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Resonance cross-section formula for low-energy elastic scattering
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A simple analytical formula for partial wave cross section describing low-energy elastic scattering in the
presence of a shape resonance located near the elastic threshold is proposed. The formula is based on the
extension of the regularized method of analytical continuation in the coupling constant (RAC) recently proposed
by Horáček and co-workers. The RAC method provides the complex energies of resonances and virtual states
requiring as input information a set of real bound state energies of a perturbed system for which standard highly
sophisticated numerical codes may be employed. No scattering calculations are needed. These parameters define
the low-energy partial wave resonance scattering cross section. Cross sections are calculated for the 2s2εp 2P0

state of beryllium and 3s2εp 2P0 of magnesium. The results compare well with recently published data.
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I. INTRODUCTION

In many areas of physics, chemistry and biology low-
energy resonances play important roles; see, for example,
Refs. [1,2]. The cross sections and reaction rates in resonance
regions change rapidly and may attain large values. Calcula-
tion of such resonance cross sections is a very difficult task.
Resonances are defined as complex poles of the scattering
S-matrix located on the unphysical sheet [3]. Determination of
the resonance energy and in particular the resonance width is
a difficult problem even for small systems [4]. In recent years
we have developed a method of calculation of atomic and
molecular resonances which is based on the so-called method
of analytical continuation in the coupling constant (ACCC)
and whose great advantage is that it requires the calculation
of a set of real bound-state energies only. The ACCC method
is based on the following idea [5,6]: to a Hamiltonian H that
represents a system with no bound state but which supports a
shape resonance near the threshold, an attractive short-range
perturbation V multiplied by a real constant λ is added. At
increasing λ � λ0 the resonance transforms into a bound state.
Bound-state energies E = −κ2/2 are then determined for a
set of values λi and the energies analytically continued back
into the complex plane to the point λ = 0; for detail see
Refs. [4–6]. This approach is quite successful and has been
applied to the determination of resonance energies and widths
of the 2�g state of N−

2 [7], for the determination of resonance
energies and widths for organic molecules: glycine, alanine,
valine, and dimer of formic acid [8], and 2B2g shape resonance
of ethylene [9]. The method of regularized analytical continu-
ation (RAC) proposed by Horáček, Paidarová, and Čurík [10]
uses the same idea but is based on the determination of zeros
of the coupling function λ on the unphysical sheet [10]. This
method has been applied recently to the determination of the
2�g state of acetylene [11] and to atomic resonances [12].
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These works clearly demonstrate that from the knowledge
of the real coupling function λ(κ ) very precise values of
resonance parameters may be obtained.

In the present work we take one step further. Instead of
concentrating on the determination of resonance parameters
we will ask whether other physically important quantities can
be obtained from the knowledge of the real function λ(κ ).
In the following we will show, in the framework of potential
scattering theory, that the Jost function, partial phase shifts,
and cross section also can be obtained with a good accuracy
based on bound-state type physical parameters provided by
the RAC method. Since for the calculation of the coupling
function λ(κ ) highly accurate sophisticated numerical codes
may be employed, which treat for example the correlation en-
ergy very accurately, it is expected that the proposed approach
will provide the cross section with a high accuracy.

The resonance energy ER and width � are not directly
measurable. Experiments usually provide us with cross sec-
tions and the resonance parameters are determined indirectly
by fitting some analytical expressions like the Breit-Wigner
formula [3]. Formulas of this type work well for narrow reso-
nances far from the threshold. However, for broad resonances
(� � ER) near the threshold, this approach fails. It is the
purpose of this paper to find a model independent analytic
expression for the partial wave cross section which describes
correctly the low-energy resonance cross sections in terms
of the RAC physically relevant quantities. The simplest such
formula for p-wave scattering can be expressed solely in terms
of ER and �. In units of a2

0 we get

σ1(E ) = 12πE2

(E − ER)2 + �2

4

√
E2

R + �2

4 − ER

E2
R + �2

4 + 2E
(√

E2
R + �2

4 − ER
) .

(1)

This formula contains the known Breit-Wigner resonance
term multiplied by E2 in accordance with the threshold law.
The cross-section formula Eq. (1) is quite general and may
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represent a good description of any p-wave low-energy shape
resonance scattering process. Details and more accurate forms
are described in the text.

