottom left panel, with axes marked in units of the
perimeter. The vertical dot-dashed line in the ternary prism in the
top left panel corresponds to configurations with perimeters
pä[0, 8]. Its intersections with the small colored polygons
indicate the six topology boundaries at p={1.776, 1.917, 2.519,
3.471, 4.454, 6.346}. The seven configurations marked by bullets
at p={1.50, 1.86, 2.22, 3.00, 4.00, 5.40, 8.00} lie in the intervals
defined by the intersections.
The blue curve in the bottom left panel is the critical curve for

the lowest bullet, p=1.50. It has the typical close-triple topology
of an outer loop, which corresponds to the total-mass Einstein ring
for p 0, surrounding four small inner loops (the smallest
central loop is barely visible). The first six black Jacobian
contours inward from the outer loop each pass through one of the
Jacobian saddle points (marked by plus signs). They represent the
transitional critical curves corresponding to the six intersection
perimeters from the top left panel. The added innermost contour
shows the critical curve in the wide-triple limit with p=14; the
three contours added outward from the blue outer loop with
p={1.25, 1.06, 0.92} are the outer loops of close-triple critical
curves. Their inner loops are nested inside the small blue loops.
The sequence of the seven different critical-curve topologies

corresponding to the bullets in the top left panel is shown in the

Figure 1. Ternary plot of triple-lens configuration shapes parameterized by side
lengths as fractions of the perimeter p of the projected triangle formed by the
lens components. Red triangles indicate the shapes corresponding to the
intersection points of the dashed parameter grid. Their right, left, and bottom
sides are marked a, b, and c, respectively. For more details see Section 3.
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right panels together with the corresponding caustics. The
critical curves (blue) are plotted over the six transitional
contours (black) from the bottom left panel. The axes are
marked similarly in units of the perimeter, so that the lens
components stay at the same positions in the seven plots. In the
case of the caustics (red), however, the axes are marked in units
of Einstein radii in order to include all loops of the caustic.
Their tick spacing is 0.5, and the major ticks indicate the
position of the lens configuration centroid.

Going from p=1.50 to p=1.86, the bottom inner loop of the
critical curve connects with the outer loop, so that the topology has

one outer loop surrounding three inner loops. Increasing the
perimeter further to p=2.22, the left inner loop connects with the
outer loop, leading to an outer-plus-two-inner-loops topology.
Next, the right inner loop connects with the outer, as seen in the
p=3.00 outer-plus-one-inner-loop topology. By p=4 the last
inner loop has connected with the outer loop, forming a single-loop
topology. The final two changes correspond to the detachment of
loops corresponding to the individual lens components. In this case
first the left component splits off, with a two-separate-loops
topology for p=5.40. Finally, the two right components split,
leading to the wide-triple topology of three separate loops as seen

Figure 2. Critical-curve topology changes with perimeter p for an equal-mass triple lens with fractional side lengths (ap, bp, cp)=(0.25, 0.35, 0.4). Top left: six
boundaries (polygons) separating seven topologies along the corresponding vertical line in ternary-prism parameter space. Bottom left: image-plane plot with axes in
units of p, lens positions (black crosses), and Jacobian saddles (magenta plus signs). Jacobian contours correspond to critical curves for p=0.92, 1.06, 1.25, 1.50
(blue), 1.776, 1.917, 2.519, 3.471, 4.454, 6.346, and 14 (from corners to lenses). The cusp curve (orange) marks positions of cusp images on contours. Right: critical
curves (blue) and caustics (red) for p values marked by bullets in the top left panel. See Section 4 for details.
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for p=8.00. Asymptotically, for  ¥p , these loops correspond
to the Einstein rings of three independent lenses.

The changes in the caustics can be seen in the right column,
with loops of the caustic gradually connecting and disconnect-
ing in step with the changes in the critical curve. Unlike in the
case of the critical curve, loops of the caustic may self-intersect
(here in all seven cases), separate loops may overlap (here in
the p=3.00 case), and pairs of cusps may appear and
disappear by additional caustic metamorphoses that do not
affect the critical-curve topology.

The number of cusps on a particular loop of the caustic can
be found by counting the number of intersections of the
corresponding loop of the critical curve with the orange cusp
curve (Daněk & Heyrovský 2015a) in the bottom left panel.
For example, for the blue p=1.50 critical curve we see that all
four small inner loops have three intersections each. Hence,
the corresponding loops of the caustic have three cusps each.
The outer loop of the critical curve has six intersections; thus,
the corresponding central loop of the caustic has six cusps. The
generic close-triple form of the central loop with four cusps is
reached for a lower value of the perimeter. As indicated by the
cusp curve, a critical curve for p slightly lower than the plotted
1.06 contour would not intersect the top-right-corner branch of

the cusp curve, leaving only four intersections on the outer loop.
Two of the cusps on the central loop of the caustic would then
disappear by a reverse swallow-tail metamorphosis. For more on
the cusp curve and triple-lens caustic metamorphoses see Daněk
& Heyrovský (2015a), Daněk & Heyrovský (2015b).

5. Mapping Critical-curve Topologies in the Parameter
Space

The example shown in Figure 2 illustrates the sequence of
topologies for a single point on the ternary-plot base, i.e., a single
triangular shape of the equal-mass lens configuration. However,
other points and other mass combinations may have a different
sequence of topologies from the close to the wide regime, as
shown by Daněk & Heyrovský (2015b). By performing the same
analysis for all points in our ternary grid discussed above, we
obtain the six boundary perimeter values varying as a function of
ternary plot position. As a result, they form six boundary surfaces
p(ap, bp) vertically dividing the ternary prism. Ordered by
perimeter values from smallest to largest, these continuous
surfaces define the sequence of transitions starting from the
boundary above the close-triple regime and ending with the
boundary below the wide-triple regime.
However, the surfaces are not smooth at their intersections, since

they retain their sequential ordering. In order to identify individual
smooth surfaces through their intersections self-consistently, we
find their permutation minimizing the absolute values of second
derivatives of p with respect to ap or bp for each surface. This step
is important for identifying the 3D regions of parameter space
corresponding to different topologies. Hence, in addition to the
boundary values, we keep track of the permutations maintaining
smooth surfaces. Note that the identification is complicated by
the fact that instead of involving six independent surfaces, the
boundaries are formed by a lower number of self-intersecting
surfaces. Therefore, the ordering has to be checked carefully.
We map the topology boundaries in the parameter space using

a triangular part of a 1000×1000 grid in ternary coordinates
( )a b,p p with limits defined by conditions for the sides of a
triangle, + a b 1 2p p , ap�1/2, bp�1/2. For each grid
point (ap, bp) we identify the vertical sequence of six perimeter
values corresponding to the boundaries, as described in Section 4.
We then scan the triangular part of the 1000×1000×6 matrix
of perimeter values and construct another triangular part of a
1000×1000×6 matrix storing the permutation sequences
identifying continuous surfaces as described above.
Having found the boundaries, the next step is to identify all 3D

regions of the ternary-prism parameter space partitioned by them.
Based on the combined geometry of the boundary surfaces, we
introduce a finely spaced vertical sequence of perimeter values
covering our region of interest. Each value defines a constant-
perimeter ternary-plot section, on which we perform a horizontal
identification of all boundary-separated areas. We start with one
point and identify its 3D region by checking its preceding vertical
neighbor and the matrix of boundary values. If any of the
boundary values are found to lie vertically between the two points
(or if we are analyzing the lowest section), the point is assumed to
lie in a new 3D region. The horizontal mapping then gradually
proceeds to neighboring points using a six-way flood-fill
algorithm. For a given neighbor we check boundary positions to
make sure it does not cross into another region, and we test for
changes in boundary permutation in order to avoid flooding
adjacent regions through boundary-surface intersections. Once the
continuous area corresponding to the 3D region with the starting

Figure 3. Equal Masses: boundaries in the lens configuration parameter space
separating different critical-curve topologies. For an arbitrary spatial config-
uration the shape is defined by the horizontal position in the ternary plot (see
Figure 1); the size is defined by the vertically plotted perimeter p. The
boundaries are colored in order from closest to widest transition for any shape:
purple, blue, cyan, green, orange, red. Black contours identify the horizontal
sections shown in Figure 6. The animated version of this figure shows the
prism rotated full-circle around its vertical axis in π/18 steps.

(An animation of this figure is available.)
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point is determined on the horizontal section, another starting
point outside the area is selected. The procedure is repeated until
regions are mapped for all points at the given perimeter value.

The same analysis is then carried out for the next perimeter
value. After finishing the last value in the sequence, a final
vertical check of adjacent 3D regions is performed. At this
stage the explored parameter space is fully partitioned into a set
of disjoint 3D regions. Since several nonneighboring regions
may correspond to the same critical-curve topology, a sample
parameter combination is used from each of the 3D regions to
identify its topology. This final step completes the full 3D
mapping of all critical-curve topologies occurring within the
explored perimeter interval for an arbitrary spatial configura-
tion of the studied combination of components.

As a final note, the described algorithm may also be directly
used for volume integration in parameter space, for example,
for comparing the rates of occurrence of different critical-curve
topologies.

6. Probability of Topology Occurrence

Using the ternary plot in terms of dimensionless side lengths has
the disadvantage that it lacks an intuitive means for assessing the

relative frequency of occurrence of different topologies. Due to its
construction, there is no clear comparison between individual
p=const. sections. Moreover, even within a single section the
probability of occurrence of a given topology does not scale
directly with the area it occupies within the plot.

As a first step, we have to define what we mean exactly by
probability of occurrence. To obtain a measure of relevance
of the different critical-curve topologies, we compute the
corresponding volumes in lens-component position space
{z1, z2, z3}. Such volumes directly yield the probability of
occurrence of a given topology if all three lens components are
randomly positioned with a homogeneous uncorrelated prob-
ability distribution in some region of the image plane.

