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ABSTRACT
In the theory of gravitational lensing the lens caustic and its primary image, the critical
curve, have fundamental importance. Knowledge of these curves greatly facilitates
the interpretation and analysis of time-dependent gravitational microlensing events.
A binary lens modelled by two point masses can form caustics of three different
topologies, which correspond to three topologies of the critical curve. Here we anal-
yse critical curve topologies of the triple lens. While the binary lens is characterized
by two parameters, five parameters are needed to describe the triple lens. We present
an example illustrating the analysis of special triple-lens models described by two
parameters. We find analytical conditions for the change of critical-curve topology,
which define boundaries of regions in parameter space with different critical-curve
topology. For each region we present corresponding critical curves and caustics. We
also include sample results for a three-parameter model describing a triple lens with
equal masses in a general spatial configuration.

1 INTRODUCTION

Gravitational microlensing is a special regime of gravitational lensing in which the lensing
body is of stellar or sub-stellar mass, so that the deflection angle is too small for resolving
individual images of a background star (the “source” in lensing terminology). The main
measurable quantity is the time-dependent amplification of flux from the source, i.e. the
light curve of a microlensing event. The amplification peaks sharply when the source crosses
the caustic of the lens, which – if we could resolve individual images – corresponds to the
formation or destruction of a pair of images on the critical curve of the lens.

The single-point-mass lens was discussed in detail by Refsdal (1964). The first theoret-
ical study of two-point-mass lenses was carried out by Schneider and Weiss (1986) who
described the properties of the critical curve and caustic of an equal-mass binary lens.
A complete analysis of caustic and critical-curve topologies of the general binary lens was
performed by Erdl and Schneider (1993).

The first convincing triple-lens microlensing event, OGLE-2006-BLG-109, was found in
2006 (Gaudi et al. 2008). The lens system consisted of a star with two planets forming a
Sun + Jupiter + Saturn analogue. The possibility of detecting triple lenses was discussed
in several papers (e.g. star with an exoplanet with a moon by Liebig and Wambsganss
2010, Han 2008; planet in a binary-star system by Lee et al. 2008, Chung and Park 2010).
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At the same time, gravitational microlensing by a system of three bodies has not been
satisfactorily analysed theoretically yet. Inspired by the Erdl and Schneider (1993) analysis
of the parameter dependence of binary lensing, we extend their approach to special cases
of the triple lens, focusing here on the classification of critical-curve topologies.

For binary lenses, there are only three different topologies of the critical curve, corre-
sponding to three different topologies of the caustic. These are usually labelled according
to the binary separation as “close” (critical curve formed by three loops), “resonant” (one
loop), and “wide” (two loops), with boundaries between the regimes depending on the
binary mass ratio. Apart from the merger of loops at these boundaries, the loops of a binary
lens caustic never self-intersect, never intersect mutually, and are never nested. The more
complex triple-lens caustics often exhibit self-intersections, loop intersections and loop
nesting without a change in critical-curve topology. However, the number of loops of the
caustic is always the same as the number of loops of the critical curve. In the following we
classify the critical-curve topologies by studying the conditions for the merger of critical-
curve loops. Such a classification may then serve as a basis for classifying the topologies
of the triple-lens caustic.

2 CRITICAL CURVES IN GRAVITATIONAL MICROLENSING

For an n-point-mass lens system, the equation tying the position of the source and its images
may be expressed in complex form as

ζ = z −
n∑

i=1

µi

z̄ − z̄i
, (1)

where ζ is the source position, z is the image position in the lens plane, zi are the point-
mass positions (barred variables z̄, z̄i are complex conjugates of z, zi ), and µi are their
relative masses with unit total mass (

