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Jiří Veselý* and Martin Žofka†

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2, 180 00 Prague 8, Czech Republic

(Received 2 May 2019; published 30 August 2019)

We find a class of cylindrically symmetric, static electrovacuum spacetimes generated by a non-
homogeneous magnetic field and involving the cosmological constant and one additional parameter, which
determine uniquely the strength of the magnetic field. We provide a simple model of a source producing the
field.
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I. INTRODUCTION

With the notable exception of black holes, Einstein
equations of general relativity are notoriously difficult to
solve for exact solutions that would describe an astrophysi-
cally relevant situation with all its nuanced details.
Therefore, one usually reduces the problem at hand
assuming various symmetries and solves the resulting,
simpler equations. If this approach does not work, one
needs to resort to numerical relativity, always making sure
the results do correspond to our expectations based on exact
solutions again, which are thus important both as test beds
for approximations and numerical calculations and as a
rough model of highly relativistic observable objects. The
simplest approach, of course, is to deal with the gravita-
tional field only and assume a vacuum solution, but the next
step is to include, for instance, a gravitating fluid or
electromagnetic field in a self-consistent manner, taking
into account its backreaction on the gravitational field. The
inclusion of an electromagnetic field is important not only
from the mathematical perspective but also because of its
astrophysical relevance due to its role in the physics of
fields and particles in the vicinity of compact objects
requiring a general relativistic description [1,2] and also
in view of the magnetic fields observed to permeate the
intergalactic space [3,4], which are presumably of primor-
dial origin [5].
This paper investigates a spacetime involving an ele-

ctromagnetic field, assuming further that the solution of
the relevant Einstein-Maxwell equations is static and
cylindrically symmetric. We presume that the electromag-
netic field inherits the symmetry of the spacetime and that
it is aligned with the axis of symmetry, following thus in
the footsteps of the Bonnor-Melvin magnetic solution
[6,7] where the magnetic field strength varies with

position—indeed, since the field gravitates, a constant field
throughout the spacetime would necessarily collapse onto
itself. The Bonnor-Melvin solution has been of renewed
interest recently as it is often used as a nonspherical
background for studies of black holes immersed in a
magnetic field [8,9], its analogies are explored in gener-
alized theories of gravity [10], cylindrical counterparts of
(anti)photon spheres are investigated in the spacetime [11],
and it even serves as a seed that generates solutions inter-
polating between early- and late-time anisotropic cosmo-
logical models [12].
We have recently studied a solution of Einstein-Maxwell

equations that generalizes the Bonnor-Melvin universe to
the case of a nonzero cosmological constant Λ [13], which
counters the gravitational pull of the magnetic field,
enabling the resulting balance of the static solution while
keeping the magnetic field’s invariant constant everywhere.
Therefore, the solution is the best general relativistic analog
of a classical constant magnetic field. It has the form of a
direct product of a two-dimensional Minkowski spacetime
and a 2-sphere of constant radius 1=

ffiffiffiffiffiffi
2Λ

p
. This is typical for

compactified spacetimes resulting from a low-energy
approach to higher-dimensional solutions due to the string
theory [14,15]. It is fitting in this respect that the magnetic
field has the form of the Dirac monopole [16]. It would be
of interest to put this family of spacetimes in a broader
perspective as a member of a wider class of solutions with a
clear physical meaning, and it is thus natural to ask whether
there is a more general solution with the same symmetries
but with a varying magnetic field that would include as
special cases both the homogeneous-magnetic-field space-
time and the Bonnor-Melvin solution with Λ ¼ 0. We
present the solution here and also provide a simple physical
model generating the field: a cylindrical shell forming a
massive and current-carrying relativistic solenoid running
along the axis of symmetry. In fact, one would expect the
spacetime to very roughly approximate the situation in the
vicinity of any current-carrying body that is locally
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approximately cylindrically symmetric such as a slowly
rotating charged sphere along its equator.
The paper is organized as follows. In Sec. II, we establish