In order to assess the relative probabilities within a given
p=const. section, we integrate over all configurations with
perimeter p. The probability of occurrence of topology Ti for
configurations with perimeter p is

( )
( ) ( ) ( ) ( ) ( ) ( )
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where the perimeter ∣ ∣ ∣ ∣ ∣ ∣= - + - + -p z z z z z z3 2 1 3 2 1 . We
can simplify the integration if we transform to our ternary-prism
parameters by introducing the following set of six integration
variables: the real and imaginary parts of the centroid position

( )= + +z z z z 3ctr 1 2 3 , the angle ( )c = -z zarg 2 1 subtended
by z2 from z1 in the complex plane, perimeter p, and fractional
side lengths ap and bp. In terms of the positions of the

components, the side lengths are ∣ ∣= -a z z3 2 , ∣ ∣= -b z z1 3 ,
and ∣ ∣= -c z z2 1 .
The remarkably simple Jacobian of this transformation4 is

( )( )( )
( )=

- - -
a b c p

S

a b c p

a b c2

2

1 2 1 2 1 2
, 7

abc

p p p

p p p
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where we used Heron’s formula for the area Sabc of the triangle
in terms of the lengths of its sides. The dependence of this
Jacobian on the shape of the triangle illustrates the relative
weights of different regions of the ternary plot in the computed
probability. The Jacobian has a minimum at the equilateral
configuration at the center of the ternary plot (ap=bp=
cp=1/3) and diverges at the sides of the ternary plot
(ap→1/2, b 1 2p , c 1 2p ), except for vertices. In a
vertex, the limit of the Jacobian depends on the direction of
approach: along the sides it is infinite, but from within the plot
it has a finite value that depends on the angle of approach.
In the new variables the probability from Equation (6)

simplifies to

where the integration over centroid position and orientation
angle χ canceled out, since the topology does not depend on
them. Moreover, note that the probability depends on the
perimeter only through the ternary area occupied by the given
topology. The integral in the denominator can be performed
analytically, yielding the final expression
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which we can simply integrate over the area in the ternary plot
occupied by topology Ti, using the flood-fill algorithm
discussed in Section 5.
In order to estimate the overall occurrence of a given

topology, we define a similar probability integrated over
perimeters from zero to some maximum value pmax. Note that
the weight given by Equation (7) expressed in terms of the
dimensionless ap, bp, cp is proportional to the third power of
the perimeter p. This reflects the fact that by increasing the
perimeter of the configuration the volume in zj-space increases
accordingly. While the choice of pmax is arbitrary, if we set it
too large, the asymptotic combination of single- and two-point-
mass-lens topologies would dominate. For this reason, in the
models discussed further below we cut off the integration at the
(model-specific) perimeter value at which the last nonasymp-
totic critical-curve topology disappears.
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4 Not to be confused with the lens-equation Jacobian discussed elsewhere in
this article.
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The probability of occurrence of topology Ti in lens
configurations with perimeter ( )Îp p0, max can be expressed
from Equation (8) as follows:

Evaluating the integral in the denominator and expressing the
result in terms of the perimeter-dependent probability ( ) pTi

from Equation (9), we get

( ) ( )ò= 
p

p p dp
4

. 11T p

p

T,

max
4 0

3
i imax

max

To compute the integral, we use again the flood-fill algorithm
described in Section 5.

We note here that while the computed probabilities provide a
measure of occurrence of a given critical-curve topology, they
are not equal to probabilities of observing a microlensing event
by a triple-lens system with the given topology. It is beyond the
scope of this work to evaluate actual probabilities of detection
or the actual frequency of three-point-mass lens configurations
based on further physical considerations.

7. Model 1: Equal Masses

We first study a triple lens with equal-mass components
(μ1=μ2=μ3=1/3). The model is symmetric to all
permutations of the components, and thus we may expect this
symmetry to be reflected in the division of the ternary-prism
parameter space.

7.1. Boundary Surfaces

The boundary surfaces ( )p a b,p p computed following
Sections 4 and 5 are shown in Figure 3. Parts of the

intersecting surfaces are colored in order of their perimeter
values from the closest (purple) to the widest (red) transition.
For better orientation, an animated version showing the prism
rotated about the vertical axis is available in the online version
of this article.
In order to explore the overall structure, we start from

important lines and planes of the prism. Along the vertical
edges two of the components coincide so that the triple lens is
reduced to a two-point-mass lens with fractional masses 1/3
and 2/3. The purple and blue surfaces both intersect these
edges at the perimeter corresponding to the close/intermediate
transition, [ ]= + »-p 2 1 3 2 3 1.4283 43 3 , where we
used Equation(21) from Daněk & Heyrovský (2015b).
Similarly, the cyan surface intersects these edges at the
perimeter corresponding to the wide/intermediate transition, =p

[ ]+ »2 1 3 2 3 3.9233 23 3 , where we used Equation(20)
from Daněk & Heyrovský (2015b).
The front vertical face corresponds to collinear configura-

tions with component 3 positioned along the line from 1 to 2,
so that cp=1/2. The other vertical faces correspond to
collinear configurations with ap=1/2 (left rear) and bp=1/2
(right rear). Such configurations correspond to the linear
asymmetric (LA) model studied in detail by Daněk &
Heyrovský (2015b). With an added subscript LA the
parameters of the model are the separation parameter

Figure 4. Equal Masses: topology boundaries on vertical planes of the ternary prism from Figure 3 studied in detail by Daněk & Heyrovský (2015b). Left panel: front
face of prism (corresponding to collinear configurations); right panel: symmetry plane of prism from left edge to vertical midline of opposite face (corresponding to
isosceles configurations). Labels T1–T9 mark the critical-curve topology in each region, as shown at the bottom of Figure 6.
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sLA=p/4 and the fractional position parameter =pLA
= -a b2 1 2p p for the front face. Vice versa, our perimeter

p=4sLA, and fractional side lengths ap=pLA/2 and =bp

( )- p1 2LA for the front face.
The boundary intersections with the front face are shown in

the left panel of Figure 4, which is adapted from the parameter-
space division in the left panel of Figure8 in Daněk &
Heyrovský (2015b). The lines corresponding to intersections of
different surfaces from Figure 3 are plotted in their respective
colors. Degenerate intersections shared by two different
surfaces are indicated by two-color-dashed lines. The topology
boundaries consist of two pairs of curves rising symmetrically
from one edge to the other. One pair starts from the wide/
intermediate binary transition at the edges and is formed
gradually by the cyan, orange, and red surface intersection with
the face. The second pair starts from the close/intermediate
binary transition at the edges and is formed gradually by the
purple/blue, cyan/green, and green/orange pairs of surfaces
meeting at the face. All these degeneracies break down with the
slightest perturbation inward from the face, in this case to
cp<1/2, when the configuration forms a nearly collinear
triangle.

As discussed by Daněk & Heyrovský (2015b), due to the
symmetry of these configurations, there are only four distinct
boundaries for most positions of the central component (here
values of ap), with three exceptions. For the most symmetric
case with the third component placed at the midpoint between
the other two (ap=0.25 along the vertical midline of the face),
only two boundaries are encountered between the close and
wide topology limits. This is one of the configurations with the
minimum number of topologies mentioned above in Section 4.
The first transition occurs at the quadruple intersection of the
purple, blue, cyan, and green surfaces at »p 2.184, and the
second occurs at the orange and red intersection at p≈6.711.
The other two exceptions correspond to the symmetric
configurations with ap≈0.1197 and ap≈0.3803. Increasing
the perimeter, either of these undergoes three transitions each,
passing through the triple intersection of the cyan, green, and
orange surfaces at p≈4.672. In terms of the Jacobian, the
number of colors meeting at a given point indicates the number
of Jacobian saddle points lying on the critical curve of the
corresponding configuration. The configurations of the Equal
Masses model with the highest number of saddles on the
critical curve lie on these vertical faces, as seen here on the
front face at the (ap, p)≈(0.25, 2.184) point with four saddles.

In addition to the vertical faces, Daněk & Heyrovský (2015b)
also studied configurations of the Equal Masses model on vertical
midplanes along the medians of the ternary plot, which extend
from each edge to the vertical midline of the opposite face of the
prism. These configurations correspond to triangular isosceles
configurations—the TI model of Daněk & Heyrovský (2015b). In
this case both model parameters (denoted by subscript TI) are
combinations of our two parameters. For the midplane extending
from the left edge of the prism in Figure 3, the legs of the triangle
are a=c and the vertex angle varies from 0 at the edge to π at
the opposite face. These parameters are used in the TI model, so
that the leg length sTI=p ap and the vertex angle q =TI

[ ]--a2 arcsin 2 1p
1 . For the inverse transformation, our perim-

eter [ ( )]q= +p s2 1 sin 2TI TI , and fractional side lengths =ap

[ ( )]q= + -c 1 sin 2 2p TI
1 , ( )q=b sin 2p TI /[ ( )]q+1 sin 2TI .

The boundary intersections with this midplane are shown in the
right panel of Figure 4, which is based on the parameter-space

division in the left panel of Figure15 in Daněk & Heyrovský
(2015b), recalculated in terms of our parameters. In comparison
with the left panel, the horizontal axis is 3 2 times shorter since
it corresponds to the median of the ternary plot (see Figure 1). The
lines are colored according to the intersecting surfaces from
Figure 3 as in the left panel. The left edge of the plot coincides
with the left edge of the collinear plot in the left panel. The
right edge coincides with the cp=3/12 vertical midline of the
bp=1/2 collinear plot, which is the same as the left panel with cp
along the horizontal axis. The boundaries thus intersect the right
edge at p≈2.184 and p≈6.711, as mentioned above.
Overall, the topology boundaries along this plane are more

complex and have a richer structure. In particular, we point out
two merging points, at which two distinct boundaries meet and
continue as a single curve. In one case, the curve starting out as
cyan from the left edge and continuing as green meets the
orange curve approaching from above at (ap, p)≈(0.4192,
4.196). The other case occurs at (ap, p)≈(0.2537, 1.884) near
the right edge, where the purple curve rising to the right from
the horizontal axis meets the blue curve approaching from the
left. In terms of the Jacobian, for these two configurations the
critical curve passes through a second-order monkey saddle.
The Jacobian for the corresponding ap values thus has only four
simple saddles and one monkey saddle.
Another interesting feature is the existence of a different

close-triple limit topology indicated by the boundaries at
ap≈0.2637, described and discussed in Daněk & Heyrovský
(2015b). For this value of ap the Jacobian has a second-order
maximum and only five simple saddles, as indicated by the five
colors of the three boundaries crossed at nonzero perimeters. In
the close limit the small critical-curve loop around the second-
order maximum corresponds to a four-cusped caustic loop,
while those around the simple maxima correspond to the usual
three-cusped caustic loops.
Due to the symmetry of the isosceles configurations, at least

one of the boundaries is degenerate for any value of ap. The
highest number of distinct boundaries—five—occurs for
apä(0.4192, 0.5) with the exception of ap≈0.4300, where
the cyan/green intersection reduces the number to four. Four
boundaries occur also for nearly all values apä(0.2537,
0.4192] with the exception of apä{0.2637, 0.2725, 0.2797},
which have three, and ap=1/3, which has two. Three
boundaries also occur for apä(0.25, 0.2537]. The ap=1/3
case represents the most symmetric triple lens with components
in an equilateral configuration. This is another of the
configurations with the minimum number of topologies
mentioned in Section 4. The first transition occurs at the triple
intersection of the purple, blue, and cyan surfaces at p≈2.009;
the second occurs at the triple green, orange, and red
intersection at p≈4.480. Note that the two other two-
boundary configurations discussed earlier can be seen here at
the left edge (degenerate binary) and the right edge (symmetric
collinear triple).
The number of colors at a given point indicates the number

of Jacobian saddles on the critical curve of the corresponding
configuration, but in this case with two exceptions. These occur
at the two merging points at (ap, p)≈(0.4192, 4.196) and (ap,
p)≈(0.2537, 1.884), where the two merging colors (green/
orange, and purple/blue, respectively) correspond to a single
monkey saddle instead of two simple saddles. Perturbing ap
breaks down either monkey saddle into a pair of simple saddles
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lying on the same Jacobian contour (here for lower ap), or on
two different contours (here for higher ap).

