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ABSTRACT

We study the influence of general lens and source velocities on the gravitational deflection of light by single and
two–point-mass microlenses with general axis orientation.We compute the deflection angle and demonstrate that in
all cases the lens equation preserves its form exactly. However, the Einstein radius and the separation of the two
lenses depend on the lens velocity. In Galactic microlensing settings the velocity mainly affects the inferred
separation for tangentially moving wide binary star or star+planet microlenses oriented close to the line of sight. We
briefly discuss the case of lenses moving with highly relativistic velocities.

Subject headinggs: gravitational lensing — relativity

1. INTRODUCTION

The time dependence of Galactic gravitational microlensing
events (Paczyński 1996) is given by the relative motion of the
source of light, the lens, and the observer near perfect alignment.
These events have been generally successfully analyzed using a
quasistatic approach, assuming that the observed light has been
deflected in a static source-lens-observer configuration at each
instant. This approach is well justified because the lens and
source velocities relative to the observer are on the order of a
couple hundred km s�1, i.e., �10�3 of the speed of light c.

Nevertheless, with the introduction of image subtraction tech-
niques (Alard & Lupton 1998) the accuracy of measured micro-
lensing light curves has increased in ideal cases to subpercent
levels. In addition, there are prospects for high-precision obser-
vations of the astrometric microlensing effect (see Boden et al.
[1998] and Han [2001] for the single and binary lens cases, re-
spectively) by space-based interferometers such as the Space In-
terferometry Mission.1 Given these developments, one can expect
that corrections to the light curve or the angular image geometry
down to the order of �10�3 may be detectable. It is therefore
interesting to avoid the quasistatic approach and investigate the
effect of general lens and source velocities on light deflection and
the inferred lensing parameters.

Previous theoretical research has mostly concentrated on the
effect of a relative lens-to-observer velocity on the deflection
angle by a single lens. Pyne & Birkinshaw (1993) derived the
effect to first order in v /c for a velocity of arbitrary direction,
showing that the deflection angle increased for lenses moving
away from the observer and decreased for those moving toward
the observer. The same result was later confirmed by Frittelli
(2003). Recently Wucknitz & Sperhake (2004) presented results
for an arbitrarily large but purely radial lens velocity. The most
general theoretical result can be found in the detailed treatise by
Kopeikin & Schäfer (1999), which includes a derivation of the
deflection angle for an ensemble of lenses of general velocities.

In this paper we study light deflection for general lens and
source velocities (arbitrarily oriented and arbitrarily large), spe-
cifically for single and two–point-mass lensmicrolensing events.
In x 2 we derive the general lens equation and demonstrate the
velocity dependence of its parameters. In x 3 we explore the

magnitude of the velocity effects for low velocities and illustrate
the highly relativistic limit. We conclude in x 4 by discussing ob-
servational aspects and the appropriateness of some of the as-
sumptions, and we summarize the main results in x 5.

2. DERIVATION OF LENS EQUATION

Our approach is similar to the one used by Klioner (2003) for a
single lens in motion. We use the knowledge of light-deflection
formulae in the rest frame of the lens and, using Lorentz trans-
formations, connect the solution to the rest frame of the observer.
We limit our accuracy to the usual first order in deflection angle.
This means that, for example, light rays passing close to the
components of a binary pulsar are thus beyond the scope of this
paper.
In the case of two–point-mass lenses (includes binary star and

star+planet lens systems, hereafter ‘‘binary lenses’’ for brevity)
we concentrate on the effect of their center-of-mass velocity and
neglect the effect of orbital velocity. This approach is justifiable
for sufficiently wide binaries (with semimajor axis k1 AU). We
return to the case of closer binaries in x 4.
For the purposes of the following calculation we set up the

observer rest-frame coordinates with the origin at the center of
mass of the lens at observer time t 0 ¼ 0, the z 0-axis pointing to-
ward the observer, the x 0-axis in the plane of the sky along the
projected binary lens axis, and the y0-axis perpendicular to it in
the plane of the sky.We denote the distance between the observer
and the (center of mass of the) lens DL, the distance between the
observer and the source plane DS, and the distance between the
lens and source planes DLS.
For simplicity we scale all velocities to the speed of light. We

denote the lens and source velocities measured in the rest frame
of the observer VandW, respectively. At time t 0 in the described
observer rest frame, the observer, the center of mass of the lens,
and the source are located at

r0O ¼ (0; 0; DL);

r0L(t
0) ¼ Vt 0;

r0S(t
0) ¼ r0S0 þW(t 0 þ DLS);