the coordinate system and the form of the metric and
electromagnetic field tensors and present the Einstein-
Maxwell equations. In Sec. III, we then reduce the set
of equations to a single third-order differential equation and
discuss the number of independent parameters of the
solution. Section IV then focuses on a subfamily of
solutions and further simplifies the single remaining
equation to the second order. We continue with Sec. V,
where we present the most general solution of the resulting
equation, specifying the metric and discussing the geom-
etry and physics of the solution. We explain its relation to
previously obtained exact solutions featuring the same
symmetry of the gravitational and electromagnetic fields.
Section VI investigates a simple shell-source model pro-
ducing the discussed fields and yielding an interpretation of
the solution in terms of streams of charged, massive
particles. We briefly summarize our results in Sec. VII.

II. EINSTEIN-MAXWELL EQUATIONS

The metric of a general static, cylindrically symmetric
spacetime can be written as

ds2 ¼ − expAðrÞdt2 þ dr2 þ expBðrÞdz2 þ expCðrÞdφ2;

ð1Þ

where r ∈ Rþ is the proper radial distance, t; z ∈ R are
temporal and azimuthal coordinates, and φ ∈ ½0; 2πÞ mea-
sures the angle around the axis of symmetry. We are
looking for a self-consistent solution generated by a
magnetic field aligned with the axis of symmetry

F ¼ HðrÞdr ∧ dφ; ð2Þ

yielding

FμνFμν ¼ 2H2e−C ≡ 2f2; ð3Þ

where we defined a new quantity, fðrÞ, while ⋆FμνFμν ¼ 0.
For details, we refer the reader to our previous paper [13],
while here we just briefly recall the Einstein equations

2ðB00 þC00ÞþðB0Þ2þðC0Þ2þB0C0 þ4Λþ4f2¼0; ð4Þ

2ðA00 þC00ÞþðA0Þ2þðC0Þ2þA0C0 þ4Λþ4f2¼0; ð5Þ

2ðA00 þ B00Þ þ ðA0Þ2 þ ðB0Þ2 þ A0B0 þ 4Λ − 4f2 ¼ 0; ð6Þ

A0B0 þ A0C0 þ B0C0 þ 4Λ − 4f2 ¼ 0; ð7Þ

with primes denoting a derivative with respect to the radial
coordinate. The source-free Maxwell equations are mostly

satisfied identically, while
ffiffiffiffiffiffi−gp

Fφα
;α ¼ 0 is a consequence

of Einstein equations, and it yields

e
AþB
2 f ¼ const: ð8Þ

What is the mathematical structure of the Einstein
equations (4)–(7)? By adding (7) to (4) and to (5) and
by subtracting it from (6), we obtain a coupled system of
three second-order ordinary differential equations for A, B,
and C (in fact, it is a first-order system for A0, B0, and C0):

2ðBþ CÞ00 þ A0ðBþ CÞ0 þ ½ðBþ CÞ0�2 þ 8Λ ¼ 0; ð9Þ

2ðAþ CÞ00 þ B0ðAþ CÞ0 þ ½ðAþ CÞ0�2 þ 8Λ ¼ 0; ð10Þ

2ðAþ BÞ00 þ ðA0Þ2 þ ðB0Þ2 − C0ðAþ BÞ0 ¼ 0. ð11Þ

We can rescale the time and axial coordinates to make
the values of both A and B vanish at an arbitrary radius. The
value of C determines the proper length of orbits of the
Killing vector ∂=∂φ. We thus have three integration
constants corresponding to the first derivatives of the
sought functions at a given initial radius. These are con-
strained physically through (7), which determines f2—the
strength of the magnetic field at that location. We then solve
the system of equations (9)–(11). If it so happens that the
resulting spacetime includes an axis where C → −∞, see
below, then we also require elementary flatness at the axis,
yielding another constraint on the initial values. Therefore,
the solution is completely determined by the cosmological
constant, one free parameter, and two additional factors:
geometry (the length of the hoop) and physics (the energy
density of the magnetic field at a selected location).