Aided by the structure on the vertical planes, we may now
briefly summarize the overall division of the parameter space in
Figure 3. In the close limit the purple boundary extends down
to the p=0 base in narrow spikes, leading to three symmetric
isosceles configurations, at which the Jacobian has a double
maximum and only five simple saddle points. The next surface
appears at the p≈1.428 close/intermediate binary transitions
at the three vertical edges. Most of the transitions occur
between this perimeter value and p≈6.711, at which the red/
orange intersection disappears and the remaining green, orange,
and red boundaries asymptotically approach the vertical edges.
In the high-perimeter regime the region close to any of the
edges corresponds to an equal-mass binary lens with a distant
third companion. The red surface then corresponds to the wide/
intermediate boundary of the binary, and the orange and green
surfaces represent the close/intermediate boundary perturbed
by the third companion.

7.2. Critical-curve Topologies

For a more detailed interpretation of the different regimes we
directly study the different critical-curve topologies. In order to
identify the topologies in all the 3D regions of the prism
separated by the boundary surfaces, we follow the procedure
described in Section 5 and explore the topologies on a sequence
of p=const. horizontal sections.

For illustration, we first present the p=1.679 section in
Figure 5. The black curves in the central ternary plot
correspond to boundaries between different critical-curve
topology regions. Here the outer parts of the figure-eight loops
facing the corners of the plot are formed by the blue surface,
and the rest of the curves by the purple surface from Figure 3.
These curves divide the section into 13 distinct continuous
regions. However, due to the symmetry of the model, we
expect at most four different critical-curve topologies.

Examples of critical curves and caustics are shown for a
point inside a figure-eight loop (A), inside an elliptical loop
(B), close to the ternary-plot corner (C), and in the central
region of the plot (D). The critical curve of A is formed by an
outer loop with three inner loops, two of which appear as mere
dots with equally dot-like caustic counterparts. The critical

curve of B has the same topology as A. The critical curve of C
has an outer loop with two tiny inner loops (with equally tiny
caustic counterparts). The critical curve of D has an outer loop
with four inner loops. The tiny central loop has its caustic
counterpart in a tiny loop not discernible inside the larger
central loop. Overall, there are three different critical-curve
topologies in 13 topology regions on this particular section.
The results for a sequence of 12 such horizontal sections of

the ternary prism from Figure 3 are shown in Figure 6. Here the
individual regions are colored according to the topology of
their critical curves, following the schematic key in the bottom
row. The topologies are numbered in order of the lowest
perimeter value at which they appear in this Equal Masses
model. The sections start with the closest p=1.498 in the top
left corner, continuing to the right, in the middle and bottom
rows, and ending at p=6.711 in the bottom right corner. The
positions of these sections are marked in Figure 3 by the black
horizontal contours on the surfaces. The first one at p=1.498
lies just above the close/intermediate binary boundary at the
edges; the last one at p=6.711 lies at the top of the last
disappearing (i.e., nonasymptotic) region at the intersections of
the red and orange surfaces on the vertical faces of the prism.
For interpreting the sequence of sections in Figure 6 we will

keep referring to the ternary prism with the boundary surfaces
in Figure 3. The sequence starts at p=1.498 with two close-
triple topologies: the generic T1 (outer + four inner loops) and
the special T2 (outer + three inner) in the islands within the
purple spikes seen in the prism. In addition, topology T3 (outer
+ two inner) appears in the corners starting from the close/
intermediate binary transition at p=1.428, as seen in the
prism. It is separated from T1 by thin figure-eight regions of T2
(in the prism these correspond to nonisosceles configurations in
the narrow gap between the purple and blue surfaces). The
same structure can be seen in the next section with p=1.679,
which corresponds to the example from Figure 5. With
increasing perimeter T1 shrinks and T2 expands until the
facing lobes of the figure-eight regions connect at the medians
of the plot, as seen in the p=1.713 section. T3 expanded as
well in the corners, and new narrow crescent-like T3 regions
appear adjacent to the points where the T2 lobes connected.
The T3 and the inner T2 regions expand further, as seen in the
p=1.794 section. The next topology T4 (outer + inner) can

Figure 5. Equal Masses: topologies on a horizontal section of the ternary prism from Figure 3 at perimeter p=1.679 with sample critical curves and caustics. Middle
panel: ternary plot of the section, with black curves indicating topology boundaries. Side panels: critical curves (blue), caustics (red), and lens positions (black crosses)
corresponding to configurations marked by points with coordinates (ap, bp, cp) in the ternary plot: A (0.393, 0.168, 0.439), B (0.269, 0.269, 0.462), C (0.426, 0.151,
0.423), D (1/3, 1/3, 1/3). See Section 7.2 for more details.
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be seen in the p=2.103 section. It appears in short succession
at the six points where the cyan surface emerges from the blue
surface in Figure 3 and at the center of the plot, where it
replaced T1 at p=2.009. T1 finally disappears at the edges of
the plot at p=2.184, where it is replaced by the single-loop
topology T5. T2 disappears next, so that neither blue nor
yellow appears in the following p=2.398 section.

The remaining T3, T4, and T5 topologies change in
proportion, with T5 gradually dominating, as seen in the
p=2.700 and p=3.903 sections. The first two of the four
asymptotic topologies appear in rapid succession: T6 (outer +
two inner + separate loop) at the wide/intermediate binary
transition at p=3.923 at the edges of the prism, followed by
T7 (two separate) replacing T4 along the medians of the ternary
plot. Both can be seen in the p=4.198 section. In addition, the
asymptotic T8 (outer + inner + separate) appeared at
p=4.196 at the outer tips of the T7 region adjacent to T4.
At p=4.198 the T8 region is still too small to be visible in the
plot. It is best seen here in the p=4.353 section, becoming
extremely narrow at higher perimeter values. Last to appear is
the asymptotic T9 (three separate), which replaces T4 at the

center of the plot at p=4.480. Topology T3 disappears at
p=4.672 at the intersections of the cyan, green, and orange
surfaces on the faces of the prism, followed instantly by T4.
The p=4.803 section thus has only five remaining topologies.
The final topology to disappear is T5 at p=6.711 (shown here
as the final section), at the intersections of the orange and red
surfaces on the faces of the prism.
Topology T9, which eventually corresponds to Einstein rings

of three independent lenses, gradually dominates over the other
asymptotic topologies. These describe a binary lens in the
intermediate (T7) and close (T6) regime with a distant
companion. Topology T8 appears in the narrow transition
region between the two, where the perturbation by the distant
companion causes one of the two inner loops of T6 to merge
sooner than the other with the outer loop.
In total, the boundary surfaces cut the full ternary-prism

parameter space into 39 disjoint regions. Due to the high degree
of symmetry, some of these regions correspond to identical
spatial configurations with different permutations of compo-
nents. Other regions correspond to mirror-symmetric config-
urations, which have the same critical-curve topology. Overall,

Figure 6. Equal Masses: critical-curve topologies on a sequence of horizontal ternary-plot sections of the prism from Figure 3 at perimeters marked next to the
individual plots. Colors correspond to the nine different topologies T1–T9 sketched in the bottom row. The plot sequence is ordered by perimeter from the closest
p=1.498 at top left to the widest p=6.711 at bottom right.
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there are only 13 distinct types of regions, so that it is sufficient
to check the critical-curve topology for 13 parameter-space
points. The final lineup of the nine topologies of the Equal
Masses model is shown in the bottom row of Figure 6.
Interestingly, exactly the same set was found by Daněk &
Heyrovský (2015b) for the isosceles configurations. All the
topologies thus appear on the vertical planes cutting the prism
along any median of the ternary plot, as seen in the right panel
of Figure 4. Clearly, breaking the spatial symmetry of the
isosceles triple does not lead to any additional critical-curve
topology. Finally, we note that no other topologies were found
in the remaining two nonequal-mass LS and TE models studied
by Daněk & Heyrovský (2015b) either.

7.3. Topology Probabilities

We quantify the frequency of occurrence of the different
topologies by computing the probabilities ( ) pTi of generating
a critical curve with topology Ti by three randomly placed lens
components forming a triangle with perimeter p. Following
the description in Section 6, we evaluate the integral in
Equation (9) for perimeters ranging from 0 to pmax=6.711,
after which only asymptotic topologies remain. At any value of
p these probabilities add up to unity, ( )å ==  p 1i T1

9
i .

In the individual panels of Figure 7 we plot the perimeter
dependence of ( ) plog T10 i

for topologies T1 (top) through T9
(bottom). The sequence of appearing and disappearing

topologies as a function of p corresponds to the discussion of
the sequence of sections in Section 7.2. Note that low
probabilities ( ) p 0.001Ti are beyond the lower limit of the
plots, so that, for example, ( )< p 0.6T2 cannot be seen even
though the topology extends all the way to the left to p=0.
The panels show that the sequence of dominant topologies

from close to wide regime is T1–T3–T5–T7–T9, with the even-
numbered topologies not dominating at any perimeter value.
The last topology T9 dominates beyond the plotted range in the
 ¥p limit, where the probabilities of T6, T7, and T8 drop to

zero. Within the horizontal limits of the plot, only T5 covers
more than half of the perimeter range. T2 occurs in the
narrowest interval and is concentrated in a rather sharp peak.
For an overall comparison of topologies occurring for

configurations with perimeter pä(0, pmax=6.711), we
evaluate the probabilities T p,i max

from Equation (11). These
are normalized so that å ==  1i T p1

9
,i max

. The values obtained
for the nine topologies are shown in the “Equal Masses”
column of Table 1. Within the given perimeter range, we see
that topology T7 alone occurs in nearly 50% of cases. On the
lowest-probability end, topologies T1, T8, and T2 together
occur in less than 1% of cases. Sorted in descending order of
probability, the topology sequence is T7>T5>T6>T9>
T3>T4>T1>T8>T2.
Overall, close-type topologies are highly disfavored, which

can be seen from the ∝ p3 proportionality of the Jacobian
weight function in Equation (7). Beyond our pmax limit only
the asymptotic topologies T6, T7, T8, and T9 extend. Hence,
if we increased the cutoff to a higher perimeter value, the
probabilities of all other topologies would decrease. At
sufficiently high p, topology T9 approaches 100% and even
the other asymptotic topologies drop to 0%. This is clearly the
case for any other triple-lens model as well: at high perimeters
the three-independent-lenses regime dominates.
Uncertainties of the numerically computed probabilities are

mostly due to discretization in the (ap, bp)-plane and the related
precision limit on the exact positions of boundaries of the
topology regions. The error is thus proportional to the
probability corresponding to points on the boundaries inside

Figure 7. Equal Masses: probability ( ) pTi of occurrence of topology Ti at
perimeter p. Topologies are marked and color-coded following the key in the
bottom row of Figure 6.

Table 1
Probability T p,i max

of Topology Occurrence in Studied Triples

Topology Equal Masses Planet in Binary
Hierarchical
Masses

pmax=6.711 pmax=5.640 pmax=4.799

T1 4.11e−3 1.87e−2 5.52e−2

T2 1.49e−3 3.88e−4 2.39e−4

T3 6.50e−2 1.32e−1 8.76e−2

T4 2.12e−2 6.64e−3 1.09e−3

T5 2.10e−1 2.95e−2 1.67e−2

T6 1.25e−1 2.18e−1 3.79e−1

T7 4.90e−1 4.54e−1 2.01e−1

T8 3.57e−3 2.57e−3 7.69e−4

T9 7.99e−2 1.38e−1 2.59e−1

T10 N/A 3.08e−5 1.66e−6

T11 N/A <3e−6 <1e−7
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the prism of all the regions with the given topology. In this
case, 0.05% of the total number of pixels were not assigned to
any topology region. By integrating over these pixels in the
numerator of Equation (10), we find that they correspond to a
probability of 0.01% (out of the total 100%) left unattributed to
any topology.

