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Using the Sparling form and a geometric construction adapted to spacetimes with 
a 2-dimensional isometry group, we analyse a quasi-local measure of gravitational 
energy. We then study the gravitational radiation through spacetime junctions in 
cylindrically symmetric models of gravitational collapse to singularities. The models 
result from the matching of collapsing dust fluids interiors with gravitational wave 
exteriors, given by the Einstein–Rosen type solutions. For a given choice of a frame 
adapted to the symmetry of the matching hypersurface, we are able to compute 
the total gravitational energy radiated during the collapse and state whether the 
gravitational radiation is incoming or outgoing, in each case. This also enables us to 
distinguish whether a gravitational collapse is being enhanced by the gravitational 
radiation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The theorem about the positivity of the global gravitational field at spatial infinity is a cornerstone 
of General Relativity (GR) and there are already different proofs available of this important result. In 
practical applications, it would be desirable to have a quasi-local notion of energy which could be applied 
to finite objects. A great deal of effort has been put towards this goal [19], after the earlier proposals for the 
quasi-local mass by Hawking [12] and Penrose [16]. An interesting proposal was made by Brown and York 
[3] using a Hamiltonian formulation of General Relativity, and their definition depends on a gauge choice 
along three-dimensional spacelike hypersurfaces. Other authors have put forward definitions of mass which 
are based on more geometric constructions (see [22,23] and references therein).
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Associated to this problem is the problem of finding an appropriate Hamiltonian in each setting. In 
fact, the Hamiltonian for every diffeormorphism invariant theory depends on boundary conditions and is, 
therefore, non-unique. In General Relativity, for example, both the Komar Hamiltonian and the ADM 
Hamiltonian have been widely used (see e.g. [4]). The latter, in turn, is a particular case of the Von Freud 
super-potential [10] and a problem related to the search of superpotentials for GR is the question of the 
existence of the Lanczos potential for the Weyl tensor (see e.g. [6]).

An alternative approach to the definition of quasi-local gravitational energy quantities is given by the use 
of gravitational pseudo-tensors. In [9], Frauendiener explains how to treat pseudo-tensors in the geometric 
framework of the principal bundle defined by the frame bundle of a 4-dimensional Lorentzian manifold. Using 
this approach, it is shown that the energy–momentum pseudo-tensors of Einstein and Landau–Lifschitz can 
be recovered from pull-backs to the spacetime manifold under appropriate sections of the so-called Sparling 
3-form, which is defined in the bundle of linear frames. Szabados [18], generalizes these results and gives 
explicit formulae for gravitational pseudo-tensors in rigid basis or anholonomic frames. In particular, he 
shows that the pull-backs defined by coordinate sections of the contravariant and dual forms of the Sparling’s 
form, defined on the bundle of linear frames over the spacetime, are the Bergman and the Landau–Lifshitz 
pseudo-tensors, respectively.

In most of the applications we are aware of, the quasi-local quantities are evaluated for an isolated system 
at infinity, while in the present work we are interested in their local values at certain physically interesting 
hypersurfaces such as spacetime junctions. Even though quasi-local gravitational energy quantities are 
well-defined, they are frame dependent and, therefore, whenever they are used it is necessary to give a 
justification about the choice of a particular frame. In the case of an isolated system, it is assumed that 
it is asymptotically flat and this means that one can introduce a group of asymptotic symmetries which, 
roughly speaking, correspond to the symmetries of the Poincaré group defined in flat spacetime or to a 
generalization called the BMS group. These asymptotic symmetries induce a set of privileged frames in the 
spacetime, in the sense that they correspond asymptotically to the generators of the asymptotic symmetry 
group and one can then take a frame of that set to compute a quasi-local gravitational energy quantity. 
Within this approach, it is possible to recover the standard ADM and Bondi notions of momentum for an 
isolated system using definitions of quasi-local quantities based on pseudo-tensors [11]. An approach based 
on the study of the asymptotic conditions as boundary conditions, defining when an isolated system is 
radiating, is also possible [21].

We would like to carry over the formalism described in the paragraph above to the case of a system 
composed by an (inhomogeneous) interior matched to a radiating exterior through a common hypersurface. 
The objective here is to give measures of the gravitational energy interchanged at the matching hypersurface, 
which plays now a similar role to the spacelike or null infinity of the case of an isolated system. In the case 
of matching hypersurfaces with enough symmetry, there is a natural geometrical way to define frames 
adapted to the symmetries of the hypersurface, and which will play the role of the frames corresponding to 
the asymptotic symmetries used to compute the quasi-local gravitational energy at infinity in an isolated 
system.

Here, to formulate this problem in a mathematically precise way, we use a frame bundle formalism 
and define equivalence classes between frames. We then apply our formalism to spacetimes admitting a 
G2 isometry group and, in particular, calculate the radiated gravitational energy through the transitivity 
hypersurfaces of such isometry groups. A novel aspect of our work is the introduction of the notion of 
gravitational collapse enhanced by the gravitational radiation, i.e. by the gravitational energy–momentum 
flux, defined using the Sparling form. The meaning of this notion is that during the collapse, gravitational 
radiation is produced and the gravitational energy can either be radiated outside of the collapsing body 
or be radiated inwards, in which case it enhances the gravitational collapse. Although our presentation is 
restricted to 4 dimensional spacetimes, most of it can be easily generalised to n dimensions and can be 
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applied e.g. to the brane world scenario where 4-dimensional branes are embedded, as hypersurfaces, on a 
5-dimensional bulk.

Motivated by the recent detection of gravitational waves by LIGO [1], an interesting application of our 
formalism would be to models of objects with a finite radius in astrophysics, emitting gravitational radiation 
into a vacuum exterior. Due to Birkhoff’s theorem, it is not possible to have such vacuum exteriors in 
spherical symmetry. The next simplest symmetry assumption is cylindrical symmetry. So, we will consider 
models of gravitational collapse in cylindrical symmetry. Such models result from gluing an interior metric 
representing matter collapsing gravitationally to an exterior metric containing gravitational waves. An 
interesting aspect of these models is that the matter density is non-zero at the matching boundary, resulting 
in discontinuities in the Einstein field equations. Even though a realistic system undergoing gravitational 
collapse is not cylindrically symmetric, some non-trivial effects already present in the real system can be 
found in the cylindrically symmetric model. For example, the degrees of freedom of the (pure) gravitational 
energy in the exterior may mix with the gravitational energy sourced by the matter at the boundary. These 
non-trivial effects may be captured by local, gauge-dependent, measures of gravitational energy.

