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Abstract. Light from a distant quasar passing in the vicinity of a foreground
galaxy gets deflected by its gravitational field. According to Fermat’s principle
several macro-images of the quasar can then be observed. In addition, the light
may be affected by the gravitational field of individual stars moving in the lensing
galaxy, creating multiple micro-images. We cannot resolve them because of their
small angular separation, but we can observe an associated increase in the source
flux due to microlensing. We use simulations to show how the prominent X-ray
iron Kα line is affected during the microlensing event. We describe in detail the
underlying numerical integration involving divergent integrands.

Introduction

The first article about gravitational lensing was published by Einstein [1936], but it took
more than 40 years till the first gravitationally lensed quasar 0957+561 was discovered by Walsh
et al. [1979].

In our model we assume a setting similar to the first lens: a distant bright quasar and a
galaxy lying along the line-of-sight to the quasar. Passing light is bent in the gravitational field
of the galaxy and few macro-images are created with a typical separation of several arcseconds.
When the light corresponding to one of the macro-images passes through the stellar population
of the lens galaxy, photons are bent in the gravitational field of individual stars and additional
images with micro-arcsecond separation are created, leading to an increase in flux [Schmidt and
Wambsganss, 2010]. This effect can be observed at various wavelengths. We are interested in the
innermost area of the accretion disk which emits mostly in X-rays. One of the first candidates
for X-ray microlensing was quasar MG J0414+0534 observed by Chartas et al. [2002].

Microlensing can be also used to estimate the size of the emitting area, differences in the
size between the optical and the X-ray band emission radius [Dai et al., 2010], the temperature
profile of the disk [Eigenbrod et al., 2008], and additional properties of the specific intensity
spatial distribution from observations of line profile changes [Chen et al., 2011].

Microlensing model

The lens equation for an extended lens galaxy [Schneider et al., 2006] is

�β = �θ − Dds

Ds
�α(�θ) , �α(�θ) =

4GDd

c2

∫
d2θ′ρ(�θ′)

�θ − �θ′

|�θ − �θ′|2
, (1)

where �β is the source position vector in the quasar plane, �θ is the image position vector in
the lens plane, ρ(�θ) is the surface mass density of the lens galaxy, Dds is the angular-diameter
distance between the quasar and the lens galaxy, Ds is the angular-diameter distance from the
observer to the quasar and Dd is the angular-diameter distance from the observer to the lens.
Deflection of light by the lens galaxy creates a flux amplification map in the quasar plane. The
fine structure of the map in the vicinity of a given macro-image is determined by the local stellar
population of the lens galaxy. The combined gravitational field of these stars forms a caustic
network with characteristic scale comparable to the angular size of the quasar accretion disk.
The local surface mass distribution ρ(�θ) can be approximated in a simplest model by a set of
point masses. In Ledvina [2011] we described an algorithm for calculating these maps, with an
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example shown in Fig. 1. The angular scale unit used in these maps is the Einstein radius

θE =

√
4GM

c2
Dds

DdDs
, (2)

where M is the average mass of a microlensing star in the lens galaxy.
The quasar is moving with respect to the amplification map, which implies variability in

the observed photon flux

Fobs(β
0
1 , β

0
2) =

∫
disk

Iobs(β1, β2)A(β1 − β01 , β2 − β02) dβ1 dβ2 , (3)

where (β01 , β
0
2) is the position of the quasar accretion disk center. The amplification factor is A;

Iobs(β1, β2) is the photon specific intensity in the observer frame.

Figure 1. Left panel: Microlensing amplification map A(β1, β2) as a function of source position
for a lens composed of stars with mean separation 3.90 θE. Right panel: Detail of amplification
map showing fold caustic.

Two most common local structures of amplification maps are fold (see Fig. 1) and cusp
caustics, along which the amplification peaks. Here we use the linear fold approximation [Chang
and Refsdal, 1984], which is suitable because the X-ray emitting region of the disk is very
small with respect to the characteristic scales of the amplification map. For the point-source
amplification we have

A(β̃1, β̃2) = A0 +

{
0 for β̃1 ≤ 0√

α0

β̃1
for β̃1 > 0

, (4)

where A0 is the amplification outside the fold, α0 is the caustic strength and (β̃1, β̃2) are
Cartesian coordinates rotated and shifted with respect to the coordinates (β1, β2) according
to the fold position.