8. Model 2: Planet in Binary

In our second model we keep two components with equal
masses and add a third component with a different mass.
Mirroring any configuration of such a system across an axis
symmetrically separating the equal-mass components always
produces the same critical-curve topology. The division of the
ternary-prism parameter space should therefore be reflection-
symmetric across a vertical plane along one of the ternary-plot
medians.

We chose a third component much lighter than the equal-
mass pair, with fractional masses μ1=μ2=0.49995 and
μ3=0.0001. Such a model would describe an equal-mass
binary star with a planetary companion (for solar-mass
components of the binary μ3 would correspond to a 0.7
Saturn-mass planet). Side c of the triangular configuration
describes the separation of the two stars, and sides a, b the
separation of the planet from stars 2 and 1, respectively. In the
ternary plot in Figure 1 switching sides a and b corresponds to
reflection across the vertical median leading from (ap, bp,
cp)=(1/2, 1/2, 0) to (1/4, 1/4, 1/2). This median defines the
plane of symmetry discussed above.

Even though our model describes an arbitrary projected
spatial configuration of the three components, it is useful to
view the regions of the following plots in terms of the mutual
vicinities of the components in a face-on orientation of the
binary orbit. Thus, the region near the top vertex (cp→0) of
the ternary plot describes a close binary star with a distant
circumbinary planet. The regions near the bottom left (bp→0)
or bottom right (ap→0) vertices describe a planet around star
1 or 2, respectively, which has a distant binary companion.

In the following subsections we describe the boundaries,
topologies, and their probabilities in the Planet in Binary
model, concentrating primarily on differences from the Equal
Masses model.

8.1. Boundary Surfaces

The boundary surfaces p(ap, bp) computed according to
Sections 4 and 5 are shown in Figure 8. Parts of the intersecting
surfaces are colored in order of their perimeter values from
closest (purple) to widest (red) transition, as in Figure 3 for the
Equal Masses model. Due to the lower symmetry, we present
three views of the ternary prism, from left to right facing
ternary axes ap, bp, and cp. For better orientation, an animated
version showing the prism rotated about the vertical axis is
available in the online version of this article.
The (ap, bp, cp)=(1/2, 0, 1/2) vertical edge (left edge in the left

panel) corresponds to the planet coinciding with star 1. Similarly,
the (0, 1/2, 1/2) vertical edge (right edge in the left panel)
corresponds to the planet coinciding with star 2. In both cases the
triple lens is reduced to a two-point-mass lens with fractional
masses 0.49995 and 0.50005. The purple and blue surfaces both
intersect these edges at the perimeter corresponding to the close/
intermediate transition, [ ]= + »-p 2 0.49995 0.50005 3 43 3

1.414. The cyan surface intersects these edges at the perimeter
corresponding to the wide/intermediate transition, =p

[ ]+ »2 0.49995 0.50005 4.0003 23 3 . The (1/2, 1/2, 0)
vertical edge (left edge in the middle panel) corresponds to both
stars coinciding. In this case the triple lens is reduced to a
two-point-mass lens with fractional masses 0.0001 and 0.9999.
The purple and blue surfaces intersect this edge at =p

[ ]+ »-2 0.0001 0.9999 1.9333 43 3 , and the cyan surface
intersects it at [ ]= + »p 2 0.0001 0.9999 2.1413 23 3 .
In the left panel the front vertical face corresponds to

collinear configurations with the planet positioned along the
line from star 1 to star 2, so that cp=1/2. The left rear vertical
face (ap=1/2) corresponds to collinear configurations with
star 1 along the line from star 2 to the planet, and the right rear

Figure 8. Planet in Binary: boundaries in the lens configuration parameter space separating different critical-curve topologies. The three views of the surfaces are
rotated by 2π/3 around the vertical axis of the prism so that ternary axis ap (left), bp (middle), or cp (right) lies at front. Notation as in Figure 3. Black contours identify
the horizontal sections shown in Figure 9. The animated version of this figure shows the prism rotated full-circle around its vertical axis in π/18 steps.

(An animation of this figure is available.)
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(bp=1/2) has star 2 along the line from star 1 to the planet.
The (1/4, 1/4, 1/2) configuration in the middle of the front
face corresponds to a special case of the linear symmetric (LS)
model studied in detail by Daněk & Heyrovský (2015b). With
an added subscript LS, the separation parameter of the model
sLS=p/4 and the central fractional mass μLS=μ3=0.0001.
The boundary intersections with the midline of the front face
can be seen in the left panel of Figure2 in Daněk & Heyrovský
(2015b) as the intersections of the plotted curves with a
μLS=0.0001 vertical line. Three topology changes occur
along the line: the first just above = »p 2 1.414, corresp-
onding to the intersection with the purple and blue surfaces in
the prism, the second just below p=4 (intersection with cyan
and green surfaces), and the third just above p=4 (intersection
with orange and red surfaces).

Another special case that can be found in Daněk &
Heyrovský (2015b) is the equilateral configuration at the
center of the prism, (ap, bp, cp)=(1/3, 1/3, 1/3). The
triangular equilateral (TE) model has the following parameters:
triangle side sTE=p/3 and one vertex mass μTE=μ3=
0.0001. The boundary intersections with the central axis of the
prism can be seen in the left panel of Figure11 in Daněk &
Heyrovský (2015b) along a μTE=0.0001 vertical line. In
this case four topology changes occur, as indicated by the
intersections of the line with the plotted curves. The first three
follow in rapid succession: two just below = »p 3 2 2.121
(the first corresponding to the intersection with the purple and
blue surfaces; the second with the cyan surface), and one just
above = »p 3 2 2.121 (green and orange surfaces). The
last transition just below p=6 corresponds to the intersection
with the red surface.

Despite the lower symmetry of the Planet in Binary model,
the overall structure of its parameter space in Figure 8 has
similar features to that in the case of the Equal Masses model.
In the close limit, the purple boundary extends down to the
p=0 base in three narrow spikes, at each of which the
Jacobian has a double maximum and only five simple saddle
points. In this case one of these configurations is isosceles, with
(ap, bp, cp)≈(0.2863, 0.2863, 0.4274), and the other two are
reflection-symmetric, (0.3099, 0.2827, 0.4074) and (0.2827,
0.3099, 0.4074). Unlike in the Equal Masses model, the spikes
lie close together so that their surfaces intersect and form new
topology regions before the purple and blue surfaces from the
front face of the left panel cross them. The purple and blue
surfaces appear at the close/intermediate binary transitions
at p≈1.414 at the front two vertical edges, and nearly
instantaneously across the entire front face.

The close/intermediate (purple and blue) and wide/inter-
mediate (cyan) planet+star transitions at the rear vertical edge
appear at p≈1.933 and p≈2.141, respectively. The cyan
surface corresponding to the wide/intermediate binary transi-
tions at the front two vertical edges appears nearly simulta-
neously at p≈4.000 on the entire front face. The final
nonasymptotic region disappears at p≈5.593, at which the
red/orange intersection reaches the rear faces of the prism. The
remaining green, orange, and red boundaries asymptotically
approach the vertical edges. In the high-perimeter regime the
regions close to the front two edges in the left panel correspond
to a star with a planet and a distant stellar companion. The
region close to the rear vertical edge corresponds to a close
binary with a distant planetary companion. In all cases, the red
surface then corresponds to the wide/intermediate boundary of

the close companions, and the orange and green surfaces
represent the close/intermediate boundary perturbed by the
distant third component.

8.2. Critical-curve Topologies

The critical-curve topologies of the Planet in Binary model
can be mostly understood as binary-lens critical curves with
additional loops due to the planet. From the properties of the
Jacobian it can be seen that a third lens component adds one
pole and typically two maxima and three saddle points to the
two-point-mass lens Jacobian surface. If the mass of the third
component is much smaller than the first two masses, all the
additional features of the Jacobian occur in a small region
around the third component. If it is located sufficiently far from
any loop of the two-point-mass lens critical curve, it simply
adds extra loops to the critical curve.
The number of additional loops depends on the sign of the two-

point-mass Jacobian at the position of the third component: (a) if it
is positive, the critical curve has one extra loop around the planet;
(b) if it is negative, the critical curve has two extra loops around
two triple-lens Jacobian maxima in the vicinity of the planet. The
situation becomes more complicated if the planet is located close
to the two-point-mass lens critical curve, especially in case the
critical curve is near the close/intermediate topology boundary.
Following the procedure described in Section 5, we present

in Figure 9 the topology maps for a sequence of eight
p=const. sections of the ternary prism from Figure 8. The
ternary plot regions are colored according to the topology of
their critical curves, following the schematic key in the bottom
row. In the key the topologies are ordered by the lowest
perimeter value at which they appear in the Planet in Binary
model. We preserve the numbering of the topologies found in
the Equal Masses model.
The sections start with the closest p=1.016 in the top left

corner, which is entirely in the close-triple regime before the
purple spikes in Figure 8 intersect. The sequence ends at
p=5.640 in the bottom right corner, just above the last
disappearing (i.e., nonasymptotic) region at the intersections of
the red and orange surfaces on the rear vertical faces of the
prism in the left panel of Figure 8 (better seen in the other two
panels). The positions of the sections are marked in Figure 8 by
the black horizontal contours on the surfaces.
The sequence starts at p=1.016 with the same two close-

triple topologies as in the Equal Masses model: T1 for nearly
all configurations and T2 within the purple spikes. The
sequence of transitions differs already in the next step: the
purple spikes seen in the prism intersect, and topology T3
appears as the corresponding yellow regions come into contact.
Next, the T3 regions connect at the midpoint between the
spikes, forming an entirely new topology T10 not found in any
of the previously studied models. This peculiar topology differs
from T3 in having an additional small loop inside one of the
inner critical-curve loops; hence, it has an outer + two inner +
doubly nested loop structure.
Next, topology T3 appears at the lower edge of the plot from

the close/intermediate binary transition at p=1.414, and the
corresponding nearly horizontal boundary gradually sweeps
through the ternary plot to its top vertex. Note, however, that
the boundary consists of two extremely close surfaces: initially
purple and blue at the front face, finally green and orange at the
rear vertical edge of the prism. This pair of surfaces is separated
owing to the planetary-mass perturbation. Therefore, the
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boundary seen in the ternary plots is accompanied by an
extremely narrow horizontal band (not discernible in the plots)
with different topologies. Initially there is a T2 band separating
T3 from T1. As it crosses the region of the spikes, this double
boundary changes T2 via T3 (narrow) to T4, T3 via T4 to T5,
and T10 via another entirely new topology T11 to T7.
Topology T11 differs from T10 in lacking the simple inner
loop, having an outer + inner + doubly nested loop structure.
The regions occupied by T11 are too small to be visible on any
of the sections; hence, we mark it in the key with a dashed-line
sketch. The described situation corresponds to the second
p=1.694 section, where the sequence of topologies in the
narrow boundary band along cp≈5/12 from the left edge to
the center of the plot is as follows: T2 (between T3 and T1), T3
(between T4 and T2), T4 (between T5 and T3), and T11
(between T7 and T10).