The plan of the paper is as follows: in section 2, we revise some properties of the Sparling 3-form and we 
compute its transformation under a change of frame. In section 3, we review how to measure the gravitational 
energy radiated through embedded hypersurfaces of codimension 1 using the Sparling form. In section 4, we 
provide a geometric set-up for the definition of a frame based on the existence of a submanifold representing 
the surface of a radiative body. In section 5, we apply our formalism to cylindrically symmetric collapsing 
dust spacetimes containing gravitational radiation in the exterior which corresponds to the Einstein–Rosen 
solution.

Some algebraic computations of this paper have been done with xAct [15]. We use Latin indices a, b, c, .. =
1, 2, 3, 4, Greek indices α, β, .. = 1, 2, 3, capitals A, B, .. = 1, 2 and units such that 8πG = c = 1.

2. Sparling 3-form and Sparling identity

In this section and in the following section 3, we review some known notions and properties about the 
Sparling form and the sparling identity that are needed for our work. Even though most of the material is 
known, we present the equations in accordance to the notation that shall be followed in sections 4 and 5.

Let (M, gab) be a 4-dimensional spacetime with signature (−, +, +, +) and consider the bundle of frames 
L(M) over M. Let B ≡ {�e1, �e2, �e3, �e4} be a chosen frame (smooth section of L(M)) and denote by 
B∗ ≡ {θ1, θ2, θ3, θ4} its dual co-basis. Define the super-potential

L(B,�ea) ≡
1
2ηabcdθ

d ∧ Γbc(B), (1)

where Γ(B)bc is the connection 1-form on the frame B and ηabcd are the components of the volume element 
of the metric gab in the frame B. Note the dependency of the super-potential on both the frame B and 
the frame elements �ea.1 Under the choice of the frame B, the super-potential is a 2-form in Λ2(M) and it 
fulfills the Sparling identity [9,18,5]

d(L(B,�ea)) = E(�ea) + S(B,�ea), (2)

where the quantity E(�ea) ∈ Λ3(M) is the so-called Einstein 3-form, which is given in terms of the curvature 
2-form Rab by

1 One can define super-potential as a tensor valued form in the bundle of frames L(M) as is done in [9,18]. To avoid introducing 
the notation and language used in fibre bundle theory, we adopt the point of view that the frame B is a section of L(M) and we 
can use this section to pull-back the equations in L(M) to M. In this way, forms and tensors have their usual meaning of fields in 
the manifold M, but the price payed for this simplification is the appearance of an explicit dependency on the frame B in certain 
expressions (the pseudo-tensors).
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E(�ea) = −1
2ηabcdθ

b ∧Rcd , (3)

and it has the property

G(�ea) ≡ ∗E(�ea) = Gabθ
b ∈ Λ1(M) , (4)

with ∗ representing the Hodge dual and Gab the Einstein tensor.
As E(�ea) and ∗E(�ea) are tensorial differential forms, we do not write their dependency on B, such 

dependency being only kept for pseudo-tensorial forms. This is for instance the case of the 3-form S(B, �ea)
that it is given by

S(B,�ea) ≡
1
2(ηbcdeθb ∧ Γ(B)ca − ηabceθ

b ∧ Γ(B)cd) ∧ Γ(B)de. (5)

We will follow the convention of [9,18] and call this form the Sparling 3-form. For us, the important point 
about the Sparling identity is that it can be interpreted as a conservation law in the following way: By 
defining the 1-form

J(B,�ea) ≡ ∗dL(B,�ea), (6)

and computing the co-differential of J(B, �ea), we get

δJ(B,�ea) = − ∗ d ∗ J(B,�ea) = − ∗ d ∗ ∗dL(B,�ea) = 0. (7)

From this equation, we deduce that J(B, �ea) always yields a conserved current, independently of the choice 
of the frame B or the frame vectors �ea. According to the above considerations, the current J(B, �ea) can be 
split into two parts as

J(B,�ea) = G(�ea) + ∗S(B,�ea). (8)

The first part is a tensorial 1-form and, via the Einstein equations, can be interpreted as the flux of 
energy momentum due to the matter. The second part is non-tensorial and can be regarded as the flux of 
gravitational energy–momentum with respect to the frame B. If �u is a frame element of B representing an 
observer, then the 1-form

j(B, �u) ≡ ∗S(B, �u) (9)

shall be called the gravitational energy–momentum flux 1-form for the observer �u with respect to the frame 
B or just the gravitational flux 1-form, if no confusion arises. It can be interpreted as the gravitational 
energy–momentum flux, which in this context is also called gravitational radiation, measured by the given 
observer in the frame B. In our context, we need to be able to decide if gravitational radiation is leaving or 
entering a radiating source. To that end, we put forward the following definition.

Definition 1. We shall take the scalar quantity

j(B, �u)〈�ea〉 (10)

as the component of the gravitational radiation flux along the direction defined by the vector field (�ea). 
If this scalar quantity is positive (resp. negative), then we say that the gravitational radiation is outgoing 
(resp. incoming) with respect to (�ea).



A. García-Parrado, F.C. Mena / Differential Geometry and its Applications 64 (2019) 29–46 33
The fact that j(B, �u) is frame and observer dependent does not render it useless when computing the 
radiated gravitational energy in certain cases, as we illustrate through explicit examples in section 5. In 
fact, in [9], it was proved that the scalar quantity (10) has a correspondence with the components of the 
energy–momentum complex given by Einstein in 1916 [7]. Furthermore, it has been shown that, under an 
appropriate choice of frame B, it is possible to use this complex to recover the well-known notions of ADM 
and Bondi momentum at infinity for an isolated system (see [11]). Thus, following a similar approach, we will 
compute, in section 5, the gravitational energy radiated through a matching hypersurface separating two 
regions (exterior and interior) under the assumption that the hypersurface has certain symmetry properties. 
We will present explicit examples of systems undergoing gravitational collapse and show how the gravita-
tional flux 1-form enables us to give a criterion stating whether gravitational radiation is being emitted or 
absorbed during the collapse.

It is obvious that a similar reasoning as the above can be performed if we take the Einstein form instead 
of the Sparling form. In this fashion, one can define the matter current with respect to the observer �u in 
the standard way

J(�u) ≡ G(�u) ∈ Λ1(M). (11)

This current is tensorial and, as it is well-known, it represents the matter energy–momentum flux. From 
previous considerations, it is clear that the sum of both currents is always conserved, a property that can 
be expressed by the condition

δ(J(�u) + j(B, �u)) = 0. (12)

Interestingly, even though j(B, �u) is frame dependent, the conservation property (12) holds for any frame B. 
A particular case occurs when each of the currents are independently conserved. As we will show, this is 
the situation for all the examples of section 5 modelling gravitational collapse. The implication of this is 
that, during the gravitational collapse, no fraction of the collapsing matter is transformed into gravitational 
radiation.

3. Frame equivalence and radiated gravitational energy through an embedded hypersurface

Suppose now that we introduce another frame B′ and its associate co-frame B′ ∗, related to B and B∗

through the formulae

�e′a = γ(B,B′) b
a �eb , θ′ a = γ(B′, B) a

b θb , γ(B,B′) b
a γ(B′, B) c

b = δ c
a , (13)

where the matrices γ(B, B′), γ(B′, B) encode the transition between the frames B and B′. We regard these 
matrices as having entries which are scalars on M (0-forms). Under these circumstances, it is well-known 
that the connection 1-form transforms as

Γ(B′)ab = γ(B′, B) a
q Γ(B)qpγ(B,B′) p

b + γ(B′, B) a
p d(γ(B,B′) p

b ). (14)

We can use this expression to find the transformation law for the Sparling 3-form. A straightforward but 
tedious computation reveals:

Lemma 1. Under the change of frames B to B′, the Sparling 3-form transforms as:

S(B′,�e′s) = −1
2γ(B,B′)raηabcddγ(B,B′)sb ∧ dγ(B,B′)rc ∧ θd −

1γ(B′, B)chγ(B,B′)saγ(B,B′)rbηabdmdγ(B,B′)rc ∧ dγ(B,B′)hd ∧ θm −
2
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1
2η

a
bcdΓ(B)ba ∧ dγ(B,B′)sc ∧ θd − 1

2γ(B′, B)brγ(B,B′)saηac
dmΓ(B)bc ∧ dγ(B,B′)rd ∧ θm −

1
2γ(B,B′)saγ(B,B′)rbηbcdmΓ(B)ca ∧ dγ(B,B′)rd ∧ θm +
1
2γ(B,B′)saγ(B,B′)rbηabcdΓ(B)cm ∧ dγ(B,B′)rm ∧ θd + γ(B,B′)saS(B,�ea). (15)

From the expression above, it is clear that the relation between S(B′, �e′s) and S(B, �ea) is linear if 
dγ(B, B′)sa = 0 and, in that case, S transforms like a tensor. We shall explore this fact next.

Let H ⊂ M be a co-dimension 1 smooth embedded hypersurface and consider two frames B, B′ fulfilling 
the condition

d(φ∗(γ b
a (B′, B))) = 0 , (16)

where φ : H → M is a smooth embedding. Since one has that

φ∗(γ b
a (B′, B)) = γ b

a (B′, B)|H (17)

we deduce that the scalars γ b
a (B′, B)|H can only be constants.

Proposition 1. For H ⊂ M and φ : H → M as described in the previous paragraph, the relation

B ∼ B′ ⇐⇒ d(φ∗(γ b
a (B′, B))) = 0 (18)

is an equivalence relation in X(L(M)) (≡ the set of smooth sections in the frame bundle L(M)).

Proof. To ease the notation, we suppress indices in the matrix γ b
a (B′, B) and write it simply as γ(B′, B). 

We show that the properties characterizing an equivalence relation are fulfilled:

• Reflexive: As γ(B, B) = I trivially B ∼ B.
• Symmetric: If B ∼ B′ then d(φ∗γ(B′, B)) = 0. One has then

0 = d(φ∗(I)) = d(φ∗(γ(B′, B)φ∗(γ(B,B′))) = φ∗(γ(B′, B))d(φ∗(γ(B,B′)). (19)

Since φ∗(γ(B′, B)) is invertible, the last equation entails d(φ∗(γ(B, B′)) = 0 and thus B′ ∼ B.
• Transitive: if B ∼ B′ and B′ ∼ B′′ then

d(φ∗γ(B′′, B)) = d
(
φ∗(γ(B′′, B′))φ∗(γ(B′, B))

)
= 0.

Hence B ∼ B′′. �
Proposition 2. If there are two frames B, B′ on M such that B|H = B′|H, then B ∼ B′.

Proof. If B|H = B′|H, then eq. (17) holds with γ b
a (B′, B)|H = δa

b and therefore B ∼ B′. �
Now, let B, B′ be frames such that B ∼ B′. Then

φ∗(d(γ b
a (B′, B))) = d(φ∗(γ b

a (B′, B))) = 0. (20)

Using this information in (15), we deduce
∫

S(B′,�e′a) = γ(B′, B) b
a |H

∫
S(B,�eb) , (21)
H H
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where we used the fact that γ(B′, B) b
a |H are constants as B ∼ B′. Bearing in mind this property, let us 

make the following definition

Definition 2. Let H ⊂ M be an embedded co-dimension 1 smooth hypersurface. For a given frame B and 
frame element �ea ∈ B, the gravitational flux through H, with respect to B and �ea is defined as

P (B,H,�ea) ≡
∫
H

S(B,�ea). (22)

If B and B′ are frames such that B ∼ B′, then eq. (21) can be rendered in the form

P (B,H,�ea) = γ(B′, B) b
a |HP (B′,H,�e′b) , for B ∼ B′. (23)

This means that if we have a privileged frame B in our problem, we can compute the gravitational flux 
according to (22) and consider the scalars {P (B, H, �ea)} as the components of the gravitational 4-momentum 
of the hypersurface H. We shall represent it as P (B, H).

An important particular case occurs in vacuum, when S(B, �ea) = dL(B, �ea). In this case, using Stokes 
theorem, we can write (22) as follows

P (B,H,�ea) ≡
∫
H

dL(B,�ea) =
∫
∂H

L(B,�ea). (24)

In an asymptotically flat isolated system we can choose H in such a way that one of the connected compo-
nents of ∂H surrounds the source. Denoting by Σr such a connected component, we can study the existence 
of the limit

lim
r→∞

∫
Σr

L(B,�ea) , (25)

for a hypersurface Σr that approaches infinity. This analysis has been already performed in a number of 
situations (see [11]):

1. The surface Σr approaches spatial infinity. In this case, if we choose an asymptotically Cartesian frame B, 
one can show that the limit (25) corresponds to the ADM 4-momentum of the isolated source.

2. The surface Σr approaches null infinity. In this case, if we choose a frame B as the normalized translation
defined by the asymptotic BMS group, then the limit (25) corresponds to the Bondi 4-momentum of 
the isolated source.

In any case, we note that the choice of a frame B with suitable properties at infinity, yields integral 
values of quasi-local quantities that have a valid physical meaning. In the next section, we shall follow this 
approach and show how the choice of a frame B adapted to the symmetries of our physical system, at 
the matching hypersurface, enables us to analyse the problem of the gravitational radiation through the 
matching boundary.

The most important point to stress here is that the matching hypersurface, in our case, plays a role 
similar to null infinity or spacelike infinity in the case of an isolated system. As discussed above, the choice 
of a frame B adapted to the symmetries of null or spacelike infinity (the asymptotic symmetries) provides, 
respectively, the Bondi or ADM momentum. Therefore, a frame B adapted to the symmetries of the matching 
hypersurface, should give us the quantities corresponding to the flux of gravitational energy–momentum 
through the matching hypersurface. The detailed analysis of this assertion is presented in the next section.
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4. Gravitational flux through a hypersurface in a spacetime with a G2 isometry group

Assume that M admits a maximal isometry group G2 generated by the Killing vectors �ξ1, �ξ2. Let H ⊂ M
be a co-dimension 1 hypersurface. Choose a frame of the form

B = {�n,�ξ1,
�ξ2, �u} , (26)

where �n is a vector field on M such that �n|H is unit and normal to the hypersurface and �u is an unit 
timelike vector field representing an observer. This frame is fully adapted to the geometry of the matching 
hypersurface H because its elements are either fixed at H (as happens for an observer �u and the unit 
normal �n) or are symmetries of the matching hypersurfaces (as happens for the Killing vectors �ξ1, �ξ2). 
There is a residual freedom in the choice of the frame B, coming from the fact that the vector field �n is 
defined up to a sign on H and that

�ξ
′
1 = α11�ξ1 + α12�ξ2 , �ξ

′
2 = α21�ξ1 + α22�ξ2 , α11 , α12 , α21 , α22 ∈ R , (27)

are Killing vectors too. However, it is easy to get:

Proposition 3. Any other frame B′ = {�n, �ξ
′
1, �ξ

′
2, �u} with �ξ

′
1, �ξ

′
2 related to �ξ1, �ξ2 by (27) fulfills the property 

B′ ∼ B.

From the previous proposition we deduce that, in a spacetime admitting a G2 isometry group, one can 
define unambiguously the gravitational 4-momentum of a hypersurface H as P (B, H), where B is a frame 
of the form (26). Since, in this case, the only freedom left to construct the frame B is given by the choice 
of the observer �u, we shall use the shorthand notation

P (�u,H) ≡ P (B,H). (28)

Next, we are going to compute P (�u, H) in a number of practical examples.

5. Gravitational flux in cylindrically symmetric spacetimes

In this section, we consider the problem of computing the gravitational flux through hypersurfaces in 
cylindrically symmetric spacetimes. The hypersurfaces, here, result from the matching of an exterior vacuum 
spacetime containing gravitational waves and a dust fluid interior spacetime which is collapsing to form a 
singularity. To simplify the presentation, we consider exact solutions to the Einstein equations with diagonal 
metrics only.

We start by briefly recalling the matching conditions between two spacetimes (M±, g±) across timelike 
hypersurfaces H± (see more details in [14]). The matching between two spacetimes requires an identification 
of their boundaries, i.e. a pair of embeddings Φ± : H −→ M± with Φ±(H) = H±, where H is an abstract 
copy of one of the boundaries. Let ξα be a coordinate system on H, where α, β = 1, 2, 3 are indices on 
the hypersurface. Given a vector basis {∂/∂ξα} of the tangent space TH, the push-forwards dΦ± provide 
a correspondence between the vectors of this basis and sets of linearly independent vectors tangent to H±, 
given in appropriate coordinates by e±a

α = ∂ξαΦ±a. Here, we follow the convention of previous sections that 
small Latin letters a, b = 1, 2, 3, 4 represent spacetime indices. There are also (up to orientation) vectors na

±
normal to the boundaries. The first and second fundamental forms on H are given by q± = Φ±�(g±) and 
K± = Φ±�(∇±n±), where Φ±� denotes the pull-back corresponding to the maps Φ±. In components, we 
may write
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q±αβ ≡ e±a
α e±b

β gab|H± , K±
αβ = −n±

a e
±b
α ∇±

b e
±a
β . (29)

The matching conditions between two spacetimes through H require the equality of the first and second 
fundamental form on H, i.e.

q+
αβ = q−αβ , K+

αβ = K−
αβ . (30)

In the examples below, the spacetimes are matched across cylinders of symmetry.

5.1. Gravitational wave exteriors

The most general diagonal metric for cylindrically symmetric vacuum spacetimes (with an Abelian G2
acting on 2-dimensional spacelike hypersurfaces S2) can be written as [13]

g+ = e2(γ−ψ)(−dT ⊗ dT + dρ⊗ dρ) + R2e−2ψdϕ̃⊗ dϕ̃ + e2ψdz̃ ⊗ dz̃, (31)

where ψ, γ, R are functions of the coordinates ρ, T satisfying the Einstein equations (76)–(80). This metric 
is written in coordinates adapted to the Killing vectors ∂ϕ̃ and ∂z̃. From the physical point of view, the 
metric models cylindrical gravitational waves with one polarization state and, for the choice R(T, ρ) = ρ, 
corresponds to the metric found by Einstein and Rosen [8]. So, we say that (31) are metrics of Einstein–Rosen 
type.

Dust matter sources to such spacetimes were studied in [20,2], where the matching between collapsing 
interior spacetimes and Einstein–Rosen type of exteriors was shown to exist along timelike hypersurfaces. 
It would be therefore interesting to study the gravitational radiation through those hypersurfaces and to 
find out whether it enhances the gravitational collapse or not. It has been shown [20] that, in those cases, 
the matching hypersurfaces are ruled by geodesics and, from the point of view of the exterior, can be 
parametrized as

H+ : {t = λ, ρ = r0, ϕ̃ = φ, z̃ = ζ}, (32)

where r0 is constant and λ is a parameter along the geodesics. So, H+ is generated by �e+
1 = ∂t|H+ ,

�e+
2 = ∂ϕ̃|H+ and �e+

3 = ∂z̃|H+ , which together with �n+ = ∂r|H+ form an orthogonal basis for the spacetime 
at H+.

5.2. Spatially homogeneous interiors

As interiors to (31), we first consider locally rotationally symmetric and spatially homogeneous dust 
solutions given by the Bianchi class I of metrics [13], in cylindrical coordinates, as

g− = −dt⊗ dt + a(t)2dz ⊗ dz + b(t)2(dr ⊗ dr + r2dϕ⊗ dϕ) (33)

with

a(t) = (α− t)−1/3(β − t), b(t) = (α− t)2/3 (34)

for 0 ≤ t < min{α, β} and r ≤ r0. If α = β, the metric reduces to the Friedman–Lemaître–Robertson–Walker 
(FLRW) class of spatially homogeneous and isotropic metrics.

The interior metrics (33) always contain cylinders of symmetry which are trapped near the singularity 
(see [20]). The marginally-trapped cylinders trace out a 3-surface in the interior which eventually arrives at 
the boundary of the matter located at r = r0.
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From the point of view of the interior, the matching hypersurface is parametrized as

H− : {T = λ, r = r0, ϕ = φ, z = ζ},

so that H− is generated by �e−1 = ∂T |H− , �e−2 = ∂ϕ|H− and �e−3 = ∂z|H− , which together with �n− = ∂ρ|H−

form an orthogonal basis for the spacetime at H−.
Then, the matching conditions (30) between (31) and (33) across H give

eψ
H= a(t), R

H= a(t)b(t)r, Rρ
H= a(t), γ

H= ψ, γρ
H= ψρ = 0, (35)

where 
H= denotes evaluation at H. In order to solve the matching problem, the strategy followed in [20] was 

as follows: For a suitable spacetime interior to (31) and for the conditions (35) at the boundary, one obtains 
an explicit solution for R(ρ, T ) which satisfies the wave equation (77) and the constraints (79) and (80), 
at H. In turn, the remaining Einstein equations (76) and (78) can be seen as providing γ,ρρ and ψ,ρρ on H. 
Since we know data for the exterior metric and its normal derivatives at the boundary, it then follows [20]
that a unique ψ exists on a neighbourhood D of H. Since γ

H= ψ and γ,ρ
H= ψ,ρ, once we have ψ, we use a 

similar argument in (76) to get a unique γ in D.

5.2.1. FLRW case
If the interior is given by a FLRW metric, then a(t) = b(t) = (α − t)2/3, for t ∈ (−∞, α). From the 

exterior, the matching surface H is the cylinder ρ = ρ0, T < α, terminating in the singularity at T = α. 
At H, we have

R
H= r0(α− T )4/3, Rρ

H= (α− T ) 2
3 , (36)

so that, in particular, R and Rρ on H are positive for T < α, vanishing only at T = α. We may obtain R
explicitly as

R = r0
2 (α + ρ0 − T − ρ) 4

3 − 3
10(α + ρ0 − T − ρ) 5

3 + r0
2 (α− ρ0 − T + ρ) 4

3 + 3
10(α− ρ0 − T + ρ) 5

3 (37)

and we may also get

ψ
H= 2

3 ln (α− T ), ψρ
H= 0. (38)

We now wish to calculate (28) at H and, in order to do that, we need to choose an adequate frame in the 
exterior. Since ψ = γ on H, then the holonomic frame B = {∂ϕ̃, ∂z̃, ∂ρ, ∂T } is such that

{∂T , ∂ρ, ∂z̃, ∂ϕ̃}|H =
{
eγ−ψ ∂

∂T
, eγ−ψ ∂

∂ρ
,�ξ1,

�ξ2

}∣∣∣∣
H

, (39)

where the last frame has the properties of (26). Proposition 2 then implies that we can carry out our 
computations in the holonomic frame with the choice �u = exp(γ − ψ) ∂

∂T as the vector field representing 
the observer. In this case, a computation reveals that the Sparling 3-form at H is given by

S+
T |H = −2dT ∧ dz̃ ∧ dφ̃

3(α− T ) 1
3

, S+
ρ |H = 4r0dT ∧ dz̃ ∧ dφ̃

9(α− T ) 2
3

, S+
z̃ |H = 0, S+

φ̃
|H = 0. (40)

If we define now H+ ⊂ H by the conditions z̃0 ≤ z̃ ≤ z̃0 + h, T0 ≤ T ≤ T1 with z̃0, T0, T1 and h constants, 
then one has
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∫
H+

S+
T = 2πh

(
(α− T1)

2
3 − (α− T0)

2
3

)
,

∫
H+

S+
ρ = 8πr0h

3

(
(α− T0)

1
3 − (α− T1)

1
3

)
. (41)

From this, we can compute the four real numbers which define the 4-momentum P (�u, H+) (see eq. (22)). 
Its components are

P (�u,H+) =
{

2πh
(
(α− T1)

2
3 − (α− T0)

2
3

)
,
8πr0h

3

(
(α− T0)

1
3 − (α− T1)

1
3

)
, 0, 0

}
. (42)

Also, we can compute the gravitational flux 1-form at the matching hypersurface according to Definition 1
and check whether the gravitational radiation is incoming or outgoing with respect to the radial direction 
∂/∂ρ. The result is

j(B, �u)
〈

∂

∂ρ

〉
= 2

3r0(α− T ) 5
3
. (43)

It is interesting to note that the components of P (�u, H+) have a constant sign, namely, PT < 0 and 
Pρ > 0. Comparing with the sign of (43), we deduce that the gravitational energy–momentum flux is always 
outgoing. Even though one can also observe from (40) that S+

T |H, S+
ρ |H diverge as T → α, the flux integrals 

remain finite. This last conclusion is in line with the conclusions of [20] using Weyl scalars.
As a consistency check, we can also carry out a similar computation for the interior, since the matching 

conditions entail H+ = H− = H and P (�u, H+) = P (�u, H−). To that end, we use the frame given by

B =
{
∂t,

1
b(t)∂r, ∂z, ∂ϕ

}
, (44)

because this is the frame which matches at H with the frame used for the exterior, namely

B = {∂T , ∂ρ, ∂z̃, ∂ϕ̃}|H =
{
∂t,

1
b(t)∂r, ∂z, ∂ϕ

}∣∣∣∣
H
. (45)

Under this frame choice, the Sparling 3-form in the interior is

S−
t = − 2

3(α− t)1/3
dt ∧ dz ∧ dφ + 4r

3(α− t)2/3
θ1 ∧ dz ∧ dφ,

S−
r = 4r

9(α− t)2/3
dt ∧ dz ∧ dφ− 4

3(α− t)1/3
θ1 ∧ dz ∧ dφ,

S−
z = 4r

3(α− t)2/3
dt ∧ θ1 ∧ dφ , S−

φ = 4r
3(α− t)2/3

dt ∧ θ1 ∧ dz , (46)

where

θ1 = (α− t)2/3dr. (47)

The gravitational flux 1-form in the interior is then given by

j

(
B,

∂

∂t

)
= ∗

g−(S−
t ) = 1

3r(α− t)2 (2(α− t)dr − 4rdt), (48)

from which we get

j

(
B,

∂

∂t

)〈
1

2

∂

∂r

〉
= 2

5 , (49)

(α− t) 3 3r(α− t) 3
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which agrees with (43) at the matching hypersurface. If we assume now that H− ⊂ H is defined by the 
conditions z0 ≤ z ≤ z0 + h, T0 ≤ t ≤ T1 with z0, T0, T1 and h constants, then one has∫

H−

S−
t = 2πh

(
(α− T1)

2
3 − (α− T0)

2
3

)
,

∫
H−

S−
r = 8πr0h

3

(
(α− T0)

1
3 − (α− T1)

1
3

)
,

∫
H−

S−
z = 0 ,

∫
H−

S−
φ = 0 . (50)

Again, we compute the four real numbers which define the 4-momentum P (�u, H−) (see eq. (22)). The result
is

P (�u,H−) =
{

2πh
(
(α− T1)

2
3 − (α− T0)

2
3

)
,
8πr0h

3

(
(α− T0)

1
3 − (α− T1)

1
3

)
, 0, 0

}
. (51)

Therefore, we can check explicitly that eqs. (42) and (51) are consistent with P (�u, H−) = P (�u, H+).
Since the interior is non-vacuum, we can also compute the Einstein 3-form with the result

Et = −4
3rdr ∧ dz ∧ dφ , Er = Ez = Eφ = 0. (52)

From (52), we easily deduce that dEt = 0 which implies that dSt = 0, so the matter energy–momentum 
current J(∂/∂t) and j (B, ∂/∂t) are independently conserved currents.

5.2.2. Bianchi I case
In this case, with equations (31)–(35), we may find [20]

R = r0
2 (α + ρ0 − T − ρ) 1

3 (β + ρ0 − T − ρ) − 3
4(α + ρ0 − T − ρ) 2

3 (β + ρ0 − T − ρ)

+ 9
20(α + ρ0 − T − ρ) 5

3

+ r0
2 (α− ρ0 − T + ρ) 1

3 (β − ρ0 − T + ρ) + 3
4(α− ρ0 − T + ρ) 2

3 (β − ρ0 − T + ρ)

− 9
20(α− ρ0 − T + ρ) 5

3 ,

as well as

ψ
H= γ

H= ln (β − T ) − 1
3 ln (α− T ). (53)

Using this information, we get

S+
T

∣∣
H = (β − T ) − 3(α− T )

3(α− T )4/3
dT ∧ dz̃ ∧ dφ̃ , S+

ρ

∣∣
H = 2r0

3(α− T ) − (β − T )
9(α− T )5/3

dT ∧ dz̃ ∧ dφ̃ , (54)

the remaining components being zero. We define H+ ⊂ H in a fashion similar as in subsection 5.2.1 and 
perform the following computations

∫
H+

S+
T = 2πh

[
β − T1

(α− T1)
1
3
− β − T0

(α− T0)
1
3

]
, (55)

∫
S+
ρ = 2

3πhr0
[
3(α− T0) + (β − T0)

(α− T0)2/3
− 3(α− T1) + (β − T1)

(α− T1)2/3

]
. (56)
H+
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Hence, we deduce that in this case:

P (�u,H+) = 2πh
{

β − T1

(α− T1)
1
3
− β − T0

(α− T0)
1
3
,
r0
3

[
3(α− T0) + (β − T0)

(α− T0)2/3
− 3(α− T1) + (β − T1)

(α− T1)2/3

]
, 0, 0

}
.

(57)

Using the gravitational flux 1-form at the matching hypersurface, we get

j(B, �u)
〈

∂

∂ρ

〉
= ∗

g+(S+
T )

〈
∂

∂ρ

〉
= (β − T ) − 3(α− T )

3r0(α− T ) 5
3 (T − β)

. (58)

One can carry out a similar computation from the interior, as we did in subsection 5.2.1, and use again the 
matching conditions to find that P (�u, H+) = P (�u, H−). Also, the case α = β reduces to the FLRW case 
of the previous section.

Differently from the FLRW case, here one has to distinguish two cases: (i) 0 < α < β, where the 
singularity is string-like along the axis of symmetry and ST , Sρ diverge as T → α and (ii) 0 < β < α, 
where the spacetime singularity is pancake-like and ST , Sρ are finite when T → β. In the first case, the 
covector P (�u, H+) has components such that PT > 0 and Pρ < 0, whereas in the second case PT < 0 and 
Pρ < 0. Eq. (58) tells us that the gravitational flux with respect to the radial direction is incoming in the 
first case and outgoing in the second case. In the first case, PT is ever increasing as the gravitational collapse 
evolves towards the singularity and, therefore, PT represents a net gain of gravitational energy whereas, 
in the second case PT , measures a net loss of gravitational energy. From this, we deduce that, in the first 
case, the gravitational collapse is enhanced by incoming gravitational radiation, whereas in the second case 
gravitational radiation is outgoing as the gravitational collapse progresses.

For the Bianchi I interior, a computation shows that (52) is also valid. Therefore, dEt = 0, which implies 
that dSt = 0, so again the matter energy–momentum current J(∂/∂t) and j (B, ∂/∂t) are independently 
conserved currents.

5.3. Spatially inhomogeneous interior

The following metric corresponds to an inhomogeneous solution of the Einstein equations of the Szekeres 
family with a dust source and a regular axis [17]:

g− = −dt⊗ dt + dr ⊗ dr +
(

1 − t2 + r2

α2

)2

dz ⊗ dz + r2dϕ⊗ dϕ, (59)

where α ∈ R \ {0}. As the previous two cases, one can also show that this metric is an interior to Einstein–
Rosen type metrics [2] and it is, thus, an interesting case to study by comparison with the spatially 
homogeneous cases.

In this case, the equality of the first fundamental forms on H gives

γ
H= ψ, R

H= r0

(
1 − t2 + r2

0
α2

)
, ψ

H= ln
(

1 − t2 + r2
0

α2

)
, γ,T

H= ψ,T , (60)

while the equality of the second fundamental forms gives

γ,ρ
H= ψ,ρ, ψ,ρ

H= −2r0
2

(
1 − t2 + r2

0
2

)−1

, R,ρ
H= 1 − t2 + 3r2

0
2 . (61)
α α α
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The solution to (77), which satisfies the matching conditions at H, is

R(T, ρ) = r0

(
1 − r2

0
α2

)
+
(

1 − 3r2
0

α2

)
(ρ− ρ0) −

1
6α2

(
(T + ρ− ρ0)3 − (T − ρ + ρ0)3

)
− r0

2α2

(
(T − ρ + ρ0)2 + (T + ρ− ρ0)2

)
. (62)

From the matching conditions ψ H= γ, we deduce that on H

{∂ρ, ∂ϕ̃, ∂z̃, ∂T }|H =
{
eγ−ψ ∂

∂ρ
,�ξ1,

�ξ2, e
γ−ψ ∂

∂T

}∣∣∣∣
H

, (63)

where the last frame has the properties of (26). As we did in subsections 5.2.1 and 5.2.2, we appeal to 
Proposition 2 to carry out our computations in the holonomic frame {∂T , ∂ρ, ∂ϕ̃, ∂z̃}, in order to compute 
(5) on H. In this case, we actually carry out the computation in all of the exterior with the result:

S+
T = −2T

α2 dT ∧ dz̃ ∧ dϕ̃ , S+
ρ = −2r0

α2 dT ∧ dz̃ ∧ dϕ̃ , S+
z̃ = S+

ϕ̃ = 0. (64)

Next, we define H+ ⊂ H and compute P (�u, H+) as we did before. The result is

P (�u,H+) =
{

4πh(T 2
0 − T 2

1 )
α2 ,

4πhr0
α2 (T0 − T1) , 0 , 0

}
. (65)

At the matching hypersurface, we have

j(B, �u) = ∗
g+(ST ) = − 2T

r0(r2
0 − α2 + T 2)dρ , j(B, �u)

〈
∂

∂ρ

〉
= − 2T

r0(r2
0 − α2 + T 2) , (66)

from which we deduce that the gravitational flux is outgoing through the matching hypersurface. This 
indicates that the gravitational collapse is not enhanced by the gravitational radiation at the matching 
hypersurface.

In this particular case, we also supply an analysis of the collapsing process in the interior. To that end, 
we start by repeating the computation in the interior and find out whether the result agrees with what we 
have just found. In this case, the matching conditions entail

{∂T , ∂ρ, ∂z̃, ∂ϕ̃}|H = {∂t,−∂r, ∂z, ∂ϕ}|H. (67)

Comparing with (63), we deduce that we can choose the frame {∂t, −∂r, ∂z, ∂ϕ} to carry out the computa-
tions in the interior. The result of these computations is

S−
t = − 2t

α2 dt ∧ dz ∧ dϕ , S−
r = −2r0

α2 dt ∧ dz ∧ dϕ , S−
z = S−

ϕ = 0. (68)

So, this result yields

P (�u,H+) = P (�u,H−) ,

as expected.
The gravitational flux 1-form in the interior is explicitly given by

j−(B, �u) = ∗
g−(St) = 2(rdt + tdr)

2 2 2 . (69)

r(−α + r + t )
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Fig. 1. The left panel shows a diagram of the spacetime structure of (59), as obtained in [17]. The vertical lines represent the 
geodesics along which the dust moves between singularities. The blue dashed lines represent the marginally trapped cylinders 
which are arcs of ellipses. On the right panel, a cut of the spacetime is depicted for r < α/

√
2. This figure is adapted from [2]. 

(For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

To check whether the gravitational collapse is enhanced or not in the interior we choose to compute the 
gravitational radiation flux in the apparent horizon and, to that end, we analyse the trapped surface forma-
tion in the interior. In particular, we look at null 2-surfaces generated by the null vectors �k(±) =

√
2

2 (∂t±∂r). 
We then take the vectors �e1 = ∂φ and �e2 = ∂z, generators of the 2-cylinders and calculate the expansions 
θ
(±)
AB = −k

(±)
a ebA∇be

a
B , where A, B = 1, 2, whose trace is denoted by θ(±). The condition θ(±) = 0, for the 

existence of a marginally trapped cylinder, is equivalent to

T : t2 ± 2tr + 3r2 = α2, (70)

for t2+r2 < α2. This means that, for a given α, there exists a positive t(±)
0 = ∓r+

√
α2 − 2r2, for r < α/

√
2, 

such that θ(±) = 0 and cylinders to the future of t(+)
0 are trapped.

To carry out a more detailed analysis, we pick the branch with a positive sign and introduce a new 
variable x through the definition x ≡ t + r. In terms of this new variable, condition (70) adopts the form 
x2 + 2r2 = α2, from which we conclude that in the (x, r) plane, condition (70) represents arcs of ellipses as 
shown in Fig. 1. We can now eliminate the variable t from (68). Next, using the map x =

√
α2 − 2r2, we 

compute the pullback of the Sparling 3-form to the marginally trapped cylinders which yields (here and in 
the following, we choose the positive sign in (70)):

S−
t =

2
(
α2 − 4r2)

α2
√
α2 − 2r2

dr ∧ dz ∧ dϕ , S−
r =

2
(
α2 − 2r

(√
α2 − 2r2 + 2r

))
α2

√
α2 − 2r2

dr ∧ dz ∧ dϕ , (71)

S−
z = S−

ϕ = 0. (72)

From these expressions, we can compute the gravitational flux 1-form on the marginally trapped cylinders 
using the standard definition, getting

j−(B, �u) = dr

r2(2r2 − α2)

(
α2 − 2r(2r +

√
α2 − 2r2)

)
. (73)

We can also compute the gravitational energy–momentum flux through these cylinders and we conclude 
that

∫
S−
t = 4πhr0

√
α2 − 2r2

0
α2 ,

∫
S−
r =

4πhr0
(√

α2 − 2r2
0 − r0

)
α2 . (74)
T T
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Since r0 < α/
√

2 we deduce, from the first integral, that the observer will measure a net positive emitted 
gravitational energy. However, looking at equation (73), we deduce that the gravitational flux with respect 
to ∂/∂r is incoming for 0 < r < r∗ and outgoing if r∗ < r < α/

√
3, where r∗ is given by

r∗ ≡ α

2

√
1 − 1√

3
.

Therefore, when the singularity is approached the radiation is incoming but when one gets towards the 
matching hypersurface the radiation is outgoing, consistently with the analysis carried out in the exterior. 
This means that the gravitational collapse will be enhanced by the gravitational radiation when the singu-
larity is approached (r < r∗) but not when r > r∗ (in particular, not in the matching hypersurface between 
the interior and the exterior).

To finish, we compute the Einstein 3-form in the interior obtaining

Et = − 4
α2 rdr ∧ dz ∧ dφ , Er = Ez = Eφ = 0. (75)

From this result, we deduce that dEt = 0 which entails dSt = 0, so in this case the matter energy–momentum 
current J−(∂/∂t) and j− (B, ∂/∂t) are also independently conserved currents in the interior.

6. Conclusions

We have considered a quasi-local measure of gravitational energy, using the Sparling 3-form and a geo-
metric construction adapted to spacetimes with a 2-dimensional isometry group. We have then studied the 
gravitational energy–momentum flux in models of gravitational collapse with cylindrical symmetry.

Taking advantage of the existence of the Killing vectors, we defined a frame adapted to our problem 
to compute the gravitational radiation at the boundary and at the interior of the collapsing body. The 
interiors we have analysed contain a dust fluid and are FLRW, Bianchi I and Szekeres solutions, whereas 
the exterior is always a vacuum Einstein–Rosen type solution containing gravitational waves. Our method 
shows that in the collapse modelled with the FLRW and inhomogeneous interiors, the gravitational radiation 
is always outgoing at the matching boundary of the collapsing body whereas, in the case of the Bianchi I, 
the gravitational radiation can be either outgoing or incoming at the boundary during the collapse.

We find that, in a model whose collapsing interior is a Bianchi I spatially homogeneous spacetime 
with a string like singularity, the collapse is being enhanced by the gravitational radiation coming from the 
exterior. In the other cases analysed, the gravitational radiation is outgoing from the matching hypersurface 
during the collapse process. Note that these considerations pertain only to the analysis at the matching 
hypersurface.

In the case of the inhomogeneous interior, we also carried out the analysis at the apparent horizon and 
found that, there, the gravitational collapse is enhanced towards its final phase, whereas it is not so at 
earlier stages. In this case, since the collapse is not enhanced at the matching hypersurface, we conclude 
that a gravitational energy–momentum flux is originated in the interior enhancing the collapse during its 
late evolution.

Our results show how a quasi-local measure of gravitational energy can be constructed in a geometrical 
way using the Sparling form, and can be applied to the problem of gravitational collapse of a fluid body 
having an exterior with gravitational waves.
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Appendix A

The EFEs for the cylindrically symmetric vacuum metric (31) are

0 = γ,TT − γ,ρρ − ψ2
,ρ + ψ2

,T (76)

0 = R,TT −R,ρρ (77)

0 = ψ,TT + R,T

R
ψ,T − ψ,ρρ −

R,ρ

R
ψ,ρ (78)

together with the two constraint equations

γ,ρ = 1
R2

,ρ −R2
,T

(RR,ρ(ψ2
,T + ψ2

,ρ) − 2RR,Tψ,Tψ,ρ + R,ρR,ρρ −R,TR,Tρ) (79)

γ,T = − 1
R2

,T −R2
,ρ

(RR,T (ψ2
,T + ψ2

,ρ) − 2RR,ρψ,Tψ,ρ + R,TR,ρρ −R,ρR,Tρ), (80)

where the commas denote differentiation.
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