Disk model

The disk emission models were kindly provided by Michal Dovčiak and Michal Bursa from
the Astronomical Institute of the Czech Academy of Sciences. These models assume locally
isotropic emission from the disk which drops with radial index q, consisting of prominent iron
Kα line radiation with delta-function shape at energy EFe = 6.4 keV, and continuum radiation
with spectral index Γ. Emitted photons are bent by the central Kerr black hole gravitational field
and their energy Eem is multiplied by the g-factor, Eobs = gEem, which includes gravitational
redshift and the Doppler shift due to accretion-disk rotation [Dovčiak et al., 2004]. For the
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specific intensity of the iron line and the continuum radiation emitted from the disk we can
write

iron line: IFeem(Eem) = IFe0 r−qδ[Eem − EFe] , (5)

continuum: Icontem (Eem) = Icont0 r−qE−Γ
em , (6)

where r is the Boyer–Lindquist radius and I0 are constants. The quantity I/E2 is conserved
along the light ray (due to Lorentz covariance and the equivalence principle), from which we
can obtain the specific intensity in the observer frame. A sample map of the iron line specific
intensity is shown in Fig. 2.
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Figure 2. Observer-frame map of the iron Kα line specific intensity distribution in the central
part of the accretion disk, rg is the gravitational radius. Coordinates α, β are in the plane
of the sky. Specific intensity is in relative units. Colour corresponds to specific intensity and
contours corresponds to the g-factor. Lines are contours of the g-factor: bold for g = 1.0 (higher
values toward the left, lower toward the right), dotted with step 0.04, solid with step 0.2. Disk
parameters: BH spin a = 1, radial index q = 3, inclination 70◦.

Microlensed flux: numerical integration

If we use equation (5) in (3) together with the transformation between emitted and observed
specific intensity, we obtain the iron line specific flux at energy Eobs = g0EFe

F (g0) =
IFe0
EFe

∫
disk

g3r−qA(β1 − β01 , β2 − β02) δ (g − g0) dβ1dβ2 , (7)

where r, g and A depend on β1, β2 [for details see Ledvina, 2014].
For the numerical evaluation of this formula we use grid-based integration. We divided

the disk into squares, on each of them we interpolate the terms g3r−qIFe0
√
α0/EFe and g − g0

bilinearly, and we rescale and shift coordinates to obtain integration boundaries (−1, 1). We
also split the amplification factor into the constant part and the part depending on position,
calculating each separately. We describe here the algorithm for the latter part which is more
difficult to calculate. The former part can be calculated by a similar algorithm assuming a
constant denominator. For the observed flux from one square we get

Fsq(g0) =

∫ 1

−1

∫ 1

−1

a+ bx+ cy + dxy√
x cosψ + y sinψ + d0

δ(A +Bx+ Cy +Dxy)dxdy , (8)
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where x, y are new coordinates, angle ψ describes the caustic orientation, d0 is the perpendicular
distance of the caustic from the origin, and a, b, c, d,A,B,C,D are constants of the bilinear
approximations. The delta function determines the corresponding g-factor integration contour,
which must pass through the square to give a non-zero contribution. We can perform the
integration over y, which replaces y = −(Ax + B)/(Cx+ D), adds a multiplicative factor and
changes the boundaries. One can easily prove that x ≈ −D/C is usually outside the new
integration boundaries (having |y| > 1) except for rare pathological combinations of A,B,C,D
with zero measure.

We cannot perform the second integration analytically and neither can we find the new
integration boundaries exactly. Moreover, there might be more than one integration interval.
Any integration boundary must be of one of the following types:

1. x coordinate of an intersection of the contour and the grid-square boundaries,

2. x coordinate of an intersection of the contour and the caustic.