The close/intermediate (purple and blue surfaces) and wide/
intermediate (cyan surface) transitions due to the planet and
combined-mass star in the circumbinary regime close to the
rear vertical edge of the prism occur at p≈1.933 and
p≈2.141, respectively. The corresponding sequence of
topologies can be seen at the top of the ternary plot for the
p=2.270 section: from the vertex inward T6–T3–T2–T1.
Note that in this model topology T6 appears after T7 (i.e., at
higher perimeter), unlike in the Equal Masses model. In the
same section we see that the horizontal double boundary has
crossed the egg-shaped central region and topologies T10 and
T11 have disappeared. In the p=2.315 section the upper T3
and T2 regions are already connected with their counterparts at
the center. By p=2.484 the egg-shaped central region has

expanded over the horizontal double boundary, with topology
T8 appearing in the narrow band between T7 and T6. The two
T6 regions connect (as seen in p=2.512), followed by the
gradual disappearance of T1, T2, and the upper T3 regions at
the sides of the plot (as seen in p=3.162).
Topology T6 appears at the lower vertices of the plot from

the wide/intermediate binary transition at p≈4.000 (cyan
surface at front face of prism), and the corresponding second
nearly horizontal boundary gradually sweeps through the
ternary plot to its top vertex. Unlike the previous horizontal
boundary, this one is simple rather than double. The final T9
topology appears close to the lower edge of the plot, and the
progression of the boundary gradually eliminates topologies
T3, T4, and T5 at the sides of the plot. T5 disappears at
p≈5.593 at the intersections of the orange and red surfaces on
the rear faces of the prism. The last p=5.640 section includes
only the same four asymptotic topologies T6, T7, T8, and T9
that we found already in the Equal Masses model. The three-
Einstein-rings topology T9 gradually dominates over the other
topologies, just as in any triple lens. The regions close to the
vertices of the plot correspond to the close (T6), intermediate
(T7), and wide (T9) regimes of different pairs of the
components, with a distant third companion. Thus, the region
near the top vertex corresponds to a binary star (components 1
and 2), and those near the bottom vertices to a star with a planet
(components 1 and 3 at the left vertex, components 2 and 3 at
the right vertex). Just as in the Equal Masses model, topology
T8 appears in the narrow transition region between the close
and intermediate regimes, where the perturbation by the distant

Figure 9. Planet in Binary: critical-curve topologies on a sequence of horizontal ternary-plot sections of the prism from Figure 8 at perimeters marked next to the
individual plots. Colors correspond to the 11 different topologies T1–T11 sketched in the bottom row. The plot sequence is ordered by perimeter from the closest
p=1.016 at top left to the widest p=5.640 at bottom right.
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companion causes one of the two inner loops of T6 to merge
sooner than the other with the outer loop.

The final lineup of the 11 topologies of the Planet in Binary
triple lens is shown in the bottom row of Figure 9. Clearly, this
is the richest triple-lens model that has been studied so far. It
includes all nine topologies found for the Equal Masses model
in Section 7, which in turn include even all the topologies
found in the varying-mass LS and TE models studied by Daněk
& Heyrovský (2015b). In addition, the present model includes
two new peculiar topologies with doubly nested loops, T10
and T11.

Topology T10 can be constructed by placing a low-mass
companion inside an inner loop of the critical curve of a close
binary. This forces a small negative-Jacobian region inside a
positive-Jacobian region close to a binary-lens Jacobian
maximum, hence the doubly nested loop. Topology T11 then
occurs when the loop around the other binary-lens Jacobian
maximum connects with the outer loop sooner than the loop
with the doubly nested loop, due to the perturbing influence of
the planetary companion. While T10 occurs in a substantial

region of parameter space, T11 occurs in a narrow boundary
separating it from the adjacent T7 region. We illustrate a
sample critical-curve transition involving topologies T10 and
T11 together with the corresponding caustics in Appendix B.

8.3. Topology Probabilities

We compute the probabilities ( ) pTi of generating a critical
curve with topology Ti by three randomly placed lens
components forming a triangle with perimeter p. We evaluate
the respective integral in Equation (9) for perimeters ranging
from 0 to pmax=5.640. This value lies just above the upper
end of the last nonasymptotic topology T5 in the prism. At any
value of p the probabilities add up to unity, ( )å ==  p 1i T1

11
i .

In the individual panels of Figure 10 we plot the perimeter
dependence of ( ) plog T10 i for topologies T1 through T11 in
order of their first appearance in the Planet in Binary model.
The sequence of appearing and disappearing topologies
corresponds to the discussion in Section 8.2. Regions of low
probability ( ) p 0.001Ti not visible in the plot occur here,
for example, for T2, which extends down to p=0; for T11,
which is entirely outside the plot so that only its range of
occurrence is indicated by dashed lines; or for T8, which occurs
continuously from p≈2.4 to the higher perimeter values at
which it is visible in the plot.
The sequence of dominant topologies from close to wide

regime is T1–T3–T7–T9. Unlike in the Equal Masses model,
topology T5 is suppressed here so that there is no perimeter
interval in which it would dominate. The last topology T9
dominates beyond the plotted range in the  ¥p limit. In
comparison with the Equal Masses model, the close-limit
topologies T1 and T2 extend to higher perimeters (ending
around p≈2.95); the intermediate T3 and T4 have an
expanded range, appearing earlier and disappearing later (even
though T4 reaches lower probabilities); T10 and T11 are new,
occurring in narrow perimeter intervals; T5 has a reduced
range, appearing and disappearing earlier; and all asymptotic
topologies appear earlier, especially T7, which appears before
T6 already around p≈1.65.
Within the horizontal limits of the plot, T3 occurs in the

widest perimeter range. Only T10, T11, and T9 cover less than
half of the perimeter range, with T11 occurring in the narrowest
interval. Generally, the main difference between the models is
the expanded perimeter range of most topologies in the Planet
in Binary model. In fact, all the topologies except T9, T10, and
T11 occur at any perimeter pä(2.4, 2.95). Thus, in this
perimeter range the close-limit T1 and T2 coexist with the
wide-limit asymptotic T7, T6, and T8. We recall that in the
Equal Masses model there is no such overlap: the close-limit
topologies are broadly separated from the wide-limit
topologies.
For an overall comparison of topologies occurring for

configurations with perimeter pä(0, pmax=5.64), we
evaluate the probabilities T p,i max

from Equation (11) normalized
so that å ==  1i T p1

11
,i max

. The values obtained for the 11
topologies are shown in the “Planet in Binary” column of
Table 1. Within the given perimeter range, we see that even in
this model topology T7 alone occurs in nearly 50% of cases.
On the lowest-probability end, topologies T4, T8, T2, T10, and
T11 together occur in less than 1% of cases. Sorted in
descending order of probability, the topology sequence is T7>
T6>T9>T3>T5>T1>T4>T8>T2>T10>T11.

Figure 10. Planet in Binary: probability ( ) pTi of occurrence of topology Ti at
perimeter p. Topologies are marked and color-coded following the key in the
bottom row of Figure 9.
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Comparing the topologies occurring in both models, T1
shows the highest relative increase in probability from the
Equal Masses model, due to its expanded perimeter range. On
the other hand, the highest relative decrease can be seen in T5,
which maintains a wide perimeter range but achieves lower
probabilities.

As in the previous model, the numerical error is proportional
to the probability corresponding to points on the boundaries
inside the prism of all the regions with the given topology.
Some of the regions in this model have complex changes of
shape with perimeter; some are limited to narrow gaps between
close surfaces. In total, 0.03% of pixels were not assigned to
any topology region, leaving a probability of 0.04% not
attributed to any topology. Due to the more intricate
partitioning of the parameter space of the Planet in Binary
model, this probability may also serve as an upper bound on the
probability of potential topologies undetected for numerical
reasons.

9. Model 3: Hierarchical Masses

The components in our third model each have a different
mass, so that we do not expect any symmetry in the parameter-
space division. We chose hierarchically distributed masses in
the ratio 1:0.01:0.0001. In terms of fractional masses, μ1=
1/1.0101≈0.99, μ2=0.01/1.0101≈0.0099, and μ3=
0.0001/1.0101≈0.0001. Such a system may represent a star
with a planet with a moon or a star with two planets.

Even though the model describes a projected spatial
configuration of the components, it is useful to view the
regions of the following ternary plots in terms of the relative
positions of the components as if they were in face-on orbits.
Thus, the region near the top vertex (cp→0) describes a star
with a close-in massive planet and a distant lower-mass planet.
The region near the bottom left (bp→0) vertex describes a star
with a close-in lower-mass planet and a distant massive planet.
The region near the bottom right (ap→0) vertex describes a
star with a planet with a moon.

Based on the last case, we will refer to components 1, 2, and
3 in the following for simplicity as the star, planet, and moon,
respectively. In these terms, side c of the triangular configura-
tion describes the separation of the planet from the star, side a
the separation of the moon from the planet, and side b the
separation of the moon from the star.
In the following subsections we describe the boundaries,

topologies, and their probabilities in the Hierarchical Masses
model, concentrating primarily on differences from the
previous two models.

9.1. Boundary Surfaces

The boundary surfaces p(ap, bp) computed according to
Sections 4 and 5 are shown in Figure 11. Parts of the
intersecting surfaces are colored in order of their perimeter
values from closest (purple) to widest (red) transition, as in
Figures 3 and 8 for the previous two models. Due to the lack of
symmetry, we present three views of the ternary prism, from
left to right facing ternary axes ap, bp, and cp. For better
orientation, an animated version showing the prism rotated
about the vertical axis is available in the online version of this
article.
The (ap, bp, cp)=(1/2, 0, 1/2) vertical edge (left edge in

the left panel) corresponds to the moon coinciding with the
star (in terms of projected positions, as always), so that the
triple lens is reduced to a two-point-mass lens with fractional
masses 0.01/1.0101 and 1.0001/1.0101. The purple and
blue surfaces both intersect this edge at the perimeter
corresponding to the close/intermediate transition, =p

[ ]+ »-2 0.0099 0.9901 1.7323 43 3 . The cyan surface inter-
sects this edge at the perimeter corresponding to the wide/
intermediate transition, [ ]= + »p 2 0.0099 0.9901 3 23 3

2.667.
The (0, 1/2, 1/2) vertical edge (right edge in the left panel)

corresponds to the moon coinciding with the planet, reducing
the triple lens to a two-point-mass lens with fractional masses
0.0101/1.0101 and 1/1.0101. The purple and blue surfaces

Figure 11. Hierarchical Masses: boundaries in the lens configuration parameter space separating different critical-curve topologies. The three views of the surfaces are
rotated by 2π/3 around the vertical axis of the prism so that ternary axis ap (left), bp (middle), or cp (right) lies at front. Notation as in Figure 3. Black contours identify
the horizontal sections shown in Figure 12. The animated version of this figure shows the prism rotated full-circle around its vertical axis in π/18 steps.

(An animation of this figure is available.)

17

The Astrophysical Journal, 880:72 (26pp), 2019 August 1 Daněk & Heyrovský



both intersect the edge at the close/intermediate transition,
[ ]= + »-p 2 0.009999 0.990001 1.7313 43 3 . The cyan sur-

face intersects the edge at the wide/intermediate trans-
ition, [ ]= + »p 2 0.009999 0.990001 2.6693 23 3 .