The proposed approach is applied to the 2s2εp 2P0 state of
beryllium and 3s2εp 2P0 of magnesium. The obtained cross
sections agree well with the recent published data.

It is important to mention that all calculated resonance
parameters as well as the cross section have been obtained ab
initio; no experimental data were used to fit the final results.

II. RAC METHOD

The RAC method [10] represents a very simple method for
the calculation of resonance energies and widths. The method
works as follows.

(1) An atom or molecule which does not form a stable
anion is perturbed by an attractive short-range interaction V
multiplied by a real constant λ

Hneutral → Hneutral + λV (2)

and bound-state energies EN
i of the neutral state are calculated

for a set of values λi � λ0.
(2) The same procedure is carried out for the ionic state

Hion → Hion + λV (3)

and bound-state energies EI
i are calculated for the same values

of λi.
(3) Both energies are subtracted

EI
i − EN

i = Ei = −κ2
i

2
(4)

forming the input data {κi, λi}. The set of data points {κi, λi} is
used to fit the function [10], which is appropriate for p-wave
scattering:

λ(κ ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ )

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
. (5)

The parameters to be fitted, namely α, β, δ, and λ0, are found
by minimizing the χ2 functional

χ2 = 1

N

N∑
i=1

|λ(κi ) − λi|2. (6)

Here N denotes the number of points used and κi and λi are
the input data, i = 1, . . . , N . As soon as a good fit is found
and the parameters α, β, δ determined the resonance energy
[i.e., the complex zero of the function λ(κ )] is given as

ER = β2 − α4

2
(7)

and the width �

� = 2βα2. (8)

The parameter δ determines the energy of a virtual state EV =
− 1

2δ4 . The virtual state represents here a cumulative effect of
other resonances and virtual states not explicitly included in
the expression.

Higher RAC approximations can be constructed in a simi-
lar manner [10]. For example, to incorporate two resonances

in the fit we can write

λ[4/2](κ ) = λ0
(κ2 + α2κ + α4 + β2)(κ2 + γ 2κ + γ 4 + δ2)

(α4 + β2)(γ 4 + δ2)(1 + μ2κ )(1 + μ2ε2κ )
,

(9)

where

μ2 = 1

1 + ε2

(
α2

α4 + β2
+ γ 2

γ 4 + δ2

)
(10)

and fit the data. All the RAC coupling functions λ(κ ) take
the form

λ[N,M](κ ) = λ0h(κ ), (11)

where h(0) = 1. Our experience, however, shows that the
[3/1] approximation, Eq. (5), usually represents the best com-
promise between accuracy and stability of the continuation
process. Contrary to the parameters α, β, and δ, which have
simple physical interpretation, the physical meaning of the pa-
rameter λ0 is less obvious. For a given perturbation potential
V (r), λ0 gives the strength of the perturbation which converts
the resonance into the zero energy bound state. λ0 depends on
the strength of the perturbation V and, of course, on the atomic
potential.

III. COUPLING CONSTANT FUNCTION FOR
SEPARABLE INTERACTION

It is very difficult to obtain closed analytical expressions
for the coupling function λ(κ ) even for the simplest realistic
local potentials and l = 0 scattering. Many shape resonances
in atomic and molecular physics are, however, generated by
the centrifugal force (l > 0). To the best of our knowledge no
analytical expressions of λ(κ ) are known for local realistic
potentials and for partial waves with l > 0. In this work
we will restrict ourselves to the p-wave problem l = 1 as
a representative of states with nonzero angular momentum.
Generalization to higher angular momenta is in principle
straightforward.

For separable potentials, however, the calculation of λ(κ )
is quite simple [13]. Separable potentials have been used
in nuclear and few-body physics with great success (see,
for example, Refs. [14,15]). Very often separable approxi-
mations are used in atomic and molecular physics for the
representation of nonlocal forces, for example, the exchange
interaction [16–19]. The separable potentials can approximate
any local potential and it is known that they represent very
good approximation to local forces in the limit of low energy.
The separable interactions are most easily studied in the mo-
mentum representation. The Lippmann-Schwinger equation
for the T -matrix in momentum representation reads [14]

Tl (k, k′, z) = Vl (k, k′)

+ 1

2π2

∫ ∞

0
dq q2Vl (k, q)

1

z − q2
Tl (q, k′, z)

(12)

and for one term separable interaction

Vl (k, k′) = −gl (k)τgl (k
′), (13)
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where τ is the potential strength, can easily be solved [14].
For example, for negative energies E = −κ2 we have

〈k|T (−κ2)|k′〉 = τgl (k)gl (k′)

1 − 2
π
τ

∫ ∞
0

p2gl (p)2

p2+κ2 d p
(14)

and for the positive energies the phase shifts in the l-partial
wave are given as

tan δl (k) = − τkg2
l (k)

1 − τ 2
π

P
∫ p2gl (p)2d p

p2−k2

, (15)

where P means the principal value integration. The T -matrix
has a pole at the bound-state energy, i.e., we can define a
coupling function μ(κ ) by the following equation:

1 − 2

π
μ(κ )

∫ ∞

0

p2gl (p)2

p2 + κ2
d p = 0, (16)

i.e.,

μ−1(κ ) = 2

π

∫ ∞

0

p2gl (p)2

p2 + κ2
d p. (17)

The coupling functions μ(κ ) for separable potentials were
studied in detail by Kok and van Haeringen [13] for l =
0 angular momentum. In the context of our problem it is
necessary to consider higher partial waves. It is well known
that the potentials gl (k) must satisfy the threshold law [3]

gl (k) ≈ kl , k → 0. (18)

A typical potential commonly used in nuclear physics is [20]

gl (p) = pl

(p2 + a2)
l+n

2

, (19)

where n is a positive integer. More complicated potentials can
be easily constructed. For example,

gl (p) = pl√
(p2 + a2)(p2 + b2)

(20)

was proposed for the s-wave case in [21] in order to study the
relation between the short- and long-range properties of the

interaction. For the potential Eq. (19) with n = 1 and l = 1,

g1(p) = p

p2 + a2
, (21)

we get

μ1(κ ) = 2
(a + κ )2

a + 2κ
, (22)

for n = 2,

g1(p) = p

(p2 + a2)3/2
, (23)

μ1(κ ) = 8a
(a + κ )3

a + 3κ
, (24)

and, for n = 3,

g1(p) = p

(p2 + a2)2
, (25)

μ1(κ ) = 16a3 (a + κ )4

a2 + 4aκ + κ2
, (26)

etc. The potential Eq. (20) for l = 1 gives the function μ1(κ )
in the form

μ1(κ ) = (a + b)
(a + κ )(b + κ )

ab + κ (a + b)
. (27)

More complicated expressions for the function μ(κ ) can be
obtained for sums of separable terms. For example, for two
separable terms

V = −|gα〉μα〈gα| − |gβ〉μβ〈gβ |, (28)

with

gα (p) = p

p2 + α2
, gβ (p) = p

p2 + β2
, (29)

we get

μα (κ ) = 4(α + β )2(α + κ )2[μβπ (β + 2κ ) − 4(β + κ )2]

π [μβπ (α − β )2(αβ + 2ακ + 2βκ ) − 4(α + β )2(β + κ )2(α + 2κ )]
. (30)

At this point it is important to mention that all the coupling
functions obtained for the above-mentioned potentials (and
many others not shown here) have exactly the same analytical
forms (ratios of two polynomials in κ) as the λ functions of the
RAC method used to describe scattering on local interactions.
This similarity suggests that a separable approximation may
be an excellent tool to describe the low-energy scattering even
for more complicated forces (local or nonlocal).

IV. JOST FUNCTION AND CROSS SECTION

The Hilbert-Schmidt (HS) eigenvalue problem is defined
as [3,4]

{
H0 + V

ηi(κ )

}
|ψi〉 = −κ2

2
|ψi〉 (31)

or using the bound-state Green function G0(κ ) as

G0(κ )V |ψi〉 = ηi(κ )|ψi〉. (32)

The HS eigenvalues and eigenfunctions (also called Sturmi-
ans) are of great physical significance. For example, the Jost
function is given in terms of HS eigenvalues as [3,4]

f (k) = �i(1 − ηi(k)). (33)

Let us assume that the resonance is described by a separa-
ble potential of strength τ

V = −|g〉τ 〈g|. (34)

The HS eigenvalue η(κ ) follows from

G0(κ )|g〉τ 〈g|φ〉 = η(κ )|φ〉, (35)
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where G0(κ ) is the free particle Green function and the
bound-state energy E = − κ2

2 . Let us formulate the one term
separable RAC problem as follows:

G0(κ )|g〉[τ + λ(κ )]〈g|ψ〉 = |ψ〉. (36)

Comparing Eqs. (35) and (36) we find that

τ + λ(κ ) = τ

η(κ )
, (37)

i.e.,

η(κ ) = τ

τ + λ(κ )
. (38)

In the case of separable potential with one term there exists
only one eigenvalue. This allows us to write the Jost function
in terms of η(κ ) as (k = iκ)

f (k) = 1 − η(−ik). (39)

In terms of λ(κ )

f (k) = λ(−ik)

τ + λ(−ik)
(40)

or in terms of the h(κ ) functions, Eq. (11),

f (k) = ξh(−ik)

1 + ξh(−ik)
, (41)

where ξ = λ0
τ

represents the strength of the perturbation rela-
tive to the strengths of the potential generating the resonance.

This is a very important relation putting in connecting the
Jost function f (k) with the coupling function λ(κ ) evaluated

at complex κ = −ik. From the relation

f (k) = | f (k)|e−δ(k) (42)

we can determine the phase shifts in terms of λ(κ ) = λ0h(κ )

tan δ(k) = Im{h(−ik)}
ξ Re{h(−ik)} + |h(−ik)|2 . (43)

Using λ(κ ) in the form Eq. (5) we get

tan δ(k) = 2α2k3[1 + δ2(ωδ2 + 2α2)]

D(k) + ξF (k)
, (44)

where

D(k) = ω2 + k2[4α4 + ω2δ4 + 2α2δ2ω − ω] − k4δ2[2α2

+ωδ2], (45)

F (k) = ω2 + k2[ω2δ4 + 4α4 − 2ω] + k4[1 + 4α4δ4 − 2ωδ4]

+ k6δ4, (46)

ω = α4 + β2. (47)

At the threshold k → 0

tan δ(k) ≈ 2α2k3[1 + δ2(ωδ2 + 2α2)]

ω2(1 + ξ )
(48)

in accordance with the threshold law for short-range potentials
for l = 1

δ(k) ≈ k3. (49)
In the case of resonances close to the threshold ξ is very small
and can be neglected in Eq. (44), yielding

tan δ1(k) = 2α2k3[1 + δ2(ωδ2 + 2α2)]

ω2 + k2[4α4 + ω2δ4 + 2α2δ2ω − ω] − k4δ2[2α2 + ωδ2]
. (50)

This formula contains only “physical” parameters α, β, and
δ. These parameters define the location of the S-matrix poles
on the unphysical sheet (the pair of resonance poles kr =
±β − iα2 and the virtual state pole kv = − i

δ2 ) and determine

the resonance energy ER = β2−α4

2 , the width � = 2βα2, and
the energy of the virtual state Ev = − 1

2δ4 . Once the phase
shifts are known [Eqs. (44) or (50)], based on the resonance
parameters provided by the RAC method, the partial wave
cross section

σl (k) = 4π

k2
(2l + 1) sin2 δl (k) (51)

can be calculated.

V. MODEL EXAMPLE

As a test we apply the proposed approach to potential
scattering. We choose the potential in the Gauss form

V (r) = −V0e−qr2
, (52)

with the values V0 = −0.52 a.u. and q = 0.10 a.u. This po-
tential has a p-wave resonance state with the energy ER =
0.01078378 a.u. and width � = 0.01188189 a.u. In electron

volts this corresponds to ER = 0.293 eV and � = 0.323 eV.
These parameters are very close to the recommended value
of the 2s2εp 2P0 state of beryllium [22] (ER = 0.323 eV and
� = 0.296 eV). Now we can proceed in two ways.

(1) To calculate the function λ(κ ) for some suitably chosen
perturbation potential and to get the resonance parameters as
well as the cross section.

(2) To fit the RAC cross-section formulas Eq. (1), Eq. (44),
or Eq. (50) to calculated or measured cross sections (phase
shifts) in order to determine the resonance parameters.

Let us start with the first possibility. For a given Hamilto-
nian a suitable perturbation has to be chosen, a set of bound-
state energies calculated, and the function λ(κ ) fitted. In the
present calculation we used the function λ(κ ) in its simplest
form, Eq. (5). Test bound-state data were calculated in the
range (0.1–1.86) eV using the Gauss potential Eq. (52) with
various values of the parameter q. As expected the results
obtained in this approximation depend on the choice of the
perturbation potential (here parameter q). This dependence
decreases at higher approximations. The best fit was obtained
with q = 0.085 yielding the resonance energy ER = 0.301 eV
and the width � = 0.317 eV in good agreement with the
exact value. The cross section obtained from this calculation
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FIG. 1. Model cross section calculated from the RAC parame-
ters. Black line: three-parameter formula Eq. (50); the red line: the
two-parameter formula Eq. (1). The line with crosses—the exact
cross section.

is shown in Fig. 1. The black line shows the cross section
obtained with Eq. (50) and the red curve that with the two-
parameter formula Eq. (1). The exact cross section is shown as
the line with crosses. In the resonance region all cross sections
nearly coincide. At higher energies they start to deviate as
expected. The cross section is asymmetric extended to higher
energies.

The formula Eq. (44) contains four parameters: parameters
α and β which determine the resonance energy, the parameter
δ which corresponds to a virtual state, and ξ which represents
the background. It is seen in the present case that the last
two parameters play a negligible role. This is demonstrated
in Fig. 1 by the blue line which corresponds to the choices
δ = 0 and ξ = 0. The two parameter cross section deviates
significantly from the four parameter one only at energies
above 2 eV. By neglecting the parameter δ in Eq. (44) we can
express the cross section in terms of resonance energy ER and
width �. In this way Eq. (1) has been obtained.

Let us discuss the second point—the inverse route. The
goal is to test how accurate the obtained resonance parameters
are when the cross section is known. By fitting the three
parameter formula Eq. (50), i.e., using tan δ1 in the form of
Eq. (50) to 10 data points in the energy range (0.0–1.86) eV,
we get ER = 0.292 eV and width � = 0.351 eV. The obtained
resonance energy differs by 1 meV from the exact one and
the width by 26 meV from the exact value. More accurate
values are obtained keeping all four parameters in the RAC
formula, i.e., using Eqs. (44) for the phase shift. At this level
of approximation we get ER = 0.294 eV and � = 0.324 eV
in excellent agreement with the exact data. The results both
for the energy as well as for the width differ by less than
1 meV from the exact values. It is expected that higher RAC
approximation will provide even better agreement with the
exact values. These results demonstrate the power of the RAC
method. Very precise resonance energies and widths may
be obtained using the RAC cross-section formulas provided
good cross-section data are available. The road from the cross
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FIG. 2. Fit to the model cross section by the RAC formula. Black
line: fit with formula Eq. (44); red line: fit using the three parameter
formula Eq. (50); green line: the two-parameter fit by Eq. (1). The
exact cross section is shown as the line with crosses.

section to the resonance parameters is straightforward. The
calculated cross sections are shown in Fig. 2. The black line
denotes the four-parameter RAC cross section Eq. (44), the
red line the three parameter cross section, Eq. (50), the green
line the two-parameter cross section Eq. (1), and crosses the
exact values. This approach provides us also with the phase
shifts; this means that the process of phase shift analysis is
simultaneously carried out. This allows us to test the RAC
approach on another model free method which derives the
resonance parameters from known phase shifts proposed by
Krasnopolsky et al. [23] based on the use of Padé approxima-
tion (PA). This method is based on the representation of the
partial wave S-matrix in the form [3]

Sl (k) = k2l+1 cot δl (k) + ik2l+1

k2l+1 cot δl (k) − ik2l+1
(53)

and on the fact that the function k2l+1 cot δl (k) is, for short-
range interaction, an analytical function of k2. In this method
the function γ (k) = k2l+1 cot δl (k) is represented in the form
of Padé approximation

γ (k) ≈ PN (k2)

QM (k2)
, (54)

where PN (k2) and QM (k2) are polynomials in k2. The reso-
nances are then obtained by solving the polynomial equation

PN (k2) − ik2l+1QM (k2) = 0. (55)

The calculated resonance parameters obtained in this way
are collected in Table I. The results are in excellent agreement
with the exact results as well as the RAC results. These results
show that at least, for simple local interactions of Gauss type,
the RAC method works excellently. The cross sections as
well as the resonance parameters are obtained with a high
accuracy. To check the performance of the RAC approach in
realistic situations we apply it in the next section to real atomic
resonances.
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TABLE I. Calculation of the resonance energy and width from
phase shifts generated by the Gauss potential, Eq. (52), by means
of the Padé approach [23]. Left column—order of the Padé
approximation.

Padé order Resonance energy (eV) Width (eV)

2/1 0.2848 0.3070
2/2 0.2958 0.3240
3/1 0.2934 0.3233
3/2 0.2935 0.3233
3/3 0.2935 0.3233
4/1 0.2935 0.3233
4/2 0.2935 0.3233
4/3 0.2935 0.3233
Exact 0.2934 0.3233

VI. APPLICATION TO 2s2εp 2P0 STATE OF BERYLLIUM

In this section we apply the formulas (1), (44), and (50)
to atoms which form low-energy shape resonances. As it is
well known, the direct scattering calculation at low energies
is a very difficult problem. As a prototype we select the
beryllium atom. The 2s2εp 2P0 state of beryllium has been
studied by many authors: see, for example, Refs. [24–34]. The
published data differ greatly in the resonance energy as well
as in the width: 0.10 eV < ER < 1.20 eV and 0.14 eV < � <

2.60 eV; see Table III in [34]. The resonance energy and width
recommended by Buckmann and Clark [22] is ER = 0.323 eV
and � = 0.296 eV. Recently, Čurík et al. [12] have applied
the RAC method to this state using the Gauss potential as the
perturbing potential. At the CCSD-T level they have obtained
the resonance energy ER = 0.323 eV and � = 0.316 eV in
excellent agreement with the recommended value [22]. More
accurate full CI (FCI) data yielded the resonance energy
ER = 0.282 eV and � = 0.316 eV. As already mentioned, the
RAC parameters allow us to calculate the cross section. The
CCSD-T cross section given by Eqs. (50) and (51) and the
RAC parameters α, β, δ obtained in [12] are shown in Fig. 3
as the solid black line.

The cross-section peaks at the energy 0.382 eV with the
full width at half maximum (FWHM) = 0.387 eV. The
FWHM is broader than the resonance width by about 70 meV
and the cross-section maximum is shifted from the resonance
energy to higher energies by 64 meV due to near presence
of the threshold. Sometimes the resonance energy is approxi-
mated by the value at which the phase shift equals δ(k) = π

2 .
Using the phase shifts in the form Eq. (50) with the obtained
RAC parameters we then arrive at the resonance energy ER =
0.432 eV far away from the recommended energy.

To the best of our knowledge no experimental cross-section
data have been published and hence no direct comparison of
the theory with the experiment is currently possible. There
are, however, calculations to which the present theory can
be compared. For example, the e-Be scattering and electronic
excitation was recently studied by Zatsarinny et al. [35]. They
calculated partial wave phase shifts by using the converged
coupled channel approach (CCC). The resonance energy of
the 2s2εp 2P0 state is estimated to be in a broad energy range
0.269–0.354 eV and the width 0.341–0.461 eV, depending on
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FIG. 3. P-wave cross sections for the 2s2εp 2P0 state of beryl-
lium. The black line: the three-parameter RAC cross section calcu-
lated at the CCSD-T level; the red line: the three-parameter RAC
cross section calculated at the full CI level; the violet line: the CCC
calculation [35].

how the resonance parameters are obtained. From the maxi-
mum of the cross section they estimate the resonance energy
ER = 0.320 eV at the CCC level and ER = 0.354 eV at the
BSR level. The width � = 0.461 eV or 0.434 eV, respectively.
From the phase shift analysis we obtain ER = 0.284 eV at
the CCC level and ER = 0.269 eV at the BSR level and � =
0.372 eV and 0.431 eV respectively. The published data allow
us to test the present approach. We have used their phase shifts
to estimate the resonance energy and the width by fitting the
RAC formulas.

The fits were performed again at four levels of approxi-
mation. (1) In Eq. (44) the parameters δ and ξ were set to
zero and only a two parameter fit was performed. Levels (2)
and (3) were two three-parameter fits. In the first, the fitting
parameters were α, β, and ξ , whereas, in the second, we
varied the parameters α, β, and δ. (4) The last fit was per-
formed with all four parameters α, β, δ, and ξ . The results
are shown in Table II. At all four levels of approximation we
can estimate the resonance energy to be ≈0.24 eV and width
≈0.30–0.31 eV.

When the phase shifts are available we can calculate to
resonance parameters by the PA approach [23]. The CCC

TABLE II. Calculation of the resonance energy and width of the
2s2εp 2P0 state of beryllium using the RAC formula for cross section
based on the data by Zatsarinny et al. [35]. (1) Two-parameter fit;
only the resonance parameters α and β are taken into account. (2)
Three-parameter fit; the parameter ξ is added. (3) Three-parameter
fit α, β, and δ. (4) All four parameters are included in the fit.

Parameters used Resonance energy (eV) Width (eV)

α and β 0.243 0.298
α, β, and ξ 0.244 0.310
α, β, and δ 0.244 0.310
α, β, δ, and ξ 0.243 0.298
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TABLE III. Calculation of the resonance energy and width of the
2s2εp 2P0 state of beryllium from phase shifts [35] by means of the
Padé approach [23]. Left column—order of the Padé approximation.

Padé order Resonance energy (eV) Width (eV)

2/1 0.2474 0.2955
2/2 0.2487 0.2906
3/1 0.2498 0.2882
3/2 0.2487 0.2934
3/3 0.2485 0.2984
4/1 0.2486 0.2964
4/2 0.2487 0.2936
4/3 0.2486 0.2940
4/4 0.2487 0.2935

resonance parameters obtained in this way are collected in
Table III. The resonance is very stable at changing the order
of Padé approximation and is remarkably close to the RAC
results. Data in Tables I and II confirm that the resonance
parameters obtained by the present RAC approach com-
pare well with those obtained by the use of the Padé
approximation—the difference is of the order of a few mil-
lielectronvolts.

The RAC predicted cross sections are shown in Fig. 3.
The CCC cross section is depicted by the violet line and
the CCSD-T cross section by the black line. In the case of
beryllium also full CI calculation is possible (details of the
bound state calculations are given in Ref. [12]). The resonance
energy is lower by 40 meV from the CCSD-T result, while
the resonance width does not change [12]. This is probably
the most accurate calculation available nowadays. The cross
section obtained at the FCI level is shown in Fig. 3 by the
red line. The FCI cross-section peaks at E = 359 meV and
is broader with FWHM = 459 meV than the CCSD-T cross
section. Both the CCC and FCI cross sections are very close
to each other. The resonance energy calculated at the FCI level
decreased by 40 meV from the CCSD result.

VII. APPLICATION TO THE 3s2εp 2P0 STATE OF
MAGNESIUM

In the case of the 3s2εp 2P0 state of magnesium the res-
onance is even closer to the threshold than that of beryl-
lium. The resonance parameters recommended by Buckmann
et al. [22] are ER = 0.15 ± 0.03 eV and � ≈ 0.16 ± 0.03 eV.
Contrary to the previous case of beryllium, these data are
based on measurement of Burrow et al. [25]. No cross-section
data are, however, provided in [25]. Our RAC calculations at
the CCSD-T level [12] yielded the resonance energy ER ≈
0.19 eV and the width � = 0.16 eV. The cross RAC section
calculated with three parameters (α, β, δ) is shown in Fig. 4
as the blue line. The cross section attains its maximum at E =
0.221 eV with the FWHM = 0.197 eV. In analogy with the
Be case we can expect that a full CI calculation would lower
the resonance energy by ≈40 meV, giving ER ≈ 0.15 eV
in excellent agreement with the experimental result. This
problem has been studied by Bartschat et al. [36]. Using their
phase shifts we can apply the RAC formulas to calculate the
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FIG. 4. P-wave cross sections for the 3s2εp 2P0 state of magne-
sium. The blue line: three-parameter RAC cross section; the red line:
two-parameter cross section both calculated at the CCSD-T level; the
line with crosses: the CCC calculation [36].

resonance parameters. The results are collected in Table IV.
The resonance energy ER ≈ 0.1 eV seems to be too low as
well as the width.

A comparison with the Padé method [23] gets similar re-
sult; see Table V. Both calculations indicate that the resonance
energy 0.1 eV as well as the width resulting from the CCC
calculation are too low in energy.

VIII. LIMITATIONS OF RAC METHOD

The RAC approach presented in this work is based on
the assumption that all involved forces are of short range.
In electron atom or electron molecule scattering, however,
the long-range polarization force − α

2r4 is always present.
Taking account of this long-range force greatly complicates
the present approach and we postpone the detail study of this
problem to our future work. Nevertheless, the agreement of
the RAC results with the published data indicates that the
influence of the polarization force on the resonance energy
and width is not essential, even though the Be and Mg atoms
have large polarizabilities.

TABLE IV. Calculation of resonance energy and width for the
3s2εp 2P0 state of magnesium using RAC formulas for cross section
based on the data by Bartschat et al. [36]. (1) Two-parameter fit;
only the resonance parameters α and β are taken into account.
(2) Three-parameter fit; the parameter ξ is added. (3) Three-
parameter fit with α, β, and δ. (4) All four parameters are included
in the fit. This calculation yields the resonance energy ER ≈ 0.10 eV
and � ≈ 0.12 eV.

Parameters used Resonance energy (eV) Width (eV)

α and β 0.104 0.115
α, β, and ξ 0.104 0.118
α, β, and δ 0.104 0.118
α, β, δ, and ξ 0.105 0.122
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J. HORÁČEK PHYSICAL REVIEW A 100, 032709 (2019)

TABLE V. Calculation of the resonance energy and width of the
3s2εp 2P0 state of magnesium from phase shifts [36] by means of the
Padé approach [23]. Left column—order of the Padé approximation.

Padé order Resonance energy (eV) Width (eV)

2/1 0.0855 0.1010
2/2 0.0845 0.1197
3/1 0.0855 0.0955
3/2 0.1103 0.1235
3/3 0.1103 0.1235
4/1 0.1099 0.1219
4/2 0.1068 0.1179
4/3 0.1070 0.1180
4/4 0.1070 0.1180
5/1 0.1061 0.1201
5/2 0.1062 0.1188
5/3 0.1062 0.1188
5/4 0.1062 0.1188
5/5 0.1062 0.1188

The second limitation of the RAC is related to the fact that
results are obtained in one partial wave only, whereas exper-
iments provide us usually with the total cross section. The
s-wave low-energy contribution to the total scattering cross
section is usually small in the p-wave resonance energy region
and probably can be approximated by simple expressions.

IX. CONCLUSIONS

A cross-section formula that accurately describes par-
tial wave low-energy elastic scattering suitable for systems

dominated by a shape resonance located close to the elastic
threshold was proposed based on very accurate bound-state
energy data. This formula establishes one to one relation
between the cross section and the resonance parameters, thus
making the resonance energy and resonance width directly
obtainable. The cross-section formula can be used in two
ways. Once the RAC resonance parameters are known, from
the bound-state data of the perturbed system, the cross section
can be calculated. On the other hand, if the experimental cross
section is given, the resonance parameters as well as the phase
shifts can be inferred.

Based on the RAC calculations the low-energy p-wave
cross sections for the scattering of electrons with beryllium
and magnesium atoms were proposed. Since to the best of
our knowledge there are no direct experimental measurements
of these cross sections, we compared our data with the CCC
calculations by Zatsarinny et al. [35] and Bartschatt [36]. The
comparison is shown in Figs. 3 and 4.

The cross sections discussed here are quite narrow but
present day experimental techniques with electron beams
with meV resolution may be capable of confirming our
predictions.
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