III. GENERAL SOLUTION

It turns out that the system (4)–(7) can be separated in
the following way. First, add (6) and (7) and substitute for
ðAþ BÞ0 from (8) to yield

−2
f00

f
þ 4

ðf0Þ2
f2

þ 4ðΛ − f2Þ − C0f0

f
¼ 0: ð12Þ

From here, we can express C0 as follows:

C0 ¼ −2
f00

f0
þ 4

f0

f
þ 4

f
f0
ðΛ − f2Þ: ð13Þ

We now combine (4) þ (5) − (6) − (7) to find

2C00 þ ðC0Þ2 − A0B0 þ 8f2 ¼ 0 ð14Þ

and express A0B0 from the resulting equation to substitute it
together with (13) and (8) into (7) to obtain a single,
separate, third-order equation for f:
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f000f0 − 2ðf00Þ2 þ f00
�
6fðΛ − f2Þ þ ðf0Þ2

f

�
þ ðf0Þ2ð11f2 − 9ΛÞ − 4f2ðΛ − f2Þ2 ¼ 0: ð15Þ

We solve this equation and insert the solution into (13).
We now know both f and C0. Writing (7) as A0B0þ
ðAþ BÞ0C0 þ 4ðΛ − f2Þ ¼ 0, we substitute here for
ðAþ BÞ0 from (8), which also yields B0 ¼ −A0 − 2f0=f.
We finally have a first-order equation for A, which is
quadratic in A0, and the same equation for B if we substitute
for A instead. Its solution reads

A0 ¼ −
f0

f
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛ − f2Þ
s

; ð16Þ

B0 ¼ −
f0

f
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛ − f2Þ
s

: ð17Þ

Again, we determine f from (15), requiring three initial
conditions, and then we calculate A, B, and C from (16),
(17), and (13), where we use the rescaling of t and z and the
hoop length, so there are no additional integration con-
stants. As mentioned in the previous section, we further
require a regular axis and a particular energy density of the
magnetic field at a given location, leaving us with one free
integration constant. Therefore, apart from the cosmologi-
cal constant, the hoop length and field strength at a chosen
point and one additional constant are the independent
parameters of the solution.

IV. SYMMETRIC CASE

To further reduce the master equation (15), we assume
now A ¼ B. This corresponds to a spacetime which is a
warped product of a conformal two-dimensional (2D)
Minkowski and an additional 2D space. Equations (4)
and (5) then coincide. The Maxwell equation (8) yields

A ¼ const − ln f: ð18Þ

The remaining Einstein equations read

2ðA00 þC00ÞþðA0Þ2þðC0Þ2þA0C0 þ4Λþ4f2¼0; ð19Þ

4A00 þ 3ðA0Þ2 þ 4Λ − 4f2 ¼ 0; ð20Þ

ðA0Þ2 þ 2A0C0 þ 4Λ − 4f2 ¼ 0: ð21Þ

Taking the difference ð20Þ − ð21Þ, we have

2A00 þ ðA0Þ2 − A0C0 ¼ 0; ð22Þ

which can be integrated to yield

C ¼ constþ Aþ 2 lnA0: ð23Þ

We are left with two Einstein equations, but if we insert the
above expressions for C and A in terms of f, the equations
are not independent, and we finally have a single second-
order equation for f:

4ff00 − 7ðf0Þ2 − 4f2ðΛ − f2Þ ¼ 0: ð24Þ

Plugging (18) into (23), we find

expAðrÞ ¼ expBðrÞ ¼ α

fðrÞ ; ð25Þ

expCðrÞ ¼ αβ
f0ðrÞ2
fðrÞ3 ; ð26Þ

with α, β integration constants. The last relation implies
that f0ðrÞ ¼ 0 defines an axis. We can always redefine the
radial coordinate by shifting it arbitrarily, and thus we can
put the axis at r ¼ 0.