The (1/2, 1/2, 0) vertical edge (left edge in the middle panel)
corresponds to the planet coinciding with the star, reducing the
triple lens to a two-point-mass lens with fractional masses
0.0001/1.0101 and 1.01/1.0101. The purple and blue surfaces
intersect this edge at [ ]= + »-p 2 0.000099 0.999901 3 43 3

1.933, and the cyan surface intersects it at =p
[ ]+ »2 0.000099 0.999901 2.1403 23 3 . In this case the

combination of masses and the corresponding boundaries are
nearly identical to the same vertical edge in the Planet in Binary
model, as seen in the middle panel of Figure 8.

In the left panel the front vertical face corresponds to
collinear configurations with the moon positioned along the
line from the planet to the star, so that cp=1/2. The left rear
vertical face (ap=1/2) corresponds to collinear configurations
with the star along the line from the planet to the moon, and the
right rear (bp=1/2) has the planet along the line from the star
to the moon.

Despite the total lack of symmetry of the Hierarchical
Masses model, the overall structure of its parameter space in
Figure 11 has similar features to those in the previous two
models. The close limit has the three purple spikes extending
down to the p=0 base, where the Jacobian has a double
maximum and only five simple saddle points. In this model
their locations are (ap, bp, cp)≈(0.0415, 0.4845, 0.4740),
(0.0417, 0.4717, 0.4866), and (0.0626, 0.4673, 0.4701). Note
that all three of these special configurations lie in the ap→0
star+planet+moon region of the parameter space, where the
two lighter components lie close together, far from the heaviest
component. Just as in the Planet in Binary case, the boundary
surfaces of the spikes intersect and form new topology regions
before the purple and blue surfaces from the front face of the
left panel cross them. The purple and blue surfaces appear at
the close/intermediate transitions at p≈1.731 at the front
right vertical edge, and nearly instantaneously across the entire
front face.

The close/intermediate (purple and blue) and wide/inter-
mediate (cyan) transitions at the rear vertical edge appear at
p≈1.933 and p≈2.140, respectively. The cyan surface
corresponding to the wide/intermediate transition at the front
left vertical edge appears at p≈2.667 and nearly simulta-
neously on the entire front face. The final nonasymptotic region
disappears at p≈4.799, at which the red/orange intersection
reaches the rear left face of the prism. The remaining green,
orange, and red boundaries asymptotically approach the
vertical edges.

In the high-perimeter regime the region close to the front left
vertical edge in the left panel corresponds to a star with a close-
in lower-mass planet and a distant massive planet. The region
close to the front right edge corresponds to a planet with a
moon and a distant host star. The region close to the rear
vertical edge corresponds to a star with a close-in massive
planet and a distant lower-mass planet. In all cases, the red
surface then corresponds to the wide/intermediate boundary of
the close companions, and the orange and green surfaces
represent the close/intermediate boundary perturbed by the
distant third component.

9.2. Critical-curve Topologies

The critical-curve topologies of the Hierarchical Masses
model can be mostly understood as an Einstein ring of the star
as a single lens with additional loops due to the two lower-mass
components. If the components are located sufficiently far from
the Einstein ring and sufficiently far apart, each of them just
adds extra loops to the critical curve. If we first add the planet
(component 2), the number of additional loops depends on the
sign of the single-lens Jacobian at the position of the planet: (a)
if it is positive (outside the Einstein ring), the critical curve has
one extra loop around the planet; (b) if it is negative (inside the
Einstein ring), the critical curve has two extra loops around
the Jacobian maxima in the vicinity of the planet. Adding next
the moon (component 3), the number of additional loops
depends on the sign of the two-point-mass-lens Jacobian of
the star+planet at the position of the moon: (a) if it is positive,
the critical curve has one extra loop around the moon; (b) if it is
negative, the critical curve has two extra loops around the
triple-lens Jacobian maxima in the vicinity of the moon.
Placing either of the lighter components close to the Einstein
ring of the star, and in particular placing the planet and moon
close together, leads to more complicated situations and
topologies.
Following the procedure described in Section 5, we present

in Figure 12 the topology maps for a sequence of eight
p=const. sections of the ternary prism from Figure 11. The
ternary plot regions are colored according to the topology of
their critical curves, following the schematic key in the bottom
row. In the key the topologies are ordered by the lowest
perimeter value at which they appear in the Hierarchical
Masses model. We preserve the numbering of the topologies
found in the previous two models.
The section with the closest configurations p=1.417 in the

top left corner is entirely in the close-triple regime before the
purple spikes in Figure 11 intersect. The sequence ends at
p=4.799 in the bottom right corner when the last non-
asymptotic region disappears at the intersection of the red and
orange surfaces on the left rear vertical face of the prism in the
left panel of Figure 11 (better seen in the middle panel). The
positions of the sections are marked in Figure 11 by the black
horizontal contours on the surfaces.
The sequence starts at p=1.417 with the same two close-

triple topologies as in the previous models: T1 for nearly all
configurations and T2 within the purple spikes. The next
transitions follow the sequence seen in the Planet in Binary
model: the purple spikes intersect and T3 appears as the
corresponding T2 regions come into contact, followed by T10
as the T3 regions come into contact. Another T3 region appears
next at the lower edge of the plot from the close/intermediate
boundary at p=1.731, and the corresponding nearly hor-
izontal boundary gradually sweeps through the ternary plot to
its top vertex. Just as in the Planet in Binary model, this
boundary is formed by two extremely close surfaces in
Figure 11 separated owing to perturbation by the moon:
initially purple and blue at the front face in the left panel,
finally green and orange at the rear vertical edge of the prism
(as seen in the middle panel). Therefore, the boundary seen in
the ternary plots is accompanied by an extremely narrow
horizontal band (not discernible in the plots) with different
topologies. As it sweeps through the plot from the edge through
the region of the spikes, the double boundary changes T1 via
T2 (narrow) to T3, followed by T2 via T3 to T4 (this situation
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corresponds to the second p=1.782 section), T3 via T4 to T5,
and T10 via T11 to T7. Just as in the Planet in Binary model,
the regions occupied by T11 are too small to be visible on any
of the sections. The T10 and T11 regions disappear very
quickly—both are absent in the next p=2.022 section.

The close/intermediate (purple and blue surfaces) and wide/
intermediate (cyan surface) transitions at the rear vertical edge
of the prism occur at p≈1.933 and p≈2.140, respectively. In
the ternary plot a double boundary separating T1 via a narrow
band of T2 from T3 appears first at the top vertex, spreading
downward along the right (bp=1/2) side. This double
boundary arises from the narrow separation of the purple and
blue surfaces owing to the stronger perturbation by the planet.
However, unlike in the case of the horizontal double boundary,
this double boundary does not extend at first along the full
length of the side. Close to the bottom right vertex it initially
swerves to the right side (p=2.022 section), and then the
broadened T2 layer connects with the T2 region extending
from the structure close to the vertex (p=2.065 section). The
double boundary passes through the structure by gradually
connecting to its topology regions (p=2.243 section). After
crossing the structure, it becomes gradually more parallel to the
right side, except close to the bottom of the plot.

The p=2.243 section already shows the wide/intermediate
boundary extending from the top vertex along the right side.
The corresponding sequence of topologies going from the
vertex inward is the same as in the Planet in Binary model: T6–
T3–T2–T1. The behavior of the boundary is similar to the
preceding double boundary. It gradually connects regions in the
parallel bands with the regions of the bottom right structure and

turns near-parallel to the right side after crossing the structure.
In the same section we see that the double boundary from the
right side has crossed the structure, at the top of which
topology T8 appeared in the narrow band between T7 and T6.
In addition, the small T1 and T2 regions along the right side of
the plot have disappeared.
Topology T6 appears nearly instantaneously along the

bottom edge from the wide/intermediate transition at
p≈2.667 (cyan surface at front face of prism), and the
corresponding second nearly horizontal boundary gradually
sweeps through the ternary plot to its top vertex. The last T9
topology appears close to the lower edge of the plot, and the
progression of the boundary changes T3 regions to T6, T4 to
T8, T5 to T7, and T7 to T9, as seen in section p=2.743. The
progressing double boundaries eliminate topologies T1 and T2
at the left side of the plot around p≈3.65. The p=3.655
section still has T3 and T5 separated by T4. All three disappear
at the left side: first T3, nearly instantly followed by T4, and
then T5. After T5ʼs disappearance at p≈4.799 at the last
intersection of the orange and red surfaces seen in the middle
panel of Figure 11, only the four asymptotic topologies T6, T7,
T8, and T9 remain, as shown in the last p=4.799 section.
Gradually, the three-Einstein-rings T9 topology dominates

over the other topologies, just as in any triple lens. As in the
previous models, the regions close to the vertices of the plot
correspond to the close (T6), intermediate (T7), and wide (T9)
regimes of different pairs of the components, with a distant
third companion. Thus, the region near the top vertex
corresponds to a star with a massive planet (components 1
and 2), near the bottom left vertex a star with a lower-mass

Figure 12. Hierarchical Masses: critical-curve topologies on a sequence of horizontal ternary-plot sections of the prism from Figure 11 at perimeters marked next to
the individual plots. Colors correspond to the 11 different topologies T1–T11 sketched in the bottom row. The plot sequence is ordered by perimeter from the closest
p=1.417 at top left to the widest p=4.799 at bottom right.
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planet (components 1 and 3), and near the bottom right vertex a
planet with a moon (components 2 and 3). Just as in the
previous models, topology T8 appears in the narrow transition
region between the close and intermediate regimes, where the
perturbation by the distant companion causes one of the two
inner loops of T6 to merge sooner than the other with the
outer loop.

The general structure of the topology regions in the
parameter space of the Hierarchical Masses model (and by
extension for any triple-lens model with two low-mass
components) is fairly straightforward to understand. The
overall division is given by the close/intermediate and wide/
intermediate boundaries owing to the star+planet and star
+moon two-point-mass lenses. These appear in the ternary plot
along the bottom and right sides, respectively, and sweep
through the plot to the respective opposite vertices. The
sequence in which these boundaries appear is generic: close/
intermediate owing to the heavier of the two companions,
close/intermediate owing to the lighter, wide/intermediate

owing to the lighter, and wide/intermediate owing to the
heavier. In this scenario the main topologies are T1, T3, T5,
T6, T7, and T9, with T2, T4, and T8 occurring only in the
narrow bands along the close/intermediate boundaries.
This overall picture breaks down only near the bottom right

star+planet+moon vertex, where the two low-mass compo-
nents are located close together. All more complex changes,
transitions, and the unusual topologies T10 and T11 occur in
this region, limited here roughly by ap<1/6.
The final lineup of the 11 topologies of the Hierarchical

Masses triple lens shown in the bottom row of Figure 12
exactly matches the lineup found in the Planet in Binary triple
lens. Both models are thus equally rich in terms of the variety
of possible critical-curve topologies.