ð1Þ

respectively. In the last expression r0S0 ¼ (�1DS ; �2DS ; �DLS)
is the source position at t 0 ¼ �DLS . The two-dimensional an-
gle b is the angular position of the source in the plane of the
sky. Note that an undeflected photon arriving at the observer at1 See http://sim.jpl.nasa.gov.
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t 0 ¼ DL passed the lens at t 0 ¼ 0 and the source at t 0 ¼ �DLS .
The lens and source velocities and distances are thus measured
at these retarded times.

We denote the total mass of the lensM; in the binary lens case
the two lensing bodies have massesMA � �AM andMB � �BM ,
respectively. As hinted earlier, we place no restrictions on the
mass ratio of the two lenses; our results thus hold for single and
binary star lenses, as well as for star+planet lenses. We define the
coordinates in the rest frame of the lens with their origin at the
center of mass of the lens, the x-axis along the physical binary
lens axis, the y-axis in the plane of the sky parallel to y0, and the
z-axis perpendicular to both. In these coordinates the lenses are
located at rA ¼ (��BR; 0; 0) and rB ¼ (�AR; 0; 0), where R is
the distance between them (their intrinsic separation). We denote
the angle between the binary lens axis and the plane of the sky �,
oriented so that a small positive � brings lens A closer to the ob-
server. The directions of the x- and z-axes thus coincide with
those of the observer’s x 0 and z 0 only if the binary lens axis lies in
the plane of the sky, i.e., � ¼ 0�.

We denote the future asymptotic trajectory of a photon (at the
observer) in lens-frame coordinates

rpo(t) ¼ lþ n0t; ð2Þ

where n0 is a unit vector and the past asymptotic trajectory of
the photon (at the source) is

rps(t) ¼ rpo(t)þ
4G

c2

;
X
i¼A; B

Mi

n0 = ½rpo(t)� ri�
½n0 < (l� ri)�2

½l� ri � n0 = (l� ri) n0�; ð3Þ

as demonstrated, for example, inWill (1981) or Brumberg (1991).
To obtain the values of the constant vectors l and n0 in terms of
physical parameters, we transform the future asymptotic trajectory
to observer-frame coordinates, in which the trajectory of a photon
arriving at the observer is

r0po(t
0) ¼ r0O þ n0

0(t
0 � DL): ð4Þ

The unit vector n0
0 ¼ (1þ �2)�1/2 (��1; ��2; 1) describes the

direction of photon propagation at arrival. The two-dimensional
angle a denotes the angular displacement of the image of the
lensed source in the plane of the sky from the center of mass of
the lens (as it would be observed at the same time).

The conversion between the two coordinate systems is given by

t 0

r0po(t
0)

 !
¼ �(V )

t

T(�)rpo(t)

� �
; ð5Þ

where the rotation matrix

T(�) ¼
cos � 0 sin �

0 1 0

� sin � 0 cos �

0
B@

1
CA ð6Þ

corrects for the orientation of the binary lens axis and the com-
ponents of the Lorentz boostmatrix� (e.g.,Misner et al. 1973) are

�0 0
0 ¼ �; �0 0

i ¼ �i 0
0 ¼ �Vi; �i 0

j ¼ �ij þ ViVj

V 2
(� � 1);

ð7Þ

with � ¼ (1� V 2)�1/2 . We express rpo(t) from equation (5), and
by comparison with equation (2) we get the two vectors l and n0
describing the future asymptotic light ray in the lens frame:

l ¼ T(�� )

(
r0O þ DL

1� V =n0
0

;
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V 2

p

V 2
(V =n0

0�Vz)V� (1�Vz)n
0
0

" #)
;

n0 ¼
1

1� V =n0
0

T(� � )

;
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V 2

p

V 2
V =n0

0�1

 !
Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p
n0
0

" #
:

ð8Þ

In a similar way we can take the expression for the past as-
ymptotic trajectory of the photon from equation (3) and extend it
to the source as follows:

t 0e

r0S(t
0
e)

� �
¼ �(V)

te

T(� )rps(te)