∑n
i=1 µi = 1). This complex notation was introduced

by Witt (1990). All angular positions are normalized to the total-mass Einstein radius,
i.e. the radius of a ring-shaped image of a source positioned directly behind a single lens.
The amplification of a given image is obtained as the reciprocal value of the determinant
of the Jacobi matrix of lens Eq. (1), J = (∂ζ/∂z). The equation of the critical curve is
obtained by setting det J = 0, which leads to

n∑
i=1

µi

(z − zi )2
= e−2iφ , (2)

where the real phase φ varies along the curve from 0 to 2π .
The critical curve in fact is the det J = 0 contour of the Jacobian in the lens plane. Hence,

it forms the boundary between regions of positive and negative det J . As a consequence,
the point on a critical curve at which loops of the critical curve merge must also be a saddle
point of det J . The additional saddle-point condition for such a merging point can be
computed from the Hessian, which yields

n∑
i=1

µi

(z − zi )3
= 0 . (3)
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By solving (2) and (3) simultaneously we get analytic conditions for merging points. These
define the boundaries separating regions in parameter space with different critical-curve
topologies.

3 TRIPLE LENS: TWO-PARAMETER MODEL

The triple lens is described by five parameters: two relative masses and three position
parameters. Finding the merger conditions as equations combining all five parameters is
prohibitive because of algebraic complexity and thus demands on computational time.
Therefore, we used special triple-lens models with fewer free parameters for an initial
exploration of the parameter space.

To give a two-parameter example, we present here the results for a triple-lens system in
an equilateral triangle configuration with two masses set equal. Our variable parameters
are the mass µ of the third lens, and the length d of a side of the triangle. Using the
Sylvester matrix method of Erdl and Schneider (1993), we get four independent conditions
for critical-curve merger. Two of them have a similar form, both being polynomials of sixth
degree in d2:

a12d12
+ a10d10

+ a8d8
+ a6d6

+ a4d4
+ a2d2

+ a0 = 0 , (4)
a12d12

− a10d10
+ a8d8

− a6d6
+ a4d4

− a2d2
+ a0 = 0 , (5)

where

a12 = 32 ,
a10 = 48(3µ− 1) ,
a8 = −48(3µ− 1)(3µ− 5) ,
a6 = 8

(
81µ3

+ 27µ2
− 45µ+ 35

)
, (6)

a4 = 6(3µ− 1)
(
621µ3

− 981µ2
+ 351µ+ 25

)
,

a2 = −3(3µ− 1)
(
243µ4

− 972µ3
+ 1098µ2

− 372µ− 13
)
,

a0 = −108µ3
+ 324µ2

− 180µ− 4 .

The third has the form of a polynomial of third degree in d4,

16d12
− 24

(
9µ2
− 6µ− 1

)
d8
−
(
243µ4

+ 972µ3
+ 1134µ2

− 468µ+ 15
)
d4
+

+54µ3
− 162µ2

+ 90µ+ 2 = 0 , (7)

and the fourth is a polynomial of twelfth degree in d4,

12∑
l=0

b4ld4l
= 0 , (8)

where b4l are functions of µ that we don’t specify here due to their complexity.
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Figure 1. Parameter space regions according to critical-curve topology for a triple lens in an
equilateral triangle configuration. Parameters: mass of vertex µ; length of side d .

The curves in the [µ, d] plane given implicitly by Eqs. (4), (5), (7), and (8) form
boundaries that divide the parameter space into several regions. To make sure that regions
on either side of each curve correspond to different topologies, it is necessary to check
whether each solution of (4), (5), (7), and (8) also fulfils the original conditions (2) and (3).

In Figure 1 we plotted the parameter space of the equilateral-triangle lens with curves
given by (4), (5), (7), and (8). These curves divide the parameter space into ten regions,
labelled in the Figure A through J. Examples of critical curves and caustics from all ten
regions are shown in Fig. 2. There are altogether seven different topologies of the critical
curve. The topologies in E and G are the same, so are those in F and H, and in I and J. The
critical curve in B consists of three loops that separate in the limit d → ∞ into Einstein
rings of three single lenses. The critical curve in I and J consists of an outer loop and four
inner loops. In the limiting case d → 0 the inner loops disappear at the lens position and
the outer loop turns into the Einstein ring of a single lens with total mass

∑3
i=1 µi = 1.