9.3. Topology Probabilities

As in the previous models, we compute the probabilities
( ) pTi of generating a critical curve with topology Ti by three

randomly placed lens components forming a triangle with
perimeter p. We evaluate the respective integral in Equation (9)
for perimeters ranging from 0 to pmax=4.799, at the upper end
of the last nonasymptotic topology region (T5) in the prism.
At any value of p the probabilities add up to unity,

( )å ==  p 1i T1
11

i .
In the individual panels of Figure 13 we plot the perimeter

dependence of ( ) plog T10 i
for topologies T1 through T11 in

order of their first appearance in the Hierarchical Masses
model. The sequence of appearing and disappearing topologies,
which is the same as in the Planet in Binary model, corresponds
to the discussion in Section 9.2. Regions of low probability

( ) p 0.001Ti not visible in the plot occur here, for example,
for T2, which extends down to p=0 and up to p≈3.65; for
T4, which extends up to p≈4.59; for T11, which is entirely
outside the plot so that only its range of occurrence is indicated
by dashed lines; or for T8, which appears already around
p≈2.2.
The sequence of dominant topologies from close to wide

regime is T1–T3–T6–T9. Unlike in the Planet in Binary model,
topology T7 is suppressed here relative to T6 so that there is no
perimeter interval in which it would dominate. In comparison
with the Planet in Binary model, the close-limit topologies T1
and T2 extend to even higher perimeters (ending around
p≈3.65); the intermediate T3 and T4 have a reduced range,
appearing later and disappearing earlier; T10 and T11 occur in
narrower perimeter intervals with lower probabilities; T5 has a
reduced range, appearing later and disappearing earlier; the
asymptotic T7 and T6 appear at similar perimeters to those in
the Planet in Binary model, but their relative probabilities are
switched for p>3; and the asymptotic T8 and T9 topologies
both appear earlier, especially T9, which appears already
around p≈2.68.
Within the limits of the plot, T2 occurs in the widest

perimeter range (followed immediately by T1). Just as in the
Planet in Binary model, only T10, T11, and T9 cover less than
half of the perimeter range, with T11 occurring in the narrowest
interval. Generally, the main difference between the two
models is the later disappearance of the close-limit topologies
and earlier appearance of the final wide-limit topology T9 in
the Hierarchical Masses model. As a result, there is even more
overlap: all the topologies except T10 and T11 occur at any
perimeter pä(2.68, 3.65). Thus, in this perimeter range both

Figure 13. Hierarchical Masses: probability ( ) pTi of occurrence of topology
Ti at perimeter p. Topologies are marked and color-coded following the key in
the bottom row of Figure 12.
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close-limit topologies coexist with all wide-limit asymptotic
topologies.

For an overall comparison of topologies occurring for
configurations with perimeter pä(0, pmax=4.799), we
evaluate the probabilities T p,i max

from Equation (11) normalized
so that å ==  1i T p1

11
,i max

. The values obtained for the 11
topologies are shown in the “Hierarchical Masses” column of
Table 1. Within the given perimeter range, we see that in this
model topology T6 replaces T7 as the most frequent topology,
occurring in nearly 38% of cases. On the lowest-probability
end, topologies T4, T8, T2, T10, and T11 together occur in
~0.2% of cases. Sorted in descending order of probability, the
topology sequence is T6>T9>T7>T3>T1>T5 >
T4>T8>T2 >T10>T11.

Comparing the topologies with the previous model, T1
shows the highest relative increase in probability, due to its
expanded perimeter range. On the other hand, the highest
relative decrease can be seen in T10, which dropped in terms of
perimeter range as well as probabilities. Note that the T11
probabilities were too low to be reliably estimated in either
model.

As in the previous models, the numerical error is propor-
tional to the probability corresponding to points on the
boundaries inside the prism of all the regions with the given
topology. Some of the regions in this model have complex
changes of shape with perimeter; some are limited to narrow
gaps between close surfaces. In total, 0.03% of pixels were not
assigned to any topology region, leaving a probability of 0.03%
not attributed to any topology. As in the Planet in Binary
model, due to the intricate partitioning of the parameter space,
this probability may also serve as an upper bound on the
probability of potential topologies undetected for numerical
reasons.

10. Summary and Conclusions

We set out to explore the lensing regimes of a triple lens
consisting of a given combination of point masses in an
arbitrary spatial configuration. We parameterized the config-
uration by the perimeter of the projected triangle formed by the
components, and by two fractional side lengths, as shown in
Section 3. This permitted us to describe the shape of an
arbitrary triangle by a point in a ternary plot. By adding the
perimeter as a vertical coordinate perpendicular to the
horizontal plot, our full lens configuration parameter space
forms a semi-infinite ternary prism.

Based on our previous work (Daněk & Heyrovský 2015a;
Daněk & Heyrovský 2015b), we describe in Sections 4 and 5 a
method for computing for a given shape of the triangle the set
of perimeter values, at which the lensing regime (described
here by the topology of the critical curve) changes. By
computing these values for all triangles in the ternary plot, we
obtain a set of boundary surfaces dividing the parameter space
into regions with different topologies. We then use a series of
horizontal p=const. sections to map the topologies in these
regions. In this way we obtain a full 3D map of the critical-
curve topologies as a function of spatial configuration of the
lens components. As shown in Section 6, the parameter-space
division also permits us to compute the relative probabilities of
occurrence of the different topologies.

The analysis of the lensing regimes of the two-point-mass
lens performed by Schneider & Weiss (1986) and Erdl &
Schneider (1993) showed that for any mass ratio there were the

same three regimes corresponding to three critical-curve
topologies. In this work we performed a similar analysis for
three sample triple-lens models defined by their fractional-mass
combinations: for three equal masses (the “Equal Masses”
model); for two equal masses with a low-mass third component
(the “Planet in Binary” model); and for a hierarchical
combination of dominant-, lower-, and lowest-mass compo-
nents (the “Hierarchical Masses” model).
The boundary surfaces computed for the Equal Masses

model in Section 7 are shown in Figure 3. These surfaces
partition the parameter space into 39 disjoint regions, which we
mapped to find a full set of nine different topologies of the
critical curve, sketched at the bottom of Figure 6. These
topologies also correspond to the full set of topologies found
previously in the simpler two-parameter triple-lens models of
Daněk & Heyrovský (2015b).
A similar exploration of the Planet in Binary model in

Section 8 (boundary surfaces in Figure 8) and the Hierarchical
Masses model in Section 9 (boundary surfaces in Figure 11)
showed that both of these models share the same set of 11
different topologies, sketched at the bottom of Figures 9 and
12. This demonstrates that unlike in the two-point-mass lens,
the number of different lensing regimes of the triple lens
depends on the combination of masses of the components. In
addition to the nine topologies of the Equal Masses model,
these models have two new T10 and T11 topologies, both of
which involve doubly nested critical-curve loops (i.e., a loop in
a loop in a loop). An example of transitions leading to these
topologies is described in Appendix B.
The parameter-space division of the Hierarchical Masses

model in Figures 11 and 12 indicates that for a triple lens with
two low-mass components the critical curve may be typically
described by a superposition of independent effects due to
either component. However, when the two components lie
closer together, this simple picture breaks down and more
complicated topologies and topology changes occur. This is the
case close to the bottom right vertex of the ternary plots in
Figure 12, which corresponds to lensing by a star with a planet
with a moon.
A similar parameter-space mapping may be performed for

any other combination of component masses. However,
carrying out a full analysis for a general triple lens would
require constructing such partitioned ternary prisms as a
function of two fractional masses, e.g., μ1ä(0, 1), μ2ä(0, 1),
μ1+μ2<1. Alternatively, one would need a deeper insight
into the variations of critical-curve topologies and their regions
in parameter space as a function of the combination of masses.
We cannot draw general conclusions based on the results for
three component-mass combinations. For example, the close-
limit structure of all three models seems to be generic, with
topology T1 for nearly any shape and T2 within the purple
boundary-surface spikes. However, other mass combinations
permit a T3 close-limit topology, as seen in the LS model of
Daněk & Heyrovský (2015b) with μLS=1/9. We conclude
that it remains to be seen if the 11 topologies T1–T11 occurring
in the studied models constitute the full set of critical-curve
topologies for an arbitrary triple lens—or if there are any other
yet undiscovered topologies.
We computed the probabilities of occurrence of different

topologies for randomly positioned components with an upper
limit on the perimeter. The results in Table 1 show that the
dominant topologies generally include the T7, T6, and T9
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wide-limit topologies, plus a combination of T5, T3, or T1. The
five remaining topologies have lower probabilities, lowest in
the case of the new T10 and T11. The performed analysis
permits the computation of more specific probabilities taking
into account the orbital configurations of specific triple-lens
systems. In addition, the approach chosen in this work is
suitable for studying topology changes in nonstatic lens
configurations involving orbital motion or other parallax-type
microlensing effects.

The structure of observed microlensing light curves is
primarily given by the structure of the amplification map, and
the lens caustic in particular. The structure of the caustic is
primarily linked to the structure of the critical curve. For
example, the number of its loops can thus be directly read
off from the partitioned parameter-space regions and their
topologies. All the computed topology boundaries correspond
to beak-to-beak metamorphoses of the caustic. In this caustic
metamorphosis two approaching folds touch and separate in the
perpendicular direction as two facing cusps (“beaks”).

However, the number of cusps of the triple-lens caustic may
also change without affecting the critical-curve topology: in the
swallow-tail or butterfly metamorphoses (Daněk & Heyrovský
2015a; Daněk & Heyrovský 2015b). In the swallow-tail
metamorphosis, a bend appears on a fold caustic and develops
into a swallow-tail-like feature formed by a pair of cusps and a
self-intersection. In the butterfly metamorphosis, a cusp on the
caustic broadens to a nonzero tangent angle and develops into a
butterfly-like feature formed by an additional pair of cusps and
three self-intersections. While the described metamorphoses
increase the number of cusps by two, any of them may proceed
in reverse as well, in which case the number of cusps decreases
by two.

The partitioning of the parameter space by cusp number
would thus involve additional boundary surfaces corresponding
to image-plane swallow-tail or butterfly points on the critical
curve. For the Equal Masses model Daněk & Heyrovský
(2015b) computed the intersections of these boundaries with
the vertical faces of the ternary prism (LA model in the right
panel of their Figure 8), and with the vertical planes along the
ternary-plot medians (TI model in the right panel of their
Figure 15). While the former appear simple, the latter indicate
that the overall structure of these additional surfaces might be
quite intricate. The full analysis of the cusp structure of triple-
lens caustics thus remains beyond the scope of this work.

We thank the anonymous referee for helpful comments and
suggestions. Work on this project was supported by Czech
Science Foundation grant GACR 16-17282S.

Appendix A
Conversion of Lens Configuration Parameters

A.1. General and Preferred-frame Positions

The topology of the critical curve does not depend on the
choice of origin and orientation of axes of the complex plane
used for describing the plane of the sky. Therefore, in this work
we illustrate the positions of the lens components z1, z2, z3 for
simplicity in a preferred frame defined by setting the origin at
the centroid of the components (z1+z2+z3=0) and rotating
the axes so that the line connecting z1 and z2 is parallel to the
real axis (i.e., Im[z1]=Im[z2]) and z2 lies to the right of z1 (i.e.,
Re[z1]<Re[z2]).