� �
: ð9Þ

Note that r0S(t
0
e) depends on the source velocity W; see equa-

tion (1). To get the photon position rps(te), we substitute the light-
ray vectors l and n0 from equation (8) into equation (3). We first
use the time component of equation (9) to convert between the
emission times te and t 0e in the two coordinate systems:

t 0e ¼ (1� V =W )�1(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p
te þ V = r0S0 þ V =WDLS): ð10Þ

We then use the z-component to eliminate the emission time
altogether. From the remaining two equations we can finally
express the light-deflection anglea � (a� b)DS /DLS measured
by the observer. Although this part of the calculation is fairly
tedious, it is entirely straightforward. In the single lens case we
get to first order in deflection angle

a(a) ¼ 4GM (1� Vz)

c2DL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p a

�2
: ð11Þ

This expression is in agreement with the previous results of
Kopeikin & Schäfer (1999) and extends the results of Pyne &
Birkinshaw (1993), Frittelli (2003), and Wucknitz & Sperhake
(2004). In the binary lens case we get to first order in deflection
angle

a(a) ¼ 4GM (1� Vz)

c2DL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p
 
�A

a� aA

ja� aAj2
þ �B

a� aB

ja� aBj2

!
; ð12Þ

where aA � ��BaAB and aB � �AaAB are the apparent angular
positions of the two lenses and the apparent angular separation
vector (from lens A to lens B) in the plane of the sky is

aAB(V ) ¼ 1

DL

"
R? þ

 
Rz �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p

V 2
V =R

!
V?

1� Vz

#
:

ð13Þ

Here the tangential lens velocity V? � (Vx; Vy), and the vector
R � (R?; Rz) ¼ T(� )(rB � rA) is the separation vector of the two
lenses at time t 0 ¼ 0 in their center-of-mass rest frame rotated to
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coincidewith the orientation of the observer’s axes. Its component
R? lies in the plane of the sky, and Rz is oriented along the line
of sight to the observer (for a positive Rz, lens B lies closer to the
observer).

The first obvious result is the independence of the deflec-
tion angle on the source velocity W, even though the aberra-
tion between the source and the lens obviously depends on it.
We note that we have demonstrated this only to first order in
deflection angle and that the source velocity might have an
influence at a higher accuracy. Another interesting property to
note is that the single-lens deflection angle does not have a com-
ponent in the direction of the (projected) lens velocity. Clearly, the
aberration effect on the orientation of the deflection angle drops
out in this first-order computation because of the two Lorentz
transformations.

The dominant effect on the apparent angular separation in
equation (13) is due to the photon travel time between the two
lenses. To first order in lens velocity, the distance (and thus also
the light-travel time) between the two lens planes is Rz. As seen
by the observer, during this time the lenses move by RzV? in the
plane of the sky. The effect may decrease or increase the ap-
parent angular separation, as well as change its orientation, de-
pending on the mutual orientation of the binary axis and the lens
velocity (see x 3 for a more detailed discussion). The full ex-
pression in equation (13) can also be derived similarly by com-
puting the lens positions in the observer’s rest frame and taking
into account their shift during the time it takes light to travel
between the two lens planes.

The structure of equations (11) and (12) allows us to readily
define the velocity-dependent angular Einstein radius

�E(V ) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMDLS

c2DLDS

1� Vzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p

s
: ð14Þ

We can rescale all angular quantities by �E(V ) and thus convert
from {b, a, aA, aB, aAB} to {y, x, xA, xB, d} in the usual lensing
notation. The lens equation obtained for a single lens is

y� x ¼ � x

x2
; ð15Þ

and for a binary lens

y� x ¼ ��A

x� xA

jx� xAj2
� �B

x� xB

jx� xBj2
: ð16Þ

This interesting result shows that in either case the lens equa-
tion has exactly the same form as in the static approximation.
When analyzing microlensing observations, one can thus use
exactly the same formulae as in the usual quasistatic approach.
However, when interpreting the fitted parameters one has to
realize that the Einstein radius, and in the binary lens case also
the lens positions and their separation, depends on the lens ve-
locity. Instead of �E(0), one obtains �E(V ), and instead of the
Einstein radius–scaled projected lens-separation vector d(0) �
R?/½DL�E(0)�, one obtains

d(V ) ¼ (1� V 2)1=4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vz

p
 
d(0)þ

(
dz �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

p

V 2

;
�
Vzdz þ V? =d(0)

�) V?