The analysis of two other two-parameter models can be found in Daněk (2010).

4 TRIPLE LENS: THREE-PARAMETER MODEL

Using the Sylvester matrix method for three-parameter triple-lens configurations usually
leads to multi-page expressions for merging conditions. Factorizing the final result into
separate surfaces dividing the parameter space presents a further hurdle to this method. It
is necessary, therefore, to find an alternative approach.

We noticed a nice property of (2) and (3) that can be used to obtain the parameters
of critical-curve mergers. If we multiply both sides of (2) by a real positive number α
and perform the transformation z′ = α−1/2z, z′i = α−1/2zi , we obtain the equation of
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Figure 2. Critical curves and caustics of a triple lens in an equilateral triangle configuration. First
and third column: critical curves; second and fourth column: caustics; crosses: lens positions. Letters
labelling the panels correspond to regions in Fig. 1.
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Figure 3. Parameter space regions according to critical-curve topology for a triple lens with equal
masses and circumference o = 4.8. Lengths of sides a, b, c are in units of o.

a Jacobian contour line with det J ′ = 1 − α2 in z′. The saddle-point condition (3) holds
for both transformed and untransformed values. This enables us to find the value of det J ′

in a saddle point z′ for some chosen lens positions z′i and a contour line going through the
saddle point. By inverting the transformation we can find lens parameters zi with a critical
curve equal, up to a scaling factor, to the found contour line. For any configuration of the
triple lens there are six saddle points of the Jacobian. Hence, we obtain six values of det J ′

that tell us how to re-scale the lens positions to obtain parameters of critical-curve mergers.
As an example we present a triple lens with equal masses and arbitrary lens positions.

The system is parametrized by the triangle circumference o and three lengths of sides as
fractions of the circumference a, b, c, constrained by a+b+c = 1. Taking advantage of the
symmetry of this problem we draw o = const slices of the parameter space as ternary plots.
The o = 4.8 slice is shown for illustration in Fig. 3. Here the parameter space is divided into
nineteen regions, due to symmetry representing only six distinct types of regions, labelled
in the Figures A through F.

Examples of critical curves and caustics corresponding to the six regions are presented
in Fig. 4. There are altogether five different critical-curve topologies in this slice of the
parameter space, with regions B and C having the same topology. The topologies in A and
B / C do not occur in the two-parameter equilateral-triangle model described earlier. D has
the same critical-curve topology as A in Fig. 2, their caustics have the same total number of
cusps but the latter has four more intersections. The critical-curve topology and number of
caustic cusps are the same for the following pairs of examples: E from Fig. 4 and D from
Fig. 2; F from Fig. 4 and B from Fig. 2. Note that the example F in Fig. 4 has the parameters
of an equilateral triangle; its parameters lie in B of Fig. 1.
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Figure 4. Critical curves and caustics of a triple lens with equal masses and circumference o = 4.8.
First and third column: critical curves; second and fourth column: caustics; crosses: lens positions.
Letters labelling the panels correspond to regions in Fig. 3.

5 CONCLUSION

The topological analysis of critical curves and caustics of binary lenses provides a priceless
theoretical background for analysing observed microlensing light curves. We have shown
that it is possible to find algebraic conditions for critical-curve merger for special two-
parameter models of triple lenses. We have found a numerical method for obtaining merger
parameters for a general multiple lens, by identifying the contour lines of the Jacobian
passing through its saddle points with the critical curves of re-scaled lens configurations.

The number of possible critical-curve topologies in the full parameter space of a triple lens
still remains unclear. For a more instructive insight into all possible light curves of triple-
lens microlensing we also need to refine the analysis to cover other caustic transformations.
In particular, the number of caustic cusps can change even without mergers. For a complete
caustic-topology analysis, also caustic intersections should be taken into account.
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