The transformation from positions in a general frame z10, z20,
z30 to the preferred frame is then given by
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where ( )c = -z zarg 20 10 . The geometry is illustrated in
Figure 14, where the configurations in the general and preferred
frames are shown in the left and middle panels, respectively.
Note that the inverse transformation is undefined, since the
general positions have six degrees of freedom while in the
preferred frame there are only three degrees of freedom,
sufficient to describe the general triangular configuration. We
also point out that the positions used in defining the probability
in Equation (6) should be understood as general positions
rather than preferred-frame positions. Nevertheless, the inde-
pendence of the probability on the choice of origin and axes
leads to three degrees of freedom canceling out in the next step
to Equation (8).

A.2. Triangular Parameters

The parameters used in this work to describe the triangular
configuration are the perimeter p (used as the parameter
defining the size of the configuration) and two of the three
fractional side lengths ap, bp, cp (used as the two parameters
defining the shape of the configuration). In terms of the
component positions,

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣
∣ ∣
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p z z z z z z

a z z p

b z z p

c z z p, 13

p

p
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3 2
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where the fractional lengths are connected by + +a bp p

=c 1p , and the formulae are valid even if the preferred-frame
positions are replaced by the general ones.
For deriving the inverse transformation we select parameters

bp and cp. The results can be easily converted to any other pair
of fractional side lengths. First, we point out that the inversion
has an inherent degeneracy. The parameter combination p, bp,
cp does not identify whether the third component lies above or
below the first two in the complex plane. The two possible
triangles are mirror images, so that their critical-curve topology
and other properties are the same. Nevertheless, when
computing the component positions, one or the other option
should be specified.
We start with an intermediate triangle with vertices 0, p cp,

p bp e
i ψ, which we shift so that its centroid lies at the origin.

The angle ψ from c to b at z1 can be computed in terms of bp
and cp by combining two identities for ap, the third fractional
side:

( )y- - = = + -b c a b c b c1 2 cos . 14p p p p p p p
2 2

Since we obtain ycos , the two permitted solutions are
[ ]y pÎ 0, and p y-2 . The resulting expressions for the
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transformation are

⎡⎣
⎤⎦

⎡⎣
⎤⎦

⎡⎣
⎤⎦

( )

( )( )( ) ( )

( )

( )( )( ) ( )

( )

( )( )( ) ( ) ( )

=- + - + -

 - - + -

=- + - - -

 - - + -

= + - - -

 - - + -

z p b c b c c

i b c b c c

z p b c b c c

i b c b c c

z p b c b c c

i b c b c c

2 2 1

1 2 1 2 2 2 1 6

2 4 1

1 2 1 2 2 2 1 6

2 1

1 2 1 2 2 2 1 3 , 15

p p p p p

p p p p p

p p p p p

p p p p p

p p p p p

p p p p p

1
2

2
2

3
2

where the plus or minus sign before the square root places z3
above or below z1 and z2, respectively.

A.3. Microlensing Parameters

In the analysis of triple microlensing events the configuration
is typically parameterized by two side lengths s2, s3 from the
first to the two other components and the angle ψ subtended by
them (e.g., Han et al. 2017b). The right panel of Figure 14
illustrates the geometry in terms of these parameters. With
component 1 representing usually the most massive comp-
onent, the parameter definitions in terms of the preferred-frame
positions and the triangular parameters used in this work are
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where the last equality comes from Equation (14), and the plus
or minus sign is used when component 3 is above or below
components 1 and 2, respectively.

The inverse transformation to the preferred-frame positions
can be derived by shifting the centroid of a triangle with
vertices 0, s2, ys ei

3 to the origin. We get
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The transformation to the triangular parameters is given by
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Finally, in microlensing notation fractional masses are usually
replaced by relative masses with respect to the most massive
component,
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The fractional masses are then obtained from
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Appendix B
Critical-curve Topologies T10 and T11

We illustrate here the critical-curve transitions leading to
topologies T10 and T11 with doubly nested loops, newly
discovered in the Planet in Binary and Hierarchical Masses
models (see Sections 8.2 and 9.2, respectively). We also
demonstrate the corresponding changes in the caustic. As an
example, we select the Planet in Binary model with fractional
masses (μ1, μ2, μ3)=(0.49995, 0.49995, 0.0001) in an
isosceles configuration (ap, bp, cp)=(0.31276, 0.31276,
0.37448), which lies along the median leading from the top
vertex to the bottom side of the ternary plots in Figure 9.
The Jacobian contours, cusp curve, and morph curve of the

configuration are shown in Figure 15. The blue contour marks
the critical curve for perimeter p=1.89. In the top row we
present a view of the full critical curve; in the bottom row we
present a detailed view of the vicinity of the planet. Overall,
the critical curve resembles a binary-lens critical curve in the
close regime, with an outer + two inner loops, two poles (at the
positions of the binary components), two Jacobian maxima
(inside the inner loops), and three saddle points (along the
imaginary axis). However, placing the planet inside the top

Figure 14. Parameters describing the spatial configuration of the triple lens: a sample combination of components (crosses) in terms of general-frame positions (left
panel), preferred-frame positions (middle panel), and microlensing parameters (right panel). The transformation from the general to the preferred frame consists of
shifting the original centroid zctr0 of the components to zctr at the origin and rotating the axes by χ so that component 2 lies horizontally to the right of component 1.
For details see Appendix A.
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inner loop leads to additional triple-lens features seen in
the detail: an additional (doubly nested) loop surrounding
the planet, an extra pole, two extra maxima (on both sides of
the planet), and three extra saddle points (surrounding the
planet). Note also that the addition of the planet to a binary lens
near its close/intermediate transition causes the top inner loop
to connect with the outer loop later than the bottom inner loop.
Since the bottom loop is already connected at this perimeter,
the critical curve has the T11 topology (outer + inner + doubly
nested loops).

The orange cusp curve, which is added in the middle and
right columns, generally has the simple structure of the binary-
lens cusp curve (see the left panel of Figure 2 in Daněk &
Heyrovský 2015a). The detail shows the additional figure-eight
structure close to the planet, passing through the two additional
off-axis saddle points and branching at the additional maxima.
Counting its intersections with the critical curve, we find that
the caustic loop corresponding to the outer critical-curve loop
has five cusps, the caustic loop corresponding to the inner loop
has three cusps, and the caustic loop corresponding to the
doubly nested loop has four cusps.

The green morph curve, which is added in the right column,
also has the general structure of a binary-lens morph curve (see
the right panel of Figure 2 in Daněk & Heyrovský 2015a). The
detail shows the additional disconnected loopy structure around
the planet. The morph curve has only two intersections with the
cusp curve away from the saddle points and lens positions, both
on the imaginary axis: one above the planet, the other below
the planet. Both occur at branching points of the cusp curve,
and thus they are butterfly points. Their presence indicates that

the caustic of this lens configuration undergoes two butterfly
metamorphoses with changing perimeter. For details see
Section6 in Daněk & Heyrovský (2015a).
Figure 16 illustrates the sequence of critical curves (global in

column 1, detail in column 2) and caustics (global in column 3,
detail of lower part in column 4) of the configuration as the
perimeter increases from the bottom to the top row. At
p=1.80 in the bottom row the critical curve has the T3
topology (outer + two inner loops). The central caustic loop
with four cusps corresponds to the outer loop of the critical
curve, the top loop with three cusps corresponds to the bottom
inner loop, and the bottom loop with seven cusps corresponds
to the top inner loop. The number of cusps of the bottom loop
of the caustic can be checked by counting the intersections of
the cusp curve in the bottom middle panel of Figure 15 with the
Jacobian contour corresponding to the p=1.80 critical curve
(the second contour to the right and left of the off-axis saddle
points).
The top inner loop of the critical curve wraps around the

planet and connects at the saddle point above the planet,
generating the doubly nested loop around the planet. This can
be seen in the next p=1.88 row, where the caustic has the T10
topology (outer + two inner + doubly nested loops). At the
same time the bottom loop of the caustic disconnected a small
loop with four cusps (corresponding to the doubly nested loop)
via a beak-to-beak metamorphosis, leaving the bottom loop at
first with five cusps. A reverse butterfly metamorphosis at the
top of the loop then reduces the cusp number on the bottom
loop to three, as seen in the right column. This occurs when the

Figure 15. Doubly nested critical-curve topology T11 for the Planet in Binary model with (ap, bp, cp)=(0.31276, 0.31276, 0.37448). Top row: global view; bottom
row: detailed view of the vicinity of the planet. All panels show the Jacobian contours with the p=1.89 critical curve marked in blue; the middle and right columns
include the cusp curve (orange); the right column includes the morph curve (green). Notation as in Figure 2.
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critical curve passes through the butterfly point above the
planet in the bottom right panel of Figure 15.

The p=1.89 row shows the situation from Figure 15, in
which the bottom inner loop connected with the outer loop,
changing the topology to T11 (outer + inner + doubly nested
loops). The top and central loops of the caustic connected via a
reverse beak-to-beak metamorphosis, forming a loop with five
cusps, as demonstrated above. By the top p=1.95 row the top
inner loop of the critical curve connected with the outer loop as
well (at the topmost saddle point), changing the topology to T7
(two separate loops) by releasing the doubly nested loop as a
separate critical-curve loop around the planet. The bottom loop
of the caustic connects with the large loop via another reverse
beak-to-beak metamorphosis, forming a loop with six cusps
and leaving a separate planetary loop with four cusps.

The entire sequence shown in Figure 16 occurs in a narrow
perimeter interval located between the p=1.690 and

p=2.270 sections in the top row of Figure 9. Increasing the
perimeter to higher values would lead to the final transition,
corresponding to the crossing of the red surface in Figure 8. In
it the large loop of the critical curve disconnects at the central
saddle point into two separate loops of either of the heavier
components, thus achieving the asymptotic T9 topology (three
separate loops). The large loop of the caustic would split
vertically in a beak-to-beak metamorphosis into two four-
cusped loops.
Similarly, reducing the perimeter from p=1.80 to lower

values leads to one final transition, in which two extra critical-
curve loops around the two off-axis maxima close to the planet
disconnect simultaneously from the top inner loop, leading to the
close-limit T1 topology (outer + four inner loops). In Figure 8
this corresponds to crossing an intersection of the blue and
purple surfaces. The corresponding bottom loop of the caustic
undergoes two simultaneous beak-to-beak metamorphoses

Figure 16. Sequence of transitions leading to doubly nested critical-curve topologies T10 and T11. Same lens configuration as in Figure 15, with perimeter varying
from p=1.80 in the bottom row (topology T3), via p=1.88 (T10) and p=1.89 (T11), to p=1.95 in the top row (T7). Two left columns: critical curve global and
detail; two right columns: caustic global and detail. Notation as in Figure 2.
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splitting off two small three-cusped loops and leaving a loop
initially with five cusps. For a lower perimeter value the critical
curve then passes through the butterfly point below the planet in
the bottom right panel of Figure 15, and the five-cusped caustic
loop undergoes a reverse butterfly metamorphosis to a three-
cusped loop.

The entire topology sequence from the close to the wide
limit for the presented configuration thus is T1–T3–T10–T11–
T7–T9. Due to the isosceles symmetry (including the masses),
there are only six topologies and five transitions, since the
purple and blue boundary surfaces in Figure 8 are crossed
simultaneously. The entire sequence including the changes in
caustic structure can be determined from the contours and
curves presented in Figure 15.
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