1� Vz

!
; ð17Þ

where dz � Rz/½DL�E(0)� is the z-component of the binary lens
separation vector (the ‘‘depth’’ of the binary lens along the line
of sight) rescaled by the static Einstein radius of the lens.
The velocity dependence thus introduces a further degeneracy

of the parameters of the lens equations. A difference in velocities
can cause different lens systems (e.g., differently oriented bina-
ries) to produce similar microlensing effects. In the following
section we study the velocity effect on the lensing parameters in
order to assess its potential influence on the inferred physical
parameters of the microlenses.

3. VELOCITY EFFECTS ON INFERRED
LENSING PARAMETERS

Light-curve analysis of simple microlensing events does not
directly yield the angular scale of the event geometry. Event pa-
rameters such as the Einstein radius crossing time and the impact
parameter are obtained scaled to �E and thus will be affected in
the same way as the Einstein radius. In addition, the scaled lens
separation in the binary lens case will be affected as shown by
equation (17).
In events beyond the simple model, such as caustic-crossing

(source-transit) events or parallax events, as well as in events
observed astrometrically, it is also possible to measure the an-
gular scale. Therefore, in such events the effect on the angular
Einstein radius and the angular lens separation given by ex-
pression (13) is potentially of interest.
In the following subsections we study the effects of the lens

velocity on the angular Einstein radius �E(V ), the angular lens
separation aAB(V ), and the Einstein radius–scaled lens separa-
tion d(V ). In x 3.1 we explore the low-velocity case, which is
astrophysically relevant for typical Galactic microlensing set-
tings. In x 3.2 we discuss the high-velocity results.

3.1. Low Velocities

The second-order VT1 expansions of expressions (14), (13),
and (17) are

�E(V ) ’ �E(0)

 
1� Vz

2
þ 2V 2

? þ V 2
z

8

!
;

aAB(V ) ’ aAB(0)

þ 1

DL

�
RzV? þ 1

2
(VzRz � V? =R?)V?

�
;

d(V ) ’ d(0)

 
1þ Vz

2
þ V 2

z � 2V 2
?

8

!

þ V? (1þ Vz)dz �
1

2
V? =d(0)

� �
; ð18Þ

where aAB(0) ¼ R?/DL. The angular Einstein radius has a
linear-order effect only if the lens has a nonzero radial veloc-
ity, whereas any purely tangential velocity produces a nonzero
second-order effect. As expected from previous results, the ra-
dius increases for lenses moving away from the observer and
decreases for those moving toward the observer. However, even
a 10�3 effect on �E requires an unlikely radial velocity cVz ’
600 km s�1. We conclude that the effect of lens velocity on the
angular Einstein radius is currently not observationally signif-
icant in Galactic microlensing.
From equation (13) we can see that any purely radial velocity

of the lens has no effect on the apparent angular separation of
the lenses aAB. The angular separation vector has a linear-order
effect only if the binary lens has a nonzero tangential velocity
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and at the same time its axis is tilted from the plane of the sky, as
shown in the previous section. The effect is oriented along the
vector of the tangential velocity, and its direction depends on
the sign of Rz. The magnitude of the relative effect ½�AB(V )/
�AB(0)� 1� is Rz(V? =R?)/R

2
?, with a maximum value of

V? tan � for a purely tangential velocity parallel to the projected
binary lens axis. A low value of V? can thus be offset by a high
angle of inclination of the binary lens axis. For a tangential
velocity cV? ¼ 200 km s�1 we get a 1% effect for � ¼ 86

�
,

which corresponds for example to a projected separation R? �
1 AU for a binary lens with a physical separation R � 15 AU.
The geometric conditions required for even higher effects are no
less realistic.We see that the effect is observationally significant
for binary star or star+planet lenses aligned nearly along the line
of sight.

To investigate the effect of velocity on the size of the Einstein
radius–scaled lens-separation vector d(V ), we have to treat sep-
arately binary lenses oriented along the line of sight, for which
d(0) ¼ 0. In this case the first-order absolute effect is

d(V )� d(0) ’ jdzV?j: ð19Þ

For a given total velocity V the maximum effect V jdzj occurs for
a purely tangential velocity. The zerominimum effect occurs for
a purely radial lens velocity.

