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We generalize the well-known Bonnor-Melvin solution of the Einstein-Maxwell equations to the case of
a nonvanishing cosmological constant. The spacetime is again cylindrically symmetric and static but,
unlike the original solution, it truly represents a homogeneous magnetic field.
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I. INTRODUCTION

Magnetic fields play an important role in many astro-
physical phenomena across a range of distance scales, from
stars and accretion disks to galactic nuclei and intergalactic
regions. As they often occur in the vicinity of compact
massive objects or in strong gravitational fields it is
important to study them in the context of general relativity
as well. One of the interesting exact solutions of the
Einstein-Maxwell equations is the Bonnor-Melvin universe
describing a static, cylindrically symmetric (electro)mag-
netic field immersed in its own gravitational field [1,2]. The
magnetic field is aligned with the symmetry axis. This is
one possible analogy of the classical homogeneous mag-
netic field. However, since the magnetic field contributes to
the energy-momentum tensor, which curves the spacetime,
the field needs to decrease away from the axis, so as not to
collapse on itself, and the scalar invariant FμνFμν is thus not
constant (unlike in the classical case) and the field is not
homogeneous.
Already the original paper by Melvin suggested several

possible ways of generalizing the spacetime. If we wish to
restore the balance for a homogeneous field, we need to
incorporate an element countering the collapse of the field. It
thus makes sense to search for such a solution with a
nonvanishing—and, in fact, positive—cosmological con-
stant. It is of interest then that the observed intergalactic
magnetic fields [3,4] are also considered to be of cosmo-
logical origin and thus related to the large-scale structure of
the Universe [5]. We first briefly review the Bonnor-Melvin
case to contrast it with the homogeneous cosmological case.

II. BONNOR-MELVIN

In cylindrical coordinates, one possible form of the
metric reads

gμν ¼ α−2ð−dt2 þ dz2Þ þ α−5dr2 þ αr2dφ2; ð1Þ

where

α ¼ 1 − K2r2; ð2Þ

and r ≤ 1=K, with the upper limit corresponding to proper
radial infinity. The constant K determines the strength of
the magnetic field, the 4-potential of which is

A ¼ Kr2dφ: ð3Þ

The Maxwell tensor only has one nonzero component,

F ¼ 2Krdr ∧ dφ; ð4Þ

and its invariant reads

FμνFμν ¼ 8K2α4; ð5Þ

which is obviously nonconstant. In flat spacetime with a
homogeneous magnetic test field along the z direction with
B⃗ ¼ Be⃗z, we have F ¼ Brdr ∧ dφ and FμνFμν ¼ 2B2. We
compare this to the Bonnor-Melvin solution on the axis of
symmetry, where the field approaches the Minkowski
spacetime. This yields an analogy between the two electro-
magnetic fields with B ¼ 2K.
The solution is a Kundt class spacetime of algebraic type

D that is not asymptotically flat far away from the axis and
that was shown to be stable against radial perturbations [6].
It has been generalized for the case of nonlinear electro-
dynamics [7] and there are also cylindrically symmetric,
magnetohydrodynamic cosmological models involving a
generally nonstatic perfect fluid [8,9].
We now proceed to formulate the general Einstein-

Maxwell equations for a cylindrically symmetric spacetime
featuring a magnetic field aligned with the axis and a
nonvanishing cosmological constant.*zofka@mbox.troja.mff.cuni.cz
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III. GENERAL EINSTEIN-MAXWELLEQUATIONS

Denoting the proper radius by r, we may write a static
cylindrically symmetric metric as

ds2 ¼ − expAðrÞdt2 þ dr2 þ expBðrÞdz2 þ expCðrÞdφ2;

ð6Þ

where t; z ∈ R; r ∈ Rþ, and φ ∈ ½0; 2πÞ. Next, we list the
components of Gμν − Λgμν:

Gtt − Λgtt ¼
1

4
eAð2B00 þ ðB0Þ2 þ 2C00

þ ðC0Þ2 þ C0B0 þ 4ΛÞ; ð7Þ

Grr − Λgrr ¼ −
1

4
A0B0 −

1

4
A0C0 −

1

4
B0C0 − Λ; ð8Þ

Gzz − Λgzz ¼ −
1

4
eBð2A00 þ ðA0Þ2 þ 2C00

þ ðC0Þ2 þ A0C0 þ 4ΛÞ; ð9Þ

Gφφ − Λgφφ ¼ −
1

4
eCð2A00 þ ðA0Þ2 þ 2B00

þ ðB0Þ2 þ A0B0 þ 4ΛÞ; ð10Þ

with primes denoting derivatives with respect to the radial
coordinate. We assume a purely magnetic field aligned with
the axis of symmetry, thus yielding a Maxwell tensor of the
form

F ¼ HðrÞdr ∧ dφ: ð11Þ

The invariant of the field is

FμνFμν ¼ 2H2e−C ≡ 2f2; ð12Þ

where we defined a new quantity, fðrÞ, while ⋆FμνFμν ¼ 0.
The stress-energy tensor reads

Ttt ¼
1

8π
eA−CH2; ð13Þ

Trr ¼
1

8π
e−CH2; ð14Þ

Tzz ¼ −
1

8π
eB−CH2; ð15Þ

Tφφ ¼ 1

8π
H2: ð16Þ

Finally, the Einstein equations are equivalent to

0¼ 2ðB00 þC00ÞþðB0Þ2þðC0Þ2þB0C0 þ4Λþ4f2; ð17Þ

0¼ 2ðA00 þC00ÞþðA0Þ2þðC0Þ2þA0C0 þ4Λþ4f2; ð18Þ

0¼ 2ðA00 þB00ÞþðA0Þ2þðB0Þ2þA0B0 þ4Λ−4f2; ð19Þ

0 ¼ A0B0 þ A0C0 þ B0C0 þ 4Λ − 4f2: ð20Þ

The Maxwell equations
ffiffiffiffiffiffi−gp

Fμν
;ν ¼ ð ffiffiffiffiffiffi−gp

FμνÞ;ν ¼ 0 are
identities apart from

ffiffiffiffiffiffi

−g
p

Fφα
;α ¼ ð ffiffiffiffiffiffi

−g
p

FφrÞ;r ¼ ðeAþB−C
2 FφrÞ;r

¼ −ðeAþB−C
2 HÞ;r ¼ −ðeAþB

2 fÞ;r ¼ 0; ð21Þ

which yields

e
AþB
2 f ¼ const: ð22Þ

However, Eq. (22) is a consequence of the Einstein
equations, which can be seen as follows: differentiate
Eq. (20) and subtract from it A0.(17) + B0.(18) + C0.(19)
to obtain

16ff0 þ 4f2ðAþ B − CÞ0
þ ðAþ Bþ CÞ0ð4Λþ A0B0 þ A0C0 þ B0C0Þ ¼ 0; ð23Þ

where we substitute for the second bracket in the last term
from Eq. (20) to yield

2f0 þ fðAþ BÞ0 ¼ 0; ð24Þ

which can be integrated to yield Eq. (22).

IV. THE HOMOGENEOUS SOLUTION

We now specialize to a homogeneous magnetic field,
which means that we require the invariant of the field
FμνFμν to be constant throughout the spacetime, and thus

f ¼ const: ð25Þ

It then follows immediately from Eq. (22) that Aþ B ¼
const. However, the sum of Eqs. (19) and (20) then implies

2ðAþ BÞ00 þ ððAþ BÞ0Þ2 þ C0ðAþ BÞ0 þ 8ðΛ − f2Þ ¼ 0

⇒ f2 ¼ Λ: ð26Þ

We also note that we thus have Λ > 0, as expected.
Equation (20) then immediately shows that A0B0 ¼ 0 while
A0 þ B0 ¼ 0, which yields