V. EXACT SOLUTION

Let us now rewrite (24) as follows:

f00 ¼ 7

4

ðf0Þ2
f

þ fðΛ − f2Þ: ð27Þ

Equation (27) lacks r, and we thus use f as the independent
variable. Let us define v ¼ f0, which yields f00 ¼ ðf0Þ0 ¼
dv=dr ¼ ðdv=dfÞðdf=drÞ ¼ ðdv=dfÞv, and, together with
(27), we get

vðfÞ dvðfÞ
df

¼ 7

4

vðfÞ2
f

þ fðΛ − f2Þ: ð28Þ

We first reduce the last equation to a linear equation
through the substitution v2 ¼ w and thus dw=df ¼
2vðdv=dfÞ to obtain

1

2

dw
df

¼ 7

4

w
f
þ fðΛ − f2Þ: ð29Þ

We now solve the homogeneous equation

1

w
dw
df

−
7

2

1

f
¼ 0 ð30Þ

to find w0 ¼ f7=2, which we use as an integration factor,
dividing (29) with it to produce

dw
df

f−
7
2 −

7

2
wf−

9
2 ¼ d

df

�
wf−

7
2

�
¼ 2f−

5
2ðΛ − f2Þ: ð31Þ

This can be integrated to
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wf−
7
2 ¼ γ − 4

ffiffiffi
f

p
−
4

3
Λf−3

2 ð32Þ

and

v ¼ df
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γf

7
2 − 4f4 −

4

3
Λf2

r
; ð33Þ

which can be separated again for us to finally write

r ¼ �
Z

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γf

7
2 − 4f4 − 4

3
Λf2

q ; ð34Þ

yielding r ¼ rðfÞ, the inverse of the sought function. Using
(26) again, we find that the roots of the square root in (33)
where f0 vanishes determine the location of axes, but the
integral (34) exists precisely between two subsequent
rootsf0 ¼ 0where the argument of the square root is positive.
Therefore, we always have two axes unless f vanishes there.
Let us now change the radial coordinate and use the

density of the magnetic field f instead of r via (33), using
relations (25) and (26) for the metric functions. In the
following text, we use primes to denote derivatives with
respect to the new radial coordinate, x0ðfÞ ¼ dxðfÞ=df.
After rescaling t and z and redefining αβ → β, the trans-
formed metric reads

ds2 ¼ 1

f
ð−dt2 þ dz2Þ þ df2

γf
7
2 − 4f4 − 4

3
Λf2

þ β
γf

7
2 − 4f4 − 4

3
Λf2

f3
dφ2: ð35Þ

There are two free constants in the solution, β and γ, and
the cosmological constant, Λ. The electromagnetic field is

F ¼
ffiffiffi
β

f

s
df ∧ dφ; A ¼ 2

ffiffiffiffiffiffi
βf

p
dφ: ð36Þ

The Kretschmann scalar

K ¼ 56f4 − 12γf
7
2 þ 3

4
γ2f3 þ 8

3
Λ2 ð37Þ

is bounded for a finite f (see below), so there is no
curvature singularity anywhere throughout the spacetime.
Another interesting fact about the solution is that it admits
both signs of the cosmological constant. The metric
obviously requires the master function, M≡ γf