For a general binary lens not oriented along the line of sight,
d(0) > 0, and the first-order absolute effect is

d(V )� d(0) ’ Vz

2
d(0)þ V? =d(0)

d(0)
dz: ð20Þ

A straightforward computation shows that the maximum value
of V ½d2(0)þ 4d2z �1/2 /2 is achieved for a velocity orientation

V ¼ V

Rz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2

z=R
2
?

p 2
R2
z

R2
?
� 1

� �
R? þ R

� �
: ð21Þ

The minimum value has the same effect with a negative sign and
occurs for an opposite velocity, whereas a zero effect occurs for
velocities perpendicular to velocity (21). It is interesting to note
that for a given binary axis orientation the maximum effect on the
scaled lens separation occurs generally for a different velocity ori-
entation than the maximum effect on the angular lens separation.

Figure 1 illustrates the dependence of the absolute first-order
effect on the direction of the lens velocity for different orientations

of the binary lens axis. As seen in the fourth image and discussed
above, the overall maximum effect occurs for radially oriented
binary lenses (� ¼ 90�) moving tangentially, i.e., in the plane
of the sky. The maximum effect for tangentially oriented binary
lenses (� ¼ 0

�
; Fig. 1, first image) is half as large and occurs in the

case of radial motion. For both these extreme binary orientations,
motion in the direction of their axis causes a zero first-order effect.
In terms of lensing parameters, the maximum first-order absolute
effect for a binary lenswith its axis tilted by � from the plane of the
sky is

d(V)� d(0) ’ 0:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2�

p
2

cV

200 km s�1

;

�
�E(0)

1 mas

��1
R

60 AU

DL

4 kpc

� ��1

ð22Þ

for a velocity direction given by equation (21). The effect
for higher lens velocities, wider intrinsic lens separations R,
and lower Einstein radii can thus be a significant fraction of the
Einstein radius. The maximum relative effect [d(V )/d(0)� 1]
is V ( cos�2� � 0:75)1/2 , which is largest for � ! 90�. In this
regime it coincides with the maximum relative effect for the
angular separation �AB derived above.

To summarize the low-velocity results, first-order effects are
caused by the radial velocity of the lens and/or the ‘‘depth’’ of
the binary lens along the line of sight. In the case of a single lens,
the effect of lens velocity on the inferred lensing parameters is
not significant. In the case of binary star or star+planet lenses, the
inferred values of the angular and Einstein radius–scaled lens
separations (as well as the linearly related lens positions) can
differ from the values at zero velocity by more than1%, mostly
for tangentially moving lens systems with their axes oriented
close to the line of sight. In particular, the effect on the scaled
lens separation can be a significant fraction of the Einstein ra-
dius mainly for lenses with wide intrinsic separations.

3.2. High Velocities

The general dependence of the angular Einstein radius on the
lens velocity as given by equation (14) is illustrated in Figure 2.
We can see that the high-velocity effects depend on the direction
of the velocity. In particular, the case when the lens moves
directly toward the observer has to be treated separately.

If we increase the velocity V ! 1 in any other direction
(including directly away from the observer), the angular Einstein
radius eventually diverges, �E(V ) ! 1. Equation (13) gives us

Fig. 1.—Radially plotted effect of velocity on binary lens separation d(V )� d(0) given by eqs. (19)–(20), depending on velocity direction in the observer+binary
plane (z 0-axis points to observer; x 0-axis in the plane of the sky). Individual plots are for different binary axis orientations � (dot-dashed lines: binary axis). The effect is
radially scaled in units of V ½d2(0)þ d2

z �1/2 , and the circles are spaced by 0.25. Arrows mark the direction of maximum positive effect given by eq. (21). Three-
dimensional extensions of the plots are rotationally symmetric: for � 6¼ 90�, around the arrow; for � ¼ 90�, around the z 0-axis.
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a finite result for the angular lens separation, and the scaled lens
separation thus vanishes, d(V) ! 0. Hence, such a binary lens
would in effect behave like a single lens.

We note that in this regime the approximation of first order in
deflection used in this paper eventually breaks down. However,
the divergence of the Einstein radius is very slow, on the order
of �(1� V )�1/4 . From Figure 2 we can see that even for V ¼
0:9 the Einstein radius is at most greater by a factor of 2 (if the
lens moves directly away). Even with a factor of 100 or more
the approximation remains valid. It is thus sufficient to formally
ignore the results for V ¼ 1. This conclusion is in agreement
with the results of Wucknitz & Sperhake (2004) for a lens mov-
ing radially away from the observer.