A ¼ const; B ¼ const: ð27Þ
We can always rescale t and z to achieve A ¼ 0 and B ¼ 0.
There is only a single Einstein equation remaining, namely,
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C00 þ 1

2
C02 þ 4Λ ¼ 0: ð28Þ

It thus follows that

CðrÞ ¼ 2 ln σ þ 2 ln sin ð
ffiffiffiffiffiffi

2Λ
p

ðrþ RÞÞ; ð29Þ
2where σ and R are integration constants. We shift the
radial coordinate (thus removing R) to finally express the
metric as

ds2 ¼ −dt2 þ dr2 þ dz2 þ σ2sin2ð
ffiffiffiffiffiffi

2Λ
p

rÞ dφ2; ð30Þ
while the magnetic field reads

HðrÞ ¼
ffiffiffiffi

Λ
p

σ sin ð
ffiffiffiffiffiffi

2Λ
p

rÞ: ð31Þ
As we approach

ffiffiffiffiffiffi

2Λ
p

r ¼ π the circumference of the rings
r ¼ const vanishes, which suggests that this is the location
of an axis of some sort. Then we rescale both r and φ to
bring the line element into the form

ds2 ¼ −dt2 þ dz2 þ 1

2Λ
ðdr2 þ sin2 rdφ2Þ; ð32Þ

with

HðrÞ ¼ 1
ffiffiffi

2
p sin r: ð33Þ

This is locally a direct product of two-dimensional
Minkowski spacetime and a 2-sphere of constant
radius 1=

ffiffiffiffiffiffi

2Λ
p

. The curvature scalars are Φ11 ¼ 1
2
Λ > 0

and Ψ2 ¼ − 1
3
Λ, and thus they satisfy the condition

2Φ11 þ 3Ψ2 ¼ 0. Hence, these spacetimes belong to the
“exceptional electrovacuum type D metrics with cosmo-
logical constant” investigated by Plebański and Hacyan
[10] (see also Ref. [11]). They admit a six-dimensional
group of isometries ISOð1; 1Þ × SOð3Þ.
Generally, the solution admits a deficit angle due to the

presence of σ in Eq. (30) and the axis is thus singular,
forming the spacetime’s only singularity. Therefore,
the spacetime is in fact a direct product of Minkowski
spacetime and a squashed sphere at every point. The solution

again belongs in the Kundt class. Since this is a homo-
geneous spacetime, both charged and uncharged test par-
ticles can remain static anywhere or just sail along the
magnetic field direction at a constant speed. As expected, we
also find helical paths.
Using the electromagnetic duality, F → ⋆F;⋆F → −F,

the Maxwell field can also be converted to a homogeneous
electric field parallel to the cylindrical axis with Ez ¼ −

ffiffiffiffi

Λ
p

and FμνFμν ¼ 2Λ. It is of interest to look at possible
shell sources: we identify cylindrical surfaces of the
same circumference located symmetrically with respect
to

ffiffiffiffiffiffi

2Λ
p

r ¼ π=2. We keep the region below the upper radius
and as we leave it, heading outwards, we reappear at the
lower radius, entering the same region again. We thus get
an infinitely thin shell and, using the Israel formalism, we
find that the 3-current induced on the shell vanishes while
the induced three-dimensional stress-energy tensor only
has two nonzero components, corresponding to a positive
pressure along the axis equal in magnitude to a negative
energy density. This is analogous to the shell source
producing a cosmic-string spacetime with a surplus angle
as opposed to a deficit one. The resulting electromagnetic
field is due to sources at infinity along the axis, while the
gravitational field is due both to the shell and the stress-
energy tensor of the electromagnetic field.
To our knowledge, this is the closest general-relativistic

analogue of the classical homogeneous magnetic field
including particularly the motion of test particles. As
an extension of this work we intend to study whether
Eqs. (17)–(20) admit any other solution at all or whether, in
fact, the Plebański-Hacyan spacetime is the only cylindri-
cally symmetric static solution with the cosmological
constant and an aligned magnetic field.
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