7
2 − 4f4−

4
3
Λf2, and βf to be positive to retain its þ2 signature. For

Λ > 0, this implies γ > ð16=3ÞΛ1=4 (then, the single
maximum of M is positive), ensuring there is a single,
finite interval of f > 0 where M > 0. The special value
γ ¼ ð16=3ÞΛ1=4 is discussed at the end of this section. The
two corresponding rootsMðf1Þ ¼ Mðf2Þ ¼ 0 are simple,1

and they define the position of the axes since gφφ ¼ 0 there.
The proper radial distance between the axes is finite, and
the spacetime is thus radially compact. In fact, it still
corresponds to a product of a warped Minkowski and a
compact 2D space. For Λ < 0, any γ is fine, yielding a
single finite interval f ∈ ½0; f0� with Mð0Þ ¼ Mðf0Þ ¼ 0,
ensuringM ≥ 0. The upper root is simple and represents an
axis again in complete analogy with the Λ > 0 case above,
while at f ¼ 0, we have M ¼ M0 ¼ 0, and this is in fact

the asymptotic region since gφφ diverges here and its proper
distance from any other f is infinite. What is the asymptotic
form of the spacetime as f → 0? To the lowest order, we
obtain

ds2 ¼ 1

f

�
ð−dt2 þ dz2Þ þ df2

4
3
jΛjf þ β

4

3
jΛjdφ2

�
: ð38Þ

Redefining the radial coordinate, we obtain

ds2 ¼ 1

ρ2
½−dt2 þ dz2 þ dρ2 þ dη2�; ð39Þ

which is the anti-de Sitter spacetime. One can also consider
negative values of f, but the situation is identical with β and
(a purely imaginary) γ simply changing their signs and
t and z switching their meanings.
Summarizing the geodetic structure of the spacetime, we

conclude there is a circular null geodesic located at
f ¼ ð 3

16
γÞ2. Axial null geodesics exist everywhere and

for any parameters of the spacetime. A radial null ray has a
vanishing coordinate velocity at any axis, regardless of the
sign of the cosmological constant, and it takes a finite affine
parameter to reach the axis.2 For Λ < 0, the coordinate
velocity of a radial null ray vanishes at f ¼ 0, and it takes
an infinite affine parameter but a finite coordinate time to
reach f ¼ 0 where the magnetic field vanishes.
The requirement of elementary flatness near an axis

located at f ¼ fi > 0, where gφφ ¼ 0 reads

ffiffiffiffiffiffiffi
gφφ

p ≈
Z
f0

ffiffiffiffiffiffiffi
gff

p
df: ð40Þ

1The first derivative of the nonpolynomial functionM does not
vanish there. In fact, using MðfiÞ ¼ 0, we find M0ðfiÞ ¼
2fiðΛ − f2i Þ.

2In the vicinity of an axis f ¼ fi > 0 withMðfiÞ ¼ 0, we find
ðf − fiÞ ≈ ðη − η0Þ2 with η the affine parameter.
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Expanding MðfÞ near its root at f ¼ fi and using the fact
that MðfiÞ ¼ 0 to express M0ðfiÞ, we can write for the
integral

Z
f

fi

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ðfiÞðx − fiÞ

p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f − fi
M0ðfiÞ

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f − fi

2fiðΛ − f2i Þ

s
;

ð41Þ

while the left-hand side of (40) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

f3i
M0ðfiÞðf − fiÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β

f2i
ðΛ − f2i Þðf − fiÞ

s
: ð42Þ

Relation (40) thus fixes one integration constant as

β ¼ fi
ðf2i − ΛÞ2 : ð43Þ

For a positive cosmological constant, we would like to
comply with the above equation for the two separate axes.
Remember that fi ¼ fiðΛ; γÞ so that (43) evaluated at both
axes would produce two equations determining γ as well as
β and the entire solution would be given in terms of Λ only.
This, however, is not possible since the right-hand sides of
the two copies of (43) are not independent for the two axes
and, in fact, we cannot have both axes regular at the same
time—one involves a conical defect. For a negative
cosmological constant, we only have one axis to deal with,
and therefore β is determined in terms of γ, which remains a
free parameter (or vice versa, of course), still ensuring a
regular axis. Ultimately, the solution involves one free
parameter in addition to the cosmological constant, regard-
less of its sign.
The spacetime is type D everywhere apart from f ¼ 0