A lens moving with a velocity V ! 1 directly toward the ob-
server would have a vanishing angular Einstein radius, �E(V ) !
0. The angular lens separation aAB ! R?/DL, and the lenses
appear to be at their ‘‘true’’ positions. The scaled lens separation
thus diverges, d(V ) ! 1. The decreasing Einstein radius means
that such a binary lens would behave like two single lenses with
decreasing strength as the lens moves together with the arriving
photons.

4. DISCUSSION

In x 3.1 we have demonstrated the low-velocity effects for dif-
ferent binary lens orientations and intrinsic separations. Never-
theless, from the observational perspective we must take into
account the fact that not all binary lens configurations nec-
essarily lead to microlensing events detectable as two–point-
mass lens events. Although this depends on the exact source
trajectory, from a statistical point of view the Einstein radius–
scaled projected lens separation d plays the main role. If the
separation is too small or too large, most events would appear as
single-lens events.

For an event to be detectable as a two–point-mass lens event,
the lens separation has to fulfil d(0)2 (dmin; d max), which leads to
limits on the binary lens axis orientation:

cos �2 (dmin; d max)
R

4 AU

� ��1
DL

4 kpc

�E(0)

1 mas
: ð23Þ

The values of binary separations from the 21 binary events pub-
lished by the MACHO team (Alcock et al. 2000) range from
0.421 to 2.077 with an outlier value of 7.454 (a possible binary
source event). The 18 events detected by OGLE-II (Jaroszyński
2002) have values ranging from 0.355 to 2.917, and the values
for the 15 events detected by OGLE-III (Jaroszyński et al. 2004)
range from 0.352 to 3.457.
To obtain a rough empirical estimate we set dmin ¼ 0:3 and

d max ¼ 4. If we keep DL and �E fixed at the values used in
equation (23), for an intrinsic binary separation R ¼ 15 AU we
get limits on the axis angle �2 (0�; 85�), for R ¼ 60 AU we get
�2 (75

�; 89�), and for R ¼ 240 AUwe get �2 (86
�; 89N7). In the

first case we have awide range of possible orientations; however,
if we approach 90�, at which the velocity effects are strongest, it
would be difficult to detect such an event as a binary lens event.
The two cases with higher intrinsic separations demonstrate that
such lenses can have stronger velocity effects while being de-
tectable as binary events, albeit for a narrower range of axis
orientations.
In this work we concentrated on the center-of-mass velocity of

the binary lens and neglected its orbital velocity. However, for
binaries or star+planet systems with semimajor axisT1 AU
the assumption of small orbital velocity breaks down. The results
of this paper indicate that the velocity effects are proportional to
the intrinsic lens separation, being caused by the lens motion
during the passage of the light ray in its vicinity. Even though the
orbital velocity grows as R�1/2 with decreasing R, its product
with the separation decreases as R1/2 . We conclude that the ef-
fects of orbital lens velocity on light deflection are not significant
even in nonrelativistic binary lens systems closer than 1 AU.

5. SUMMARY

When we take into account general lens and source velocities,
we find in the weak-field regime that single and two–point-mass
gravitational microlensing obeys exactly the same lens equations
as in the usual quasistatic approach. However, the parameters
of the lens equation, such as the Einstein radius and the appar-
ent binary lens separation, are velocity dependent, as shown in
equations (14) and (13). These additional degeneracies have to
be taken into account when we interpret the lens equation pa-
rameters and convert them to the underlying physical parameters.
An interesting feature of the single-lens result is the absence

of an aberration effect on the orientation of the deflection angle.
The obtained general results for both lens types are independent
of the source velocity. Although at highly relativistic velocities
the Einstein radius can be strongly increased or decreased de-
pending on the direction of the motion, in the ‘‘low-velocity’’
Galactic microlensing settings the lens velocity affects mainly
the apparent binary lens separation. The magnitude of the effect
depends on the orientation of the binary axis and the lens ve-
locity with respect to the plane of the sky; it can exceed 1% of
the Einstein radius mainly for tangentially moving wide binary
lenses aligned close to the line of sight.
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