We must find all candidates for boundaries, check if the points are upper or lower boundaries,
and use all those of type 2 for the further calculation.

After the flux calculation for all grid squares we compare the flux in each square with the
flux for a refined grid (relatively to the total flux). We accept the squares where the error is
below the threshold. For the others (and their eight neighbors) we refine the grid by a factor of
two. We have to refine also the neighbors to preserve continuity of the grid-based approximation.
Fig. 3 shows an example of a refined grid.
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Figure 3. Left panel: Refined grid for flux calculation. The grid is more concentrated about
the caustic (dense linear structure) and about the central black hole where the specific intensity
is high. Right panel: Rate of convergence of integrals from equation (10) computed directly or
using substitution (9) in cases c < a and c = a.

Microlensed flux: divergent integrands

In this section we show how to improve the speed of convergence for improper integrals
and proper integrals with integrand divergence just outside the integration interval.

Integration of the improper integral is described in Press et al. [2002], while the second
type is not described there. Consider f(x) to be a smooth, bounded function, including higher
derivatives, n < 1 and c ≤ a < b. The divergence-cancelling substitution is∫ b

a

f(x)

(x− c)n
dx =

1

1 − n

∫ (b−c)1−n

(a−c)1−n

f
(
c+ t1/(1−n)

)
dt . (9)

We show that transformation (9) for c = a changes the asymptotic rate of convergence,
while for c < a it improves the accuracy while preserving the convergence rate. For illustration
we use the integrals

I1 =

∫ 0

−1

dx√
(1 − x)(1 + x)

, I2 =

∫ 0

−0.9999

dx√
(1 − x)(1 + x)

. (10)
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For the integration we chose the open trapezoidal rule which converges as N−2 for proper
functions. For the flux integration we use a 10-point Gaussian quadrature, but for illustrating
the convergence rate trapezoidal quadrature is sufficient.

In Fig. 3 we compare the convergence rate of both integrals (10) when using direct inte-
gration and substitutions (9) with c = a and c < a. For the integral I1 substitution (9) (case
c = a) improves the asymptotic rate of convergence (from N−1/2 to N−2). For the integral I2
substitution (9) (case c < a) decreases the error by five orders of magnitude maintaining N−2

convergence. For all methods the smallest possible error is the machine precision 10−14.

Simulation results

Using the methods described above we simulate the time evolution of the spectrum F (g)
for a caustic passing across the accretion disk. Contribution from the continuum radiation is
calculated in a similar way as the line contribution. Results at four different times are presented
in Fig. 4. The unit tg is the time it takes the caustic to advance by 1 rg on the projected disk.
In the first panel the caustic is far from the central part of the disk and the spectrum is affected
by microlensing only weakly. In the last panel we see no additional features on the line, but the
whole spectrum is amplified by a practically-constant factor. In the second and third panel we
see significant changes in the iron-line profile. In observational data Chartas et al. [2012] also
found changes in the iron line and Chen et al. [2012] presented non-typical shapes of the iron
line which might be affected by microlensing.
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Figure 4. Time evolution of the quasar X-ray spectrum near the iron line during caustic
crossing. Disk parameters are the same as in Fig. 2. The left panels show the color map and
contours of the g-factor. The caustic is marked by the red line; its inner region by triangles.
The right panels show the corresponding spectra with flux given in arbitrary units. Blue line
marks the spectrum without lensing effect, green the lensed spectrum. The labels in the top
left corners show the time measured from disk-center crossing. The dashed line in the second
and third panels corresponds to the g = 1.2 contour tangent to the caustic.
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Conclusion

We presented our algorithm for the calculation of the shape of the iron Kα spectral line,
but we can use it just as well for any other emission line. We illustrated a part of our integration
technique showing how to increase the rate of convergence if the asymptotic behavior of the
integrand is known. We also presented preliminary results indicating observable changes in the
line profile.

Quasar microlensing is a new method for studying the central part of the accretion disk
which allows us to resolve its surface-brightness distribution. With the described algorithm we
can study microlensing-induced changes in the quasar spectrum and compare them with the
observational data of Chartas et al. [2012].
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