and f ¼ ðγ=8Þ2, where it is type O. It is boost-rotation
symmetric as expected since it is conformal to M2 ×R2.
The solution belongs to the Kundt class. Specifically, it can
be brought into the form of a Plebański-Demiański metric
with two nonexpanding repeated principal null congruen-
ces, which is then a Kundt spacetime of type D. Our metric
(35) can be transformed into the form (16.27), p. 316 of
Ref. [17], by the transformation f ¼ 1=p2. In the language
of Ref. [17], we have γ ¼ 0, ρ ¼ p, ϵ2 ¼ 0, ϵ0 ¼ 1, ϵ ¼ 0,
m ¼ 0, and k ¼ −e2 − g2. The master function written in
terms of our parameters reads P ¼ −1þ ðγ=4Þp−
ðΛ=3Þp4, while the 4-potential is dψ=p so that we conclude
e ¼ 0, g ¼ −1, n ¼ γ=8, and α is arbitrary. To obtain the
same spacetime, we need to unfold our angular coordinate
φ to cover the entire real axis and rescale it by 2

ffiffiffi
β

p
. Doing

this, we lose the closed orbits of the angular Killing vector
and thus also our original cylindrical symmetry. In the
covering spacetime, there is no need to restrict the value γ
through the requirement of elementary flatness. On the

other hand, we still need to deal with the fact that gφφ
vanishes at two locations, suggesting the cylindrical sym-
metry with two axes is a more natural interpretation. To our
knowledge, this is the first member of this family apart
from the Bonnor-Melvin [6,7] and Bonnor-Melvin-Λ [13]
solutions to have a clear physical meaning.
Let us look at two special cases. First, if Λ ¼ 0, we apply

the transformation f¼2Kð1−K2r2Þ2, redefine γ ¼ 4
ffiffiffiffiffiffiffi
2K

p
,

and assume β ¼ 1=8K3 as required by the elementary
flatness of the axis. This yields the metric

gμν ¼ α−2ð−dt2 þ dz2Þ þ α−5dr2 þ αr2dφ2; ð44Þ
with t and z rescaled, where

α ¼ 1 − K2r2 ð45Þ
and

FμνFμν ¼ 8K2α4: ð46Þ

This is the original Bonnor-Melvin solution as ex-
pected, see Ref. [17], p. 317. And, second, the value
γ ¼ ð16=3ÞΛ1=4 corresponds to a single value f2 ¼ Λ and
yields the homogeneous solution of Ref. [13] where f
cannot be used as a coordinate since it has a constant value
throughout the spacetime.

VI. SHELL-SOURCE MODEL

Let us address now the question of a physical source
producing the field obtained above. We assume a cylin-
drically symmetric source that is both massive and charged.
In fact, the simplest such system is an infinitely thin
cylindrical shell consisting of streams of oppositely
charged particles moving along the surface of the shell
according to the Israel junction conditions [18,19] with a
vanishing total charge but nonvanishing total electric
current. Such a cylinder is the general relativistic analog
of an infinite solenoid.
In classical physics, the solenoid has a homogeneous

