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High-energy collisions can occur for radially moving charged test particles in the extremal Reissner-
Nordström spacetime if one of the particles is fine-tuned and the collision point is taken close to the
horizon. This is an analogy of the Bañados-Silk-West (BSW) effect, first described for extremal Kerr black
holes. However, it differs significantly in terms of energy extraction: unlike for the original BSW process,
no unconditional upper bounds on mass and energy of an escaping test particle produced in the collision
were found for the charged version. We show that these results can be replicated for the motion of charged
test particles along the axis of a general extremal rotating electrovacuum black hole, also including the
Schnittman-type process with reflected fine-tuned particles. This brings the possibility of high-energy
extraction closer to astrophysical black holes, which can be fast spinning and have a small “Wald charge”
due to interaction with external magnetic fields. Nevertheless, we find numerous caveats that can make the
energy extraction unfeasible despite the lack of unconditional kinematic bounds.
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I. INTRODUCTION AND CONCLUSIONS

The collisional Penrose process [1,2] received a lot of
attention after Bañados, Silk, andWest (BSW) [3] described
that for collisions involving fine-tuned (“critical”) particles
around an extremal Kerr black hole, the center-of-mass
collision energy grows without bound, if we take the
collision point to the horizon radius. The original idea of
a black hole acting as a particle supercollider to energies
beyond the Planck scale turned out to be unfeasible due to
numerous caveats (see, e.g., [4] for an early criticism and
Sec. 3.1 in [5] for summary and references). However,
despite this, the “BSW effect” is interesting in many ways.
First, the BSW-type processes represent an intriguing
theoretical issue on their own due to their ubiquity and
their nature related to geometrical terms [6,7]. Second, the
investigation of theBSW-type phenomena led to the revision
of upper bounds on extracted energy from a black hole, in
particular when Schnittman [8] introduced a variant of the
process with (nearly) critical particles reflected by the

effective potential (see also [9]). Third, there is a variety
of other collision processes applicable even to subextremal
black holes; cf., for example, [10,11]. (In addition, in [12,13]
it was discussed that under relatively weak conditions,
processes with arbitrarily high collision energies can also
survive deviations from geodeticity, e.g., due to backreac-
tion.) The simpler effects for extremal black holes can be
seen as the best-case scenario for those other processes.
The original version of the BSW effect requires test

particles with specific sign and magnitude of angular
momentum; moreover, it is directly related to the Penrose
process, which only works inside the ergosphere. However,
an analogous effect is possible for radially moving
charged particles in the extremal Reissner-Nordström space-
time [14]. Since this is a nonrotating charged black hole
(without an ergosphere), the origin of the effect is purely
electrostatic in this case. Furthermore, for this electrostatic
variant it turned out that, in the test particle approximation,
there is no bound on the mass and the energy of an escaping
particle produced in the collision [15]. This is in sharp
contrast to the original “centrifugal” BSW effect, where
unconditional bounds exist [16] (cf. also [17,18]).
Astrophysical black holes are expected to be surrounded

by external magnetic fields, and it has been proven in
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various contexts [19,20] that a black hole immersed in an
external magnetic field can maintain a nonzero charge.
However, this so-called “Wald charge” will be very small,
and thus there is a good motivation to study generalizations
of the radial electrostatic BSW-type effect to black holes
with a smaller charge than in the extremal Reissner-
Nordström case.
There are two natural ways of generalization. First, one

can include effects of angularmomentumof the particles and
of the dragging from the rotation of the black hole and study
overlapping and transition between the electrostatic and the
centrifugal BSW-type effect. A detailed analysis of this way
of generalization was given in [21] (concerning only the
approach phase of the process). On the other hand, one can
keep the restriction to “purely radial” motion, which is
possible in any axially symmetric spacetime for particles
moving along the axis of symmetry. In the present paper, we
study this case and show that the interesting results for the
extremal Reissner-Nordström black hole can be replicated
even in models closer to astrophysical situations.
The paper is organized as follows. In Sec. II,we review the

basic features of electrogeodesic motion along the axis of
symmetry of a general stationary axially symmetric black-
hole spacetime, including the local definition of the critical
particles. We review why they cannot approach the horizon
for subextremal black holes and how they cause the
divergent behavior of the center-of-mass energy in the limit
of the collision point approaching the horizon radius. In
Sec. II C we recall that the trajectory of a critical particle is
approximated by an exponential relaxation toward the
horizon radius. Because of this, any collision event involv-
ing a critical particle must always happen at a radius greater
than the horizon radius. Therefore it makes sense to consider
also particles that behave approximately as critical at a given
collision radius (so-called nearly critical particles). In
Sec. II D we show that doubly fine-tuned critical particles with
infinite relaxation time exhibit an inverse power-law behavior
and thus approach the horizon radius much more slowly.
In Sec. III we study restrictions on the values of energy

and charge of critical particles in order for them to be able
to approach the radius of the degenerate horizon. Our
discussion is based, similarly to [21], on derivatives of a
certain effective potential. In the Appendix we show how
this approach can be rigorously related to the expansion
coefficients of the radial equation of motion (including the
relaxation time). In Sec. III B we give particular results for
the extremal Kerr-Newman spacetime, which show that for
small values of the black hole charge the critical particles
must be highly relativistic in order to be able to approach
the horizon radius.
In Sec. IV we deal with the energy extraction. First, we

briefly review how to rearrange the conservation laