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Motivated by black holes surrounded by accretion structures, we consider in this series static and axially
symmetric black holes “perturbed” gravitationally as being encircled by a thin disc or a ring. In previous
papers, we employed several different methods to detect, classify, and evaluate chaos which can occur, due
to the presence of the additional source, in timelike geodesic motion. Here we apply the Melnikov-integral
method, which is able to recognize how stable and unstable manifolds behave along the perturbed
homoclinic orbit. Since the method standardly works for systems with 1 degree of freedom, we first suggest
its modification applicable to 2 degrees of freedom (which is our case), starting from a suitable canonical
transformation of the corresponding Hamiltonian. The Melnikov function reveals that, after the
perturbation, the asymptotic manifolds tend to split and intersect, consistent with the chaos found by
other methods in previous papers.
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I. INTRODUCTION

In astrophysical models of accreting black holes, the
gravitational effect of the accreting material is usually
neglected, hence the space-time is being described by the
Kerr or Schwarzschild metric, corresponding to isolated
stationary black holes. Such an approximation is certainly
justified on the level of potential (i.e., metric), but in the
vicinity of the outer matter it may well fail for the field and
mainly for higher derivatives of the potential (space-time
curvature). One of the clear consequences of the perturba-
tion is that the geodesic dynamics loses complete integra-
bility (originally valid in the field of isolated stationary and
axisymmetric black holes [1]). Hence, one of the suitable
ways how to examine the deviation of space-time from the
Kerr or Schwarzschild ideal (and then possibly its obser-
vational implications) is to study the geodesic motion by
methods of dynamical-system theory [2,3].
In this series of papers, we have employed various

methods to detect, classify, and evaluate chaos occurring
in the geodesic motion in the above backgrounds, focusing
on those generated by a static black hole encircled by an
axially symmetric thin disc or ring. We will not repeat all
the results obtained, let us only refer to the last two papers,

where we compared the results with those obtained by a
Newtonian treatment of the corresponding pseudo-
Newtonian system [4], and where we compared the effect
of the Bach-Weyl ring on the Schwarzschild black hole
with that of the Majumdar-Papapetrou ring on the extreme
Reissner-Nordström black hole [5], and also tested one of
the curvature-based criteria for chaos.
The present paper slightly differs from the previous ones,

because it concerns an analytical method—that of the
Melnikov integral—and because it mainly focuses on the
method itself, namely, we suggest its modification suitable
for systems with 2 degrees of freedom (in a standard
version, the method applies to only 1 degree of freedom).
By applying the method to our specific system, we then
further support the results obtained by previous methods
and confirm that the geodesic chaos observed around
perturbed black holes is of homoclinic origin.
We start (Sec. II) by a minimal summary of the classical

Melnikov method. In Sec. III, Hamiltonians are written
down describing our pseudo-Newtonian and relativistic
geodesic systems. In Sec. III, we perform a canonical
transformation to suitable action-angle coordinates in order
to adapt theMelnikov method to our systems with 2 degrees
of freedom. Hyperbolic fixed points (unstable circular
orbits) and the attached homoclinic orbits of the systems
are found then in Sec. V and the corresponding Melnikov-
function integral is drawn up in Sec. VI. The latter is
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evaluated numerically in Sec. VII and checked against
the numerically integrated geodesic flow (portrayed on
Poincaré diagrams), including a few comments on the
Melnikov method as such. Finally, we summarize our
results and mention some literature in Sec. VIII.
Not to repeat the introduction on static and axially

symmetric space-times and specifically on sources we
consider here (Schwarzschild black hole, extreme
Reissner-Nordström black hole, Bach-Weyl ring, inverted
first Morgan-Morgan counterrotating disc, Majumdar-
Papapetrou ring), we ask the reader to see the previous
papers of this series, of which we explicitly refer to [4,5].
We basically use standard notation, with gμν being the

metric tensor (of −þþþ signature), M denoting mass of
the central black hole, M denoting mass of the exterior
source (ring or disc), and b its radius. Following the usual
notation, we call the Melnikov function Mðϑ0Þ. This will
not cause confusion (with the black-hole massM), because
the Melnikov function will always be written together with
the variable ϑ0 indicating the homoclinic orbit in terms of a
suitably defined angle (and it will anyway be clear from the
context).

A. Weyl solutions and their
Majumdar-Papapetrou subclass

Since we speak of motivation by accreting black holes, it
is appropriate to add a note concerning the sources we
employ. The background space-times we considered in
all previous papers of this series, as well as in the present
one, belong to the Weyl class which, in the Weyl cylin-
drical-type coordinates ðt; ρ; z;ϕÞ, can be described by the
metric

ds2 ¼ −e2νdt2 þ ρ2e−2νdϕ2 þ e2λ−2νðdρ2 þ dz2Þ; ð1Þ

where the unspecified functions ν and λ only depend on
cylindrical-type radius x1 ≡ ρ and the “vertical” linear
coordinate x2 ≡ z. These two coordinates cover, in an
isotropic manner, the meridional planes which are every-
where orthogonal to the Killing planes, spanned by the two
existing Killing symmetries (stationarity and axisymmetry)
and covered by the respective adapted coordinates t (time)
and ϕ (azimuth). The above metric holds provided that
the energy-momentum tensor satisfies T1

1 þ T2
2 ¼ 0. The

Einstein equations imply that the potential ν satisfies
the Laplace/Poisson equation, while λ can be obtained
from (an already known) ν by line integration.
In the first papers of this series, we considered, as a

limiting approximation of an accretion structure, the thin
ring described by the Bach-Weyl solution; this is a direct
counterpart of the ordinary homogeneous Newtonian ring.
Despite its potential ν being taken over from the Newtonian
treatment, in general relativity such a ring generates a
surprisingly weird geometry in its vicinity due to the
second metric function λ [6]. In order to check whether

the chaos induced in such a system is not just induced by
this undesired feature, we rather considered, in the last
paper [5], a different ring whose field does not suffer such a
pathology—the extremally charged, Majumdar-Papapetrou
ring (around an extreme Reissner-Nordström black hole)—
and compared the results with those obtained for the Bach-
Weyl ring. We already explained this point in the preceding
paper, but let us repeat that this is by no means to say that
black-hole accretion systems are extremally charged.
However, for the study of geodesic motion (i.e., that of
free uncharged particles), the chargedness of the sources is
actually an advantage, since their electrostatic field (in the
Majumdar-Papapetrou case having the same shape as the
gravitational one) can mimic the diluted matter likely
present in real systems.
More specifically, the Majumdar-Papapetrou solutions

form a subclass of the Weyl solutions determined by λ ¼ 0
and by the relation Φ ¼ eν between their electrostatic
potential Φ and the lapse function N ≡ eν. In other words,
their four-potential reads Aμ ¼ ð−eν; 0; 0; 0Þ in the Weyl
coordinates, which means that the electromagnetic-field
tensor has but two nontrivial components Fti ¼ eνν;i, so the
electrostatic invariant is

FμνFμν ¼ −2e2ν½ðν;ρÞ2 þ ðν;zÞ2�

and the nonzero components of the Ricci tensor Rμν

(¼8πTμν from Einstein’s equations) read

−Rt
t ¼ Rϕ

ϕ ¼ e2ν½ðν;ρÞ2 þ ðν;zÞ2�;
−Rρρ ¼ Rzz ¼ ðν;ρÞ2 − ðν;zÞ2; Rρz ¼ −2ν;ρν;z: ð2Þ

Any observer at rest, with four-velocity uμ ¼ ðe−ν; 0; 0; 0Þ,
measures the electric field Ei ¼ Fiβuβ ¼ −ν;i (and no
magnetic one) and the electromagnetic energy density

Tαβuαuβ¼
Rtt

8π
e−2ν¼−Rt

t

8π
¼e2ν

8π
½ðν;ρÞ2þðν;zÞ2�¼

1

8π
gijEiEj:

II. CLASSICAL MELNIKOV METHOD

The Melnikov method detects how a flow of a dynamical
system behaves, under perturbation, in the vicinity of its
homoclinic orbit. Homoclinic orbit is a (closed) trajectory
which has a hyperbolic (saddle) fixed point of the respec-
tive flow as both its past and future asymptote. Along such
an orbit, the tangent bundle of the configuration manifold
splits into stable and unstable invariant subbundles, span-
ning submanifolds in which the flow is contracting and
expanding, respectively (thus saddle point). In the unper-
turbed system, these submanifolds intersect “longitudi-
nally” (thus coincide) along the homoclinic orbit. If the
perturbation deforms them in such a way that they start to
intersect transversally along that orbit, it is a signature that
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the orbit has “broken up” into a chaotic layer (so-called
Smale-Birkhoff homoclinic theorem). The necessary theory
is explained in [7], for instance.
It is a salient feature of the geodesic flow in the space-

times of stationary black holes that it does contain hyper-
bolic fixed points: the latter are represented by unstable
periodic (spatially circular) geodesics. The attached homo-
clinic orbits are those which asymptotically “unwind” from
them, make a ballistic loop and “wind back” in a symmetric
manner.1 To imagine, intuitively, the stability properties at
the above circular orbits, one realizes that the time and
azimuthal directions are neutral since they are being “held”
by the respective two constants of geodesic motion—
energy and angular momentum with respect to infinity;
the latitudinal direction is stable since the particle shifted
off the equatorial plane is being pulled back; and, finally,
the radial direction is unstable—that is, the direction in
which the geodesic flow primarily diverges. Therefore, in
the stationary black-hole case, it is the ðr; urÞ plane of the
geodesic phase space which is interesting and which is thus
being mainly studied (used for plotting the Poincaré
diagrams, etc.).
We now return to a general dynamical system and

briefly sketch the standard version of the Melnikov
method. Consider a 1-degree-of-freedom system whose
Hamiltonian is at least a C2 function and can be
expressed as

Hðq; p; t; ϵÞ ¼ H0ðq; pÞ þ ϵH1ðq; p; tÞ þOðϵ2Þ; ð3Þ

where ½q; p� is a phase-space point, t is time, and ϵ > 0 is a
small parameter. In addition, let us assume it has the
following properties:

(i) H1 is a periodic function of t, with some period T;
(ii) H0 has a hyperbolic fixed point ½Q0; P0�, connected

to itself by a homoclinic orbit ½q0ðtÞ; p0ðtÞ�,
limt→�∞½q0ðtÞ; p0ðtÞ� ¼ ½Q0; P0�.

The picture is slightly changed after “switching on” the
perturbation H1, with a crucial question being whether
the asymptotic manifolds, originally coinciding along the
homoclinic orbit, now intersect transversally there. Exactly
this point is addressed by the Melnikov method, namely,
the method computes a distance between the (perturbed)
stable and unstable manifolds at the unperturbed homo-
clinic orbit. For a 1-degree-of-freedom system (system
confined to one position dimension), the phase space is
three dimensional and the unperturbed homoclinic mani-
fold (represented by the coinciding asymptotic manifolds)
is two dimensional, so one can take its normal and compute

the distance between intersections of that normal with the
perturbed asymptotic manifolds.
It has been shown (see, e.g., Wiggins [7] again) that in

the first order of perturbation (ϵ) the above distance is
proportional to a function which can be expressed as an
integral, along the unperturbed homoclinic orbit, of the
Poisson bracket of H0 with H1,

Mðt0Þ ¼
Z þ∞

−∞
fH0; H1gðq0ðtÞ; p0ðtÞ; t0 þ tÞdt; ð4Þ

where t0 is some chosen value of time. This function,
called Melnikov’s function, is periodic, has the same period
T as H1, and the transverse intersection of the perturbed
asymptotic manifolds happens when

Mðt0Þ ¼ 0 and
dM
dt0

ðt0Þ ≠ 0: ð5Þ

(It also holds that if M has no zeros, then the asymptotic
manifolds do not intersect at all.) Note that the second
condition is necessary, because it excludes the case where
M is zero identically, which would mean that the asymp-
totic manifolds keep coinciding (at the homoclinic orbit)
even after the perturbation.
To summarize the technique, one has to know the

Hamiltonian of a dynamical system, split it according to
Eq. (3), find the homoclinic orbit (if there exists one) by
solving the unperturbed equations of motion, compute the
Poisson bracket between H0 and H1, and integrate it along
the unperturbed homoclinic orbit. If the result satisfies the
above two conditions (has “simple zeros”), the perturbation
makes the dynamics chaotic close to the original separatrix.
If there are no simple zeros, the homoclinic chaos does
not occur.
Let us stress again that the above version of the Melnikov

method is restricted to systems with 1 degree of freedom,
whereas our system has 2 degrees of freedom. Actually, in
space-times with two commuting Killing symmetries,
stationarity and axial symmetry, one always has two
constants of geodesic motion, energy and axial angular
momentum, which determine (respectively) the time and
azimuthal components of four-momentum (in coordinates
adapted to those symmetries). The remaining freedom is
bound to the meridional planes, i.e., the surfaces every-
where orthogonal to both symmetries.2 Usually these are
covered by either cylindrical-type coordinates (e.g., of the
Weyl type, ρ and z) or spheroidal coordinates (e.g., of

1The homoclinic orbits are also often called separatrices,
because they typically separate two distinct types of evolution.
In the black-hole case, in particular, they separate the “eternal”
bound orbits from those which plunge into the horizon.

2It is not automatic that such planes exist as integral (global)
submanifolds of space-time, so actually one has to assume that.
Such a property is called orthogonal transitivity and is equivalent
to the situation when the sources only follow spatially circular
orbits (such space-times are thus called circular space-times)
with steady angular velocity, i.e., their motion points in a
direction given by a combination of the Killing vectors.
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the Schwarzschild type, r and θ). In order to adapt the
Melnikov method to our problem, we will reformulate it
using the approach suggested by [8]. However, we will
have to make a canonical transformation in order to be
able to put the Hamiltonians into the appropriate form.
Below, we first derive the original Hamiltonians for a
pseudo-Newtonian as well as relativistic formulation of our
problem.

III. HAMILTONIANS FOR PSEUDO-NEWTONIAN
AND RELATIVISTIC SYSTEMS

In this series of papers, we have been studying geodesic
dynamics in two types of black-hole space-times, deformed
by the presence of a gravitating ring or disc. Sincewe restrict
to static and axisymmetric (electro)vacuum situation, the
first metric function (potential) ν always superposes linearly.
For the second function λ this is not in general the case.
Actually, for the Schwarzschild black hole encircled by
some additional source,3 λ has to be found numerically.
Therefore, it is not easy to study these configurations
analytically, at least concerning those properties in which
λ is relevant. Since the geodesic dynamics is such a property
(λ is needed for Christoffel symbols), we will resort to its
pseudo-Newtonian treatment in those cases.On the contrary,
for the extreme Reissner-Nordström black hole encircled by
the Majumdar-Papapetrou ring (suggested for study in [5]),
λ ¼ 0, so the analytical approach is relatively easy. Let us
write down Hamiltonians for both cases.
In the Newtonian treatment, the Hamiltonian for a test

particle of mass m in the potential VBH of a “black hole”
plus that due to another source (νext) reads

Hðr; θ; piÞ ¼
p2

2m
þmVBHðrÞ þmνextðr; θÞ: ð6Þ

It can be decomposed as

Hðr; θ; piÞ ¼ H0ðr; θ; piÞ þ
M
M

H1ðr; θÞ ð7Þ

into an integrable part

H0ðr;θ;piÞ¼
1

2m

�
p2
rþ

1

r2

�
p2
θþ

p2
ϕ

sin2θ

��
þmVBHðrÞ ð8Þ

and the perturbation

H1ðr; θÞ ¼
mM
M

νextðr; θÞ; ð9Þ

where the small perturbation parameter (ϵ) is in our case
represented by the relative mass M=M of the exterior
source with respect to the black-hole massM. Note that the
exterior potential νext is proportional to M, so H1 actually
does not depend on M.
What remains to be decided is how to mimic the actual

black-hole field. Several different “pseudo-Newtonian”
potentials have been suggested for this purpose in the
literature. In one of our previous papers [4], we provided,
together with relevant references, a review of some of
them (including one we newly suggested), and tested
numerically how well the corresponding Keplerian-motion
dynamics resembles the exact relativistic one. Although
this comparison did not come out very well for the Nowak-
Wagoner potential

VBH ≡ VNW ¼ −
M
r

�
1 −

3M
r

þ 12M2

r2

�
; ð10Þ

we will adhere to the latter in the present paper, because for
this potential it is quite easy to find the homoclinic orbit
explicitly (and the result is quite similar to its exact
relativistic counterpart, see Fig. 1).
One more remark to the pseudo-Newtonian approach.

There necessarily arises the following question: which
coordinates covering the curved relativistic space-time are
adequate counterparts of Euclidean coordinates of the
(pseudo-)Newtonian description? To answer this question,
it is important to add that our exterior sourcewill be a ring or
a disc, natively described by the Weyl-type metric in Weyl-
type cylindrical coordinates. Since the issue of coordinates
was discussed in [4], we just follow our recommendation
from there: (i) take the black-hole pseudopotential, as
originally expressed in the Euclidean spherical coordinates
r, θ, and consider that it should imitate the black hole
described in the Schwarzschild coordinates; (ii) take the
potential of the disc or a ring, originally expressed in
Euclidean cylindrical coordinates (ρ, z), and realize that it
corresponds, in the relativistic description, to a disc or a ring
potential represented inWeyl coordinates (because in them it
is determined by the same equation, namely, the Laplace
one); hence, (iii) add these two potentials after transforming
the disc/ring potential to the spheroidal coordinates (r, θ)
according to the relations valid between the Weyl and the
Schwarzschild-type coordinates, i.e.,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
sin θ; z ¼ ðr −MÞ cos θ ð11Þ

or

ρ ¼ ðr −MÞ sin θ; z ¼ ðr −MÞ cos θ; ð12Þ

where the second form applies to the case involving extreme
black hole. (We will use the first transformation when
making superpositions with the Schwarzschild black hole,

3We have specifically been considering the Bach-Weyl ring,
the inverted first Morgan-Morgan disc, and one of the discs with
power-law density profile in this series.
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FIG. 1. Examples of homoclinic orbits (top row) of the Nowak-Wagoner pseudopotential, (middle row) of the Schwarzschild space-
time, and (bottom row) of the Reissner-Nordström space-time. In the left column, radial shapes of the effective potentials are drawn in
red with the homoclinic-orbit energy levels indicated in green, while in the right column, spatial shapes of these orbits are shown in
green (the unstable circular orbits which they have as both past and future asymptotes are also plotted in black, but are barely visible,
even though we only draw the −3π ≤ ϑ ≤ 3π part of the homoclinic orbits). For easy comparison, we select orbits with the same
maximal radius (apocenter) of r ¼ 17.6M; this corresponds to l ¼ 2.6M for Nowak-Wagoner, to l ¼ 3.669M for Schwarzschild, and
to l ¼ 3.091M for Reissner-Nordström.
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while the second transformation for superpositions with the
extreme Reissner-Nordström black hole.)
Now to the relativistic version of the geodesic problem. It

is described by the Hamiltonian

Hðr; θ; pαÞ ¼
1

2m
gμνðr; θÞpμpν; ð13Þ

which can be expanded, in the small parameter M=M, as

Hðr;θ;pαÞ

¼ 1

2m
pμpν

�
gμνðM¼ 0ÞþM

∂gμν
∂M ðM¼ 0ÞþOðM2Þ

�

¼H0ðr;θ;pαÞþ
M
M

H1ðr;θ;pαÞþOðM2Þ; ð14Þ

where, assuming that the metric is diagonal, one can take
(for every fixed μ and ν)

gμνðM ¼ 0Þ ¼ 1

gμνðM ¼ 0Þ ;

∂gμν
∂M ðM ¼ 0Þ ¼ − ∂gμν

∂M
ðgμνÞ2

ðM ¼ 0Þ: ð15Þ

For the Schwarzschild black hole, one has explicitly

H0ðr; θ; pαÞ ¼
1

2m

�
−

p2
t

1 − 2M
r

þ
�
1 −

2M
r

�
p2
r

þ 1

r2

�
p2
θ þ

p2
ϕ

sin2θ

��
; ð16Þ

while for the extreme Reissner-Nordström black hole

H0ðr; θ; pαÞ ¼
1

2m

�
−

p2
t

ð1 − M
r Þ2

þ
�
1 −

M
r

�
2

p2
r

þ 1

r2

�
p2
θ þ

p2
ϕ

sin2θ

��
: ð17Þ

Comparing the Hamiltonians (7) and (14) with the form
(3) necessary for the Melnikov method, it is clear that there
are at least two problems: we have more degrees of freedom
(d.o.f.) and our perturbations are not time dependent (of
course, we restrict to static and axially symmetric configu-
rations). In the following section, we fix this problem using
the method suggested by [8] and performing a suitable
canonical transformation to action-angle coordinates.

IV. MODIFICATION OF THE
MELNIKOV METHOD

Holmes and Marsden [8] considered, in Sec. VI of their
paper, the Hamiltonian

Hðq; p;ψ ; JÞ ¼ H0ðq; p; JÞ þ ϵH1ðq; p;ψ ; JÞ þOðϵ2Þ;
ð18Þ

which describes a system with 2 degrees of freedom, does
not depend explicitly on time, but one of its coordinate
variables (ψ) is periodic. The idea is to use this variable in
the role of time, with its conjugate momentum J playing
then the role of the Hamiltonian. Using the relation between
ψ and time t obtained from Hamilton equations, i.e., for the
unperturbed system,

_ψ ≔
dψ
dt

¼ ∂H0

∂J ðq; p; JÞ; ð19Þ

one can reparametrize the flow—and the homoclinic orbit,
in particular—by ψ.
Evolution of the perturbed system is confined to

some energy hypersurface Hðq; p;ψ ; JÞ ¼ const≕ h, and
if this equation is invertible, one can express from it
J ¼ Jðq; p;ψ ; hÞ. As Holmes and Marsden showed, in
terms of this new “Hamiltonian” the Melnikov function can
be rewritten as

Mðψ0Þ ¼
Z

∞

−∞

1

_ψðq0ðψÞ; p0ðψÞ; JÞ

×

�
H0;

H1

_ψ

�
ðq0ðψÞ; p0ðψÞ;ψ þ ψ0; JÞdψ ; ð20Þ

where q0ðψÞ; p0ðψÞ represent the homoclinic orbit for
some fixed value of J (the Poisson bracket is thus
computed in the variables q, p only). If, for a given value
of J, the system has only one homoclinic orbit, then
fixing J is equivalent to fixing the energy surface h ¼
H0ðq0ðψÞ; p0ðψÞ; JÞ.
The theorem about the occurrence of transverse inter-

sections of asymptotic manifolds now reads as follows [8]:
Let H0ðq; p; JÞ have, for some fixed value of J, a hyper-
bolic fixed point and a homoclinic orbit q0ðψÞ; p0ðψÞ
attached to it, and let _ψðq0ðψÞ; p0ðψÞ; JÞ > 0. Then, if
Mðψ0Þ has simple zeros, the Hamiltonian (18) (for ϵ > 0
sufficiently small) describes a system whose asymptotic
manifolds intersect transversally on the energy surface
H ¼ H0ðq0ðψÞ; p0ðψÞ; JÞ. Note that “energy” (h) in fact
means any integral of motion of the complete Hamiltonian;
in our case, it will be the energy E ¼ −pt and the azimuthal
angular momentum Lϕ ¼ pϕ.

4 Fixing these integrals of
motion and the homoclinic orbit (if it does exist for some
E and Lϕ) automatically fixes the value of J.

4The “axial” angular momentum (due to azimuthal motion) is
mostly being denoted by L and we also did it so in preceding
papers of this series. Here, however, we will also need to
introduce the second component of the angular momentum, so
it is natural to use the present notation.
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Unfortunately, it is not directly possible to apply the
above procedure to our perturbed black-hole case. Namely,
in that case, symmetrical in t and ϕ, the variables are
identified as q≡ r, p≡ pr, ψ ≡ θ, J ≡ pθ, where, how-
ever, pθ is not an integral of motion for the unperturbed
system (H0 depends on θ), so its conjugate coordinate θ
cannot play the role of the above ψ . Nevertheless, let us
show that it is possible to perform a canonical trans-
formation in the second pair of variables, ðθ; pθÞ → ðϑ; JϑÞ,
such that the new momentum Jϑ will be an integral of the
unperturbed motion (it will be an action-type variable), and
its conjugate angle coordinate ϑ can play the role of ψ from
the Holmes-Marsden method.
Looking for a suitable canonical transformation, we first

notice that all our unperturbed Hamiltonians, Eqs. (8), (16),
and (17), contain the same angular part, given by the
variables θ, pθ and representing the square of the total
angular momentum,

L2 ≔ p2
θ þ

p2
ϕ

sin2 θ
≡ p2

θ þ
L2
ϕ

sin2 θ
: ð21Þ

Since L is an integral of motion for our unperturbed
systems (because they are spherically symmetric), it is
possible to compute the action variable Jϑ using the
standard definition by integral

Jϑ ¼
1

2π

I
pθ dθ ¼ 1

π

Z
θmax

θmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L2
ϕ

sin2 θ

s
dθ ð22Þ

taken over the whole period between turning points given
by pθ ¼ 0 and reading, from Eq. (21),

θmin ¼ arcsin
Lϕ

L
; θmax ¼ π − θmin:

Now, since the Hamilton-Jacobi equation is separable for
the unperturbed system,5 i.e., the unperturbed action S can
be written as a sum S ¼PN

i¼1 Siðqi; p1;…; pNÞ (N is the
number of d.o.f.), one has pθ ¼ ∂Sθ∂θ and thus

Jϑ ¼
1

π

Z
θmax

θmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L2
ϕ

sin2 θ

s
dθ ¼ 1

π

Z
θmax

θmin

∂Sθ
∂θ ðθ; L; LϕÞdθ:

ð23Þ

The primitive function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L2
ϕ

sin2 θ

q
reads, up to a

constant,

Sθ ¼
Lϕ

2
arctan

L2 cos θ þ L2 − L2
ϕ

Lϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2sin2θ − L2

ϕ

q

þ Lϕ

2
arctan

L2 cos θ − L2 þ L2
ϕ

Lϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2sin2θ − L2

ϕ

q
− L arctan

L cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2sin2θ − L2

ϕ

q ; ð24Þ

so, taking the limits to the turning points, one obtains a
simple result

Jϑ ¼ 1

π
½Sθðθ → θmaxÞ − Sθðθ → θminÞ�

¼ 1

π

�
−
π

4
Lϕ −

π

4
Lϕ þ

π

2
L

�
−
1

π

�
π

4
Lϕ þ

π

4
Lϕ −

π

2
L

�
¼ L − Lϕ: ð25Þ

This is indeed an integral of the motion. In order to find its
conjugate coordinate ϑ, we can use the transformation
equation valid with the appropriate type of the canonical-
transformation generating function (namely, the one
depending on old coordinates and new momenta),

ϑ ¼ ∂Sθ
∂Jϑ ðθ; Lϕ; JϑÞ ¼

∂Sθ
∂L ðθ; Lϕ; LÞ: ð26Þ

(We are only transforming the coordinates θ and pθ, so it is
really sufficient to include just Sθ part of the action.)
Inverting the above equation, we can express θ as a function
of ϑ, which yields the final transformation relations

θ ¼ π − arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

L2
ϕ

L2

s
sinϑ

!
; L¼ Jϑ þLϕ: ð27Þ

Finally, we express our Hamiltonians in terms of these
new variables. For example, the unperturbed pseudo-
Newtonian Hamiltonian now takes the form

H0ðr; pr; Jϑ; LϕÞ ¼
1

2m

�
p2
r þ

ðJϑ þ LϕÞ2
r2

�
þmVNWðrÞ:

ð28Þ

The relativistic Hamiltonians are similar since they also

contain the angular-momentum part ðJϑþLϕÞ2
r2 . This is already

the desired form, namely, that of Eq. (18) with ϑ playing the
role of ψ , since (i) H0 now does not depend on the angular
coordinate (ϑ), while the angular momenta Jϑ and Lϕ are
treated on equal footing; and (ii) in H1, the variable θ has
been replaced by ϑ. The complete Hamiltonian then reads

5This even holds for motion of charged test particles in more
general, stationary black-hole space-times—see [1] for a recent
review.
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Hðr;pr;ϑ;JϑÞ¼H0ðr;pr;JϑÞþmH1ðr;pr;ϑ;JϑÞþOðϵ2Þ;
ð29Þ

where we have not listed, as variables, the additional
momenta pt ≡ −E and pϕ ≡ Lϕ since they are just
parameters.
Before concluding this section, note that the term ∂S

∂t in
the Hamiltonian’s canonical transformation

H̄ðq̄i; p̄i; tÞ ¼ Hðqi; pi; tÞ þ
∂Sðqi; p̄i; tÞ

∂t
only adds a constant and so we have omitted it in the above
Hamiltonians. Also note that, although Jϑ is an action
variable, the pair ðϑ; JϑÞ does not represent action-angle
coordinates, because H0 still depends on r. Nevertheless,
for our purposes it is sufficient that the Hamilton equations
in ðϑ; JϑÞ are equivalent to those expressed in ðθ; pθÞ.

V. HOMOCLINIC ORBITS

In order to compute the Melnikov integral, we first need
to find the integration path—the homoclinic orbit (separa-
trix) of the unperturbed system. For the black-hole space-
times we are interested in, such orbits have been studied in
several papers, of which we refer to [9] for a thorough and
clear description of what they are and what is their place
within the geodesic flow. The nature of the homoclinic orbit
is best seen from the effective-potential graph (see below):
it has the same energy (and angular momentum) as the
unstable circular orbit which it has as both the past and
future asymptote, and it thus represents, within orbits of a
given angular momentum, the boundary between the
eternal ones (bouncing in the potential valley) and those
which plunge to the center over the potential maximum
defining the circular orbit.
Let us start from the pseudo-Newtonian Schwarzschild

black hole as described by the Nowak-Wagoner potential.
Using the effective-potential method, we obtain the usual
equation for radial velocity,6

1

2
ðvrÞ2 ¼ E −

�
l2

2r2
−
M
r

�
1 −

3M
r

þ 12M2

r2

��
≕ E − VeffðrÞ ≥ 0; ð30Þ

where vr ¼ pr=m, E ≔ E=m, and l ≔ L=m. From a
smaller r-root of equation dVeff

dr ðrÞ ¼ 0, one finds the
hyperbolic fixed point represented by the unstable circular
orbit,

l2 ¼ M
r
ðr2 − 6Mrþ 36M2Þ

⇔ r ¼ R0 ¼
l2 þ 6M2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 þ 12M2l2 − 108M4

p

2M
:

ð31Þ

The corresponding energy is given by the value of Veff
calculated for the above l and r ¼ R0,

E0 ¼ VeffðR0Þ ¼ −
MðR2

0 − 12M2Þ
2R3

0

: ð32Þ

The homoclinic orbit has the same energy as the
hyperbolic-point orbit, therefore, for some chosen value
of l, it is found from Eq. (30) with E ¼ E0 and R0

introduced from above. The orbit has an apocenter
(rmax) where Veff again—at r > R0—reaches the energy
level E0; see Fig. 1.

7 We will derive explicit solution from
the equation for radial motion (30) rewritten in terms of the
reciprocal radius u ≔ 1

r: expressing

vr ≡ dr
dt

¼ dr
du

du
dϑ

dϑ
dt

¼ −l
du
dϑ

; ð33Þ

it takes the form

�
du
dϑ

�
2

¼ 2E þ 2Muð12M2u2 − 3Muþ 1Þ − u2l2

l2
: ð34Þ

The latter is specified to the desired homoclinic orbit by
substituting E ¼ E0; it can then be further rewritten as

�
du
dϑ

�
2

¼ 24M3

l2
ðu −U0Þ2ðu − umaxÞ;

umax ¼
l2 þ 6M2

24M3
− 2U0

¼ U0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 þ 12M2l2 − 108M4

p

24M3
; ð35Þ

where U0 ≔ 1=R0 and umax ≔ 1=rmax (needless to say,
umax is actually a minimum of u). Solving the last equation
for uðϑÞ, one obtains the homoclinic orbit,

6Since all our unperturbed fields are spherically symmetric,
geodesic motion in them is planar. Conventionally, one adjusts
the coordinates so that the orbit under consideration lies in the
“equatorial” plane (θ ¼ π=2). Then, among others, the angular
momentum has just the azimuthal component (l≡ lϕ). In
general (without adapting the coordinates in such a manner),
one should use l instead of lϕ, however. We better follow this
generic notation in this section, since after a perturbation the field
is no longer spherically symmetric and one has to distinguish
between l and lϕ in any case.

7Note that the homoclinic orbit of course exists for certain
range of l values only (we will specify this range later).
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u0ðϑÞ¼umaxþðU0−umaxÞtanh2
�
M
l
ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6MðU0−umaxÞ

p �
:

ð36Þ

Note that it is suitably parametrized: u0ð0Þ ¼ umax (the
turning point) and u0ðϑ → �∞Þ ¼ U0. The orbit is shown
in Fig. 1 in polar coordinates r ¼ 1

u and ϑ (it is planar, lying
in the equatorial plane of the configuration space).
Now to the relativistic case. For the Schwarzschild black

hole, one has the well-known radial equation�
du
dϑ

�
2

¼ E2 − V2
eff

l2
; V2

eff ¼ ð1 − 2MuÞð1þ l2u2Þ;

ð37Þ
and from there the hyperbolic-orbit parameters

l2 ¼ Mr2

r − 3M
⇔ r ¼ R0 ¼

l
2M

	
l −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 12M2

p 

;

E2
0 ¼

ðR0 − 2MÞ2
R0ðR0 − 3MÞ : ð38Þ

Fixing the energy to that of the unstable circular orbit,
E ¼ E0, the radial equation (37) can be rewritten as�

du
dϑ

�
2

¼ 2Mðu − U0Þ2ðu − umaxÞ;

umax ¼
1

2M
− 2U0 ¼ U0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 12M2

p

2Ml
; ð39Þ

which yields a solution similar to Eq. (36) for the
homoclinic orbit, just with different coefficients:

u0ðϑÞ ¼ umax þ ðU0 − umaxÞ tanh2
�
1

2
ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðU0 − umaxÞ

p �
:

ð40Þ

This result was already obtained by [10] (just with the
reciprocal radius chosen as x ≔ 2M=r) in their study of

chaos in the Schwarzschild background periodically per-
turbed by gravitational waves.8

For the extreme Reissner-Nordström black hole, the
radial equation reads�
du
dϑ

�
2

¼ E2 − V2
eff

l2
; V2

eff ¼ ð1 −MuÞ2ð1þ l2u2Þ;

ð41Þ
and yields, for the hyperbolic circular orbit,

l2 ¼ Mr2

r − 2M
⇔ r ¼ R0 ¼

l
2M

	
l −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 8M2

p 

;

E2
0 ¼

ðR0 −MÞ3
R2
0ðR0 − 2MÞ : ð42Þ

In contrast to the Schwarzschild case (37), the right-hand
side of Eq. (41) is a polynomial of the fourth order (in u)
which has three stationary points: one is the desired
unstable periodic orbit, another one is the usual stable
circular orbit, and the third one is located at the horizon
r ¼ M; there, Veff ¼ 0 and it is a minimum (the “circular
orbit” on the horizon however has pt ¼ 0, which implies
pi ¼ 0, so it actually corresponds to the lightlike horizon
generator). Like in the Schwarzschild case, we denote
U0 ≡ 1=R0, fix the energy by E0 ¼ VeffðR0Þ, and rewrite
the equation for the homoclinic orbit as�

du
dϑ

�
2

¼ M2ðu −U0Þ2ðu − umaxÞðumin − uÞ;

umax =min ¼
1

M
−U0 ∓

ffiffiffiffiffiffi
U0

M

r
; ð43Þ

umin denoting a “pericenter” now located inside the black
hole. We thus conclude that the homoclinic orbit is located
in the interval u ∈ ðumax; U0Þ or, equivalently, r ∈
ðU0; rminÞ (bear in mind that umax ≤ U0 ≤ umin). Solving
Eq. (43) with the condition that umax corresponds to the
outer turning point of the homoclinic orbit, we have

u0ðϑÞ ¼ U0 þ
2ðumin −U0ÞðU0 − umaxÞ

2U0 − umax − umin − ðumin − umaxÞ cosh ðMϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðumin − U0ÞðU0 − umaxÞ

p Þ : ð44Þ

We can again see that u0ðϑ → �∞Þ ¼ U0. The spatial representation (polar graph) of this homoclinic orbit is shown in
Fig. 1.

VI. CALCULATION OF THE MELNIKOV FUNCTION

Consider first that the unperturbed angular velocity _ψ has the same form in the pseudo-Newtonian as well as in the
relativistic case,

8In that case, the Melnikov method can be used in its original form. Reference [10] is also recommended for a thorough introduction
to the method.
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_ψðr; JÞ ¼ ∂H0

∂Jϑ ¼ Jϑ þ Lϕ

mr2
¼ l

r2
: ð45Þ

For the pseudo-Newtonian Hamiltonian (7)–(9), with the
exterior potential νext transformed to the spheroidal coor-
dinates according to Eq. (11), the Poisson brackets yield�
H0;

H1

_ψ

�
¼ ∂H0

∂r
∂
∂pr

�
H1

_ψ

�
−
∂H0

∂pr

∂
∂r
�
H1

_ψ

�

¼ −
pr

m

�
r2

l
∂H1

∂r þ 2H1

r
l

�
ð46Þ

and so the complete integrand of the Melnikov function
(20) reads

1

_ψ

�
H0;

H1

_ψ

�
¼ −vr

r3

l2

�
2H1 þ r

∂H1

∂r
�
: ð47Þ

Performing the canonical transformation H1ðr; θÞ →
H1ðr; L; ϑ; LϕÞ according to Eq. (27), inserting the homo-
clinic orbit (36) and the corresponding radial velocity as

r0ðϑÞ ¼
1

u0ðϑÞ
; vr0ðϑÞ ¼ −l

du0ðϑÞ
dϑ

;

and integration along the homoclinic orbit yields

Mðϑ0Þ ¼ −
Z

∞

−∞
vr0ðϑÞ

r30ðϑÞ
l2

�
2H1ðr0ðϑÞ; ϑþ ϑ0Þ

þ r0ðϑÞ
∂H1

∂r ðr0ðϑÞ; ϑþ ϑ0Þ
�
dϑ: ð48Þ

Note that the resulting Melnikov function Mðϑ0Þ depends,
besides ϑ0, on the fixed parameters L and Lϕ as well, but
we do not indicate this.
For the relativistic Hamiltonian (14) with Eq. (15) one

has the perturbation

H1 ¼ −
M
2m

� ∂gtt∂M
ðgttÞ2

E2 þ
∂grr∂M

ðgrrÞ2
p2
r þ

∂gθθ∂M
ðgθθÞ2

�
L2 −

L2
ϕ

sin2θ

�

þ
∂gϕϕ
∂M

ðgϕϕÞ2
L2
ϕ

�
; ð49Þ

where all the metric terms are evaluated at M ¼ 0. There,
one first transforms the metric due to the exterior sources,
usually presented in the Weyl coordinates, to the spheroidal
(Schwarzschild-type) ones, which means to use relations
(11) for the Bach-Weyl ring or the thin disc, while the
“extreme-type” relations (12) for the Majumdar-Papapetrou
ring. Then one performs the canonical transformation (27).
Before embarking on the Melnikov function, recall that it

provides the linear-in-perturbation part of the distance
between the asymptotic manifolds, i.e., the whole method

works in the OðM=MÞ order. Consequently, it is sufficient
to use the unperturbed metric when raising and lowering
indices of quantities which appear inside the Melnikov
function. In particular, we have pr ¼ grrðM ¼ 0Þprþ
OðMÞ, and the term containing ∂grr∂M would contribute as
OðM2Þ, so it is possible to neglect it. (Let us stress once
more that this neglect only concerns raising and lowering of
the indices.)
Now, the Poisson brackets taken in ðr; prÞ read�
H0;

H1

_ψ

�
¼∂H0

∂r
M
_ψ

∂grr
∂M

pr

m
−
grrpr

m

�
1

_ψ

∂H1

∂r þ2r
l
H1

�

¼−ur
r
l

�
r
∂H0

∂r
M∂grr∂M
grr

þr
∂H1

∂r þ2H1

�
; ð50Þ

so, substituting _ψ ¼ l=r2, the Melnikov integral is

Mðϑ0Þ ¼ −
Z

∞

−∞

�
ur

r3

l2

�
r
∂H0

∂r
M ∂grr∂M
grr

þ 2H1 þ r
∂H1

∂r
��

× ðr0ðϑÞ; ur0ðϑÞ; ϑþ ϑ0Þdϑ; ð51Þ

where the metric terms are again evaluated at M ¼ 0, the
dependence on the fixed parameters L and Lϕ is not
explicitly indicated, and, like in the previous case, the
homoclinic orbit is expressed in terms of u0ðϑÞ, where

r0ðϑÞ ¼
1

u0ðϑÞ
; ur0ðϑÞ ¼

dr0ðϑÞ
dτ

¼ −l
du0ðϑÞ
dϑ

;

pr ¼ mgrrðM ¼ 0Þur:

The Melnikov integrals (48) and (51) can now be
evaluated numerically. We shall see that they indeed have
simple zero points.

VII. NUMERICAL EVALUATION OF THE
MELNIKOV FUNCTION AND COMPARISON

WITH POINCARÉ DIAGRAMS

A. Behavior of the Melnikov function

The above-derived Melnikov functions can now be
evaluated numerically on the interval of their periodicity,
i.e., ð0; πÞ. Though they are rather complicated and cannot
be expressed in closed form, their plots are surprisingly
simple, namely, they mostly exhibit a sinelike behavior as
can be seen in Fig. 2: the plot (a) shows a typical behavior,
while the shape shown in plot (b) is much less frequent. In
any case, our experience is that, for our ring or disc
perturbations, the Melnikov function Mðϑ0Þ typically does
have simple zeros.
However, let us look first at how the Melnikov function

depends on free parameters. These are three—the total
angular momentum l, the ϕ component of the angular
momentum, lϕ (both on unit particle rest mass), and
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ring/disc radius b. The angular momentum l selects one
particular homoclinic orbit, but it is not an integral of
motion of the complete system. (The homoclinic orbit is
also fixed uniquely by energy E or by Jϑ, but we will use l.)
The dependence on l is very simple: the amplitude of

Mðϑ0Þ just increases with l ranging within its possible
interval (see below, Sec. VII B), as illustrated in Fig. 3
(left plot).
The effect of lϕ, with b and l fixed, is (also) the same for

all the source configurations we consider: Mðϑ0Þ has a
maximal amplitude for lϕ ¼ 0 and goes to zero when lϕ

approaches l, limlϕ→l Mðϑ0Þ ¼ 0 (since lϕ is a compo-
nent of the angular-momentum vector whose norm is l, we
have l ≥ lϕ ≥ 0, where, without loss of generality, we
consider lϕ ≥ 0). This is an expectable behavior: for
lϕ ¼ l the motion is confined to the equatorial plane fixed
by the disc/ring; this plane, however, is the plane of reflec-
tional symmetry and the complete system is independent of
ϑ, so the homoclinic orbit is preserved in that case (asymp-
totic manifolds stay coinciding along it). The dependences
of the Melnikov function on l and on lϕ are exemplified in
Fig. 3 for the pseudo-Newtonian Schwarzschild-type field
(for the relativistic fields we found very similar results).
The last free parameter is the ring/disc radius b. For large

increasing b, the amplitude ofMðϑ0Þ gradually decreases to
zero, because the perturbationH1 vanishes, limb→∞H1 ¼ 0
(a ring/disc which is infinitely far is not being felt).
In the opposite limit b → 0, the result depends on the

gravitational perturbation. The Majumdar-Papapetrou ring
behaves, in this limit, as the extreme Reissner-Nordström
black hole (see the previous paper by Polcar et al. [5]),
which again leads to limb→0Mðϑ0Þ ¼ 0. The potentials
νextðρ; zÞ of the Bach-Weyl ring and of the inverted first
Morgan-Morgan disc have the same limit,

lim
b→0

νBW;iMMðρ; zÞ ¼ −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ;

which corresponds to a point particle located at the origin.
One would thus expect preservation of the spherical
symmetry and, consequently, vanishing of the Melnikov
function. However, this is only the case if we perform the
transformation between cylindrical and spheroidal coordi-
nates using the Euclidean relations ρ ¼ r sin θ, z ¼ r cos θ;
if we use instead the “relativistic” relations (11), we get a
nonzero Mðϑ0Þ with typical sinelike behavior. (Note that
the relativistic counterpart of the above limit is the
Curzon-Chazy metric, which really does not represent a
simple, monopole particle.) We thus see that choosing the
right coordinate transformation can be rather tricky. In this
particular situation, we interpret the sources in a Newtonian
fashion which means that we assume the space to be flat,
and so the Euclidean transformation relation appears to be
more adequate. Finally, the dependence of the Melnikov
function on radius b can be seen in Fig. 4.
In Fig. 4, the blue curve in the right-hand side plot clearly

has discontinuity at two values of ϑ0 symmetrically placed

FIG. 2. Examples of the Melnikov-function behavior. (Left plot)Mðϑ0Þ for the extreme Reissner-Nordström black hole encircled by a
light Majumdar-Papapetrou (MP) ring at b ¼ 15M, for orbital parameters E ¼ 0.9428, l ¼ 3M, lϕ ¼ 0. (Right plot) Mðϑ0Þ for the
pseudo-Newtonian (Nowak-Wagoner) Schwarzschild-type potential encircled by a light inverted first Morgan-Morgan (MM) disc at
b ¼ 6M, for orbital parameters E ¼ −0.0510, l ¼ 2.5M, lϕ ¼ M. The sinelike shape is in general more frequent than the more
complicated behavior shown in the right plot.
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FIG. 4. Dependence of the Melnikov function on the external-source Weyl radius b. (Left plot) For the pseudo-Newtonian (Nowak-
Wagoner) Schwarzschild black hole surrounded by a light inverted first MM disc, with orbital parameters E ¼ −0.05098, l ¼ 2.5M,
lϕ ¼ M. Line coloring: b ¼ M, blue (almost coincides with the axis); b ¼ 5M, black; b ¼ 6M, red; b ¼ 7M, yellow; b ¼ 10M, light
blue; b ¼ 15M, green; b ¼ 25M, violet. (Right plot) Similar plot for the extreme Reissner-Nordström black hole surrounded by a light
MP ring, with orbital parameters E ¼ 0.9428, l ¼ 3M, lϕ ¼ M. Line coloring: b ¼ 0, brown (coincides with the axis); b ¼ 10M, blue;
b ¼ 12M, red; b ¼ 15M, green; b ¼ 20M, yellow. [Note that b ¼ 0 means that the MP-ring Weyl radius is the same as that of the
horizon, which for the extreme Reissner-Nordström (RN) black hole is a viable option.]

FIG. 3. Dependence of the Melnikov function on angular momentum, illustrated on the pseudo-Newtonian (Nowak-Wagoner)
Schwarzschild black hole surrounded by a light inverted first MM disc. (Left plot) Dependence ofMðϑ0Þ on total angular momentum l
for a disc at b ¼ 10M and for lϕ ¼ M. The wave-shape amplitude grows with increasing l; the shown curves correspond to l ¼ 2.5M,
2.55M, 2.6M, 2.7M, and 2.8M (the respective orbital energies are E ¼ −0.05098, −0.04521, −0.03839, −0.02167, −0.00068). (Right
plot) Dependence of Mðϑ0Þ on lϕ for a disc at b ¼ 20M, for l ¼ 2.6M and E ¼ −0.03839. The wave-shape amplitude increases with
decreasing lϕ (and fixed l); the shown curves correspond to lϕ ¼ 2.6M [this yields Mðϑ0Þ ¼ 0], 2.5M, 2.3M, 2M, 1.5M, 1M, and 0.
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with respect to π=2. The Melnikov function may really be
discontinuous, because the integration path (i.e., the
unperturbed homoclinic orbit) may intersect the source.
Actually, the source lies at θ ¼ π=2 (which corresponds
to ϑ ¼ 0, except for the Lϕ ¼ L case), while the homo-
clinic orbit goes over the whole range of ϑ, namely,
−∞ < ϑ < þ∞, which, according to Eq. (27), corresponds

to θ ranging from θmin ¼ arcsin Lϕ

L ð≤π=2Þ to θmax ¼
π − θminð≥π=2Þ (see Sec. IV). Therefore, the homoclinic
orbit necessarily intersects the plane of the external source
somewhere (if not entirely lying in it, which is the case
when Lϕ ¼ L). If the source lies (or extends) below the
apocenter of the homoclinic orbit, the integration may thus
cross it. Our sources are thin (ring or disc), so they are
singular locations of the corresponding perturbation (at
least at a certain level of metric derivative), and thus the
Melnikov function Mðϑ0Þ in such a case becomes discon-
tinuous for some values of ϑ0. However, it may still have
simple zeros and be continuous in their neighborhoods
(Fig. 5), so the homoclinic chaos should appear then as
well. This point would anyway be worth further study.

B. How probable is the chaotic regime?

The Melnikov-function simple zeros imply homoclinic
chaos, and we have seen that for our systems the homo-
clinic orbits really “break up,” but a different question is
how large the parameter space is for which the homoclinic
orbits at all exist. Looking first at the relations (31), (38),
and (42) for unstable circular orbits (hyperbolic fixed
points) R0, we see they all contain square roots of

arguments which are only non-negative for a sufficiently
large l. Another condition for the existence of the
homoclinic orbit is that there has to exist, for the value
of energy fixed by the unstable circular orbit, a turning
point at larger radius (this corresponds to the apocenter of
the homoclinic orbit, rmax). For our effective potentials this
condition is satisfied if

VeffðR0Þ ≤ lim
r→∞

VeffðrÞ:

This leads, on the contrary, to an upper bound for l,
because the potential maximum corresponding to the
unstable circular orbit must not be too high. Thus obtained
conditions lmin < l ≤ lmax can be translated in conditions
for the integrals of motion E and lϕ.
The summary of necessary conditions is actually clear

from the effective-potential behavior, as seen in Fig. 1:
the unperturbed potential must have a maximum between
the horizon and radial infinity, with a lower value than the
potential reaches asymptotically. By the particle energy E,
the geodesics in the unperturbed system can be divided into
three groups, independently of their angular momentum:
(1) E < Emin ≔ Eðl ¼ lminÞ: geodesics which always

end in the black hole and cannot reach infinity (or
come from there).

(2) E ∈ ðEmin; Emaxi: geodesics which end in the black
hole plus eternal bound orbits (these also cannot
exist at asymptotic radii).

(3) E > Emax ≔ Eðl¼ lmaxÞ ¼ Veffðr→∞Þ: geodesics
which can exist at infinite r as well as end in the

FIG. 5. Two examples of a discontinuity of the Melnikov function which may appear at the location of the external source. They have
been obtained for two different configurations of the extreme Reissner-Nordström black hole encircled by the MP ring. (See the main
text for a comment on this feature.)

FREE MOTION AROUND BLACK …. VI. THE MELNIKOV METHOD PHYS. REV. D 100, 103013 (2019)

103013-13



black hole; they may be reflected by the centrifugal
barrier from both sides.

We can expect that the same behavior occurs in the
perturbed system provided that the perturbation is small
enough. As expected, only the second of the above cases
leads to chaotic dynamics since only in that case are there
bound orbits separated from the ingoing/outgoing orbits by
a separatrix.
In terms of lϕ, the upper bound naturally reads

lϕ ≤ lmax, while the lower bound may not exist, because
lϕ < lmin does not mean that l ≤ lmin (l also has the other
component). We thus rather specify the intervals for which
the homoclinic orbit does exist in terms of l and E—see
Table I. To summarize, the Melnikov method implies, for
our black-hole systems, that on any hypersurface given by
E ∈ ðEmin; Emaxi and lϕ ∈ h0;lmaxÞ, there exist transverse
homoclinic orbits in the neighborhood of which the system
exhibits chaotic behavior.

C. Comparison with numerical geodesic dynamics

Although there is no reasonable doubt that the Melnikov
method really works, it is always interesting to compare
analytic “predictions” with computation of an actual flow
of a given system from particular initial conditions. We will
do so, numerically, for the specific case of the extreme
Reissner-Nordström black hole encircled by the Majumdar-
Papapetrou ring, on equatorial Poincaré diagrams drawn in
the ðr; urÞ axes. We fix the values of the basic integrals of
motion as E ¼ 0.942809 and l ¼ M; these values indeed
fall within the intervals given in Table I, so one can expect
that the numerical dynamics will involve chaotic layers
spreading from separatrices of the unperturbed system.
We start with the unperturbed system containing only the

extreme Reissner-Nordström black hole (the ring mass is
set to zero). We select an orbit close to the separatrix whose
Poincaré section is seen in the top row of Fig. 6; it is a
smooth curve as expected for a regular orbit (its detail close
to the hyperbolic circular orbit is added in the right plot of
the top column). After adding a Majumdar-Papapetrou ring
with mass M ¼ 0.01M, the Poincaré section changes to
that given in the bottom row of Fig. 6 (the neighborhood of
the hyperbolic circular orbit is again magnified in the right
plot). Figure 7 shows three more similar geodesics obtained
for the perturbed field. Obviously, they all densely fill a
certain area around the separatrix, confirming their chaotic
nature. On the other hand, farther from the separatrix, there
is no sign of chaotic dynamics. Actually, a typical Poincaré

section of a situation with accessible region open toward
the black hole contains, after weak perturbation, a central
regular island surrounded by sparse traces of those orbits
which plunge into the black hole, and with only a thin
chaotic layer having arisen from the separatrix lying
between the bound orbits and the plunging orbits. This
is in fact a common experience—for instance, a very
similar result was obtained by [11] when checking numeri-
cally the Melnikov-method predictions for quite a different
system, namely, a tow of space debris by a tether. It also
appears that the chaos which develops in our systems is
exclusively of the homoclinic origin.

D. Remarks on the Melnikov method

Let us stress again that the suggested canonical trans-
formation brings our problem to the form which can be
studied using the Holmes-Marsden modification of the
Melnikov method. This simple modification extends the
method from 1 to 2 degrees of freedom. There also exists a
generalization to systems with still more d.o.f. (see [12] or
Chap. 4 of [13]), but that is much more complicated. In
particular, it requires a complete solution of the variational
equation of the unperturbed system along the homoclinic
orbit, which is however not known analytically inmost cases.
There also exist other generalizations of the original

Melnikov method. One of them is to the case when
neither the unperturbed system nor the perturbation are
Hamiltonian in nature, which mainly involves dissipative
systems (drag forces, friction, etc.); see, e.g., [7] for
examples. Another variant is when the Melnikov integral
is taken along a heteroclinic orbit (which approaches
different hyperbolic-fixed-point orbits in the past and
future).
Finally, we briefly mention the previous usage of

Melnikov’s method for test motion in perturbed black-hole
fields. Moeckel [14] considered a geodesic flow in a central
field under the influence of an additional distant body and
showed it leads to the relativistic version of the classical Hill
problem. Bombelli and Calzetta [10] considered a periodic
perturbation (e.g., due to gravitational waves); in that case
the perturbed motion remains planar, so the authors did not
need to generalize the method to more d.o.f. Geodesic chaos
induced by perturbation of Schwarzschild due to gravita-
tional waveswas also studied in a similar manner by Letelier
and Vieira [15]; see also [16] where they analyzed, using the
Melnikov method, the periodically perturbed equatorial

TABLE I. Conditions for the existence of homoclinic orbits.

Potential Nowak-Wagoner pseudo-Newtonian Schwarzschild Extreme Reissner-Nordström

Interval of l ð ffiffiffi
6

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3

p
− 6

p
ÞM ≐ ð2.45; 2.80ÞM ð2 ffiffiffi

3
p

; 4ÞM ≐ ð3.46; 4.00ÞM ð2 ffiffiffi
2

p
; 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22þ 10

ffiffiffi
5

pp
ÞM ≐ ð2.83; 3.33ÞM

Interval of E ð− 1
18
; 0Þ ð2

3

ffiffiffi
2

p
; 1Þ ≐ ð0.94; 1.00ÞM ð3

8

ffiffiffi
6

p
; 1Þ ≐ ð0.92; 1.00ÞM
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FIG. 7. A detailed zoom (even more detailed on the right-hand side) of the equatorial Poincaré diagram of three different orbits (having
E ¼ 0.942809, l ¼ M) passing close to the unstable periodic orbit of the system of extreme RN black hole perturbed by the MP ring
with M ¼ 0.01M. The orbits are distinguished by colors.

FIG. 6. Equatorial Poincaré section of a typical orbit lying close to a separatrix of an extreme Reissner-Nordström black hole (of mass
M), (top row) before and (bottom row) after a perturbation due to a MP ring with massM ¼ 0.01M. The orbit has constants of motion
E ¼ 0.942809, l ¼ M. The left column shows the entire orbit, while the right column shows details of the vicinity of the corresponding
unstable circular orbit.
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motion around a center modeled by an inverse-square law
plus a quadrupolelike term.

VIII. CONCLUDING REMARKS

Motivated by theoretical interest as well as by accreting
black holes in astrophysics, we study the timelike geodesic
dynamics in space-times of static black holes perturbed by
a ring or a disc. In the present paper of the series, we used
the Melnikov method which detects whether, under per-
turbation, the homoclinic orbit of the originally fully
integrable system (geodesic flow in the field of the black
hole alone) breaks up into transversally intersecting stable
and unstable asymptotic manifolds, which implies the
occurrence of chaotic behavior. We considered, specifi-
cally, the Schwarzschild black hole simulated by the
Nowak-Wagoner pseudopotential and encircled by the
Bach-Weyl ring or the inverted first Morgan-Morgan disc,
and the extreme Reissner-Nordström black hole encircled
by the extremally charged Majumdar-Papapetrou ring.
In order for the Melnikov method to be applicable to our

systems (with 2 degrees of freedom), we made a canonical
transformation of the respective Hamiltonians, and used the
results of [8]. For all our systems the Melnikov function
was found to have simple zeros, which proves that the
homoclinic orbit really breaks up into a chaotic layer.
In agreement with the Melnikov theory, for a small

perturbation the chaotic layer only covers a small part of
some hypersurfaces in the phase space, given by values of
the integrals of motion for which the original homoclinic
orbit (separatrix) indeed exists. We verified the results
obtained by the Melnikov method numerically for the
electrovacuumMajumdar-Papapetrou space-time generated
by the extreme Reissner-Nordström black hole encircled by
the extremally charged ring. It can be expected that for
superpositions with the Schwarzschild black hole the
results would be similar.
The usage of canonical transformation for putting the

Hamiltonian into a form suitable for the Melnikov method
is not restricted to our particular systems—a similar
approach could actually be applied to a stationary central
field with any axially symmetric perturbation. Such a
technique is quite simple in comparison with the general-
izations of the Melnikov method to more d.o.f. considered
in the literature.
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