magnetic field inside, while the field vanishes outside.
Since the Maxwell field couples to the gravitational field in
general relativity, the situation is different here. In fact,
there is a solenoid solution where the spacetime (35) forms
the inside of the cylinder with a varying magnetic field
aligned with a symmetry axis, while outside we have the
Linet-Tian spacetime [20,21] with a vanishing magnetic
field. This construction applies to both a positive and a
negative cosmological constant. Note that we assume the
cosmological constant to be the same on both sides of the
shell and thus indeed constant throughout the spacetime,
although this is not a necessity in general. In both cases, the
induced stress-energy tensor Sij is diagonal in the
Minkowski coordinates ðT; Z;ΦÞ of the flat shell interface,
with all entries positive for a range of Λ and γ and the
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induced 3-current only having a single nonzero entry,
namely the azimuthal component. The temporal component
of the stress-energy tensor dominates, STT − SZZ−
SΦΦ > 0, allowing an interpretation as due to four streams
of massive, charged particles similarly to the discussion of
the Bonnor-Melvin case with Λ ¼ 0 in Ref. [22]; we have
two streams of positive particles spiralling up and down at
the same rate along mirror-image paths (vZ ≡ vZð1Þ ¼
−vZð2Þ; vΦ ≡ vΦð1Þ ¼ vΦð2Þ) and two streams of negative
particles following the complementary trajectories (vZð3Þ ¼
−vZð4Þ ¼ vZ; vΦð3Þ ¼ vΦð4Þ ¼ −vΦ). Provided the charged
dust streams are identical in terms of their rest-mass and
charge densities, ρ and σ, yielding a vanishing total electric
charge, then their corresponding stress-energy tensor is also
diagonal with non-negative entries, and the 3-current Ji
only has the azimuthal component. Their densities and
velocities thus represent four independent parameters of the
model, which can be fitted to the three diagonal entries of
the induced energy-momentum tensor and the single non-
zero component of the induced 3-current,

ρ ¼ 1

4
ðSTT − SZZ − SΦΦÞ; ð47Þ

σ ¼ JΦ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STT − SZZ − SΦΦ

SΦΦ

s
; ð48Þ

vZ ¼
ffiffiffiffiffiffiffiffi
SZZ
STT

s
; vΦ ¼

ffiffiffiffiffiffiffiffi
SΦΦ

STT

s
: ð49Þ

Consequently, the solution (35) can be thought of as due to
the counterstreaming charged massive particles spiralling
along the solenoid and producing a static field. Here, we
merely wished to provide a physically plausible source
producing the field (35), but the solenoid model can be
discussed in further details. It would be of interest, for
instance, to see how the model restricts the two free
parameters of the spacetime. This, however, would mean
an extensive numerical analysis, while our focus in this
paper is on the analytical approach, so we leave this
question open for now.
It is of interest that in Ref. [23] a similar approach was

adopted in the case of 2þ 1-dimensional solutions inves-
tigated in Ref. [24]. Indeed, due to the translational
symmetry along the axis of the spacetime discussed here,

the Einstein-Maxwell equations effectively reduce to 2þ 1
dimensions, and thus (35) is related to the 2þ 1 solutions,
which are also determined by the cosmological constant
and one additional parameter like in 3þ 1 dimensions.
However, a direct comparison is difficult since the 2þ 1
solutions only admit Λ < 0 and the collapsing shell has a
nonzero angular momentum as a result of the asymptotic
properties of the outer spacetime. The magnetic field is
nonvanishing both inside and outside of the shell and arises
due to the shell’s electric charge and rotation unlike in the
solenoid model discussed here. The resulting equation of
radial motion of the 1þ 1 shell can only be solved
numerically, and it is unclear whether the collapse would
stop or bounce at a finite radius or whether it would
continue to form some kind of a point singularity at the
center. At any rate, the static case needs to be dealt with
separately along the lines presented above. A collapsing
2þ 1 shell model of the spacetime (35) is certainly
possible, too, but will rely on numerical calculations,
which is beyond the scope of the discussion here.

VII. CONCLUSIONS

In this paper, we generalized our previous result on a
constant magnetic field balanced by a positive cosmologi-
cal constant to a spacetime involving a space-varying
magnetic field determined by the cosmological constant
and one additional parameter. The solution admits both
signs of the cosmological constant and corresponds to a
warped product of a 2D Minkowski and a 2D space. It also
includes as special cases the Bonnor-Melvin solution and
the constant field solution of Ref. [13]. We found a
physically plausible source of the field in the form of an
infinitely thin cylindrical shell consisting of streams of
charged and massive particles spiralling along the surface
of the shell. In the future, we intend to study the general
equations (15), (16), and (17), dropping the requirement of
boost symmetry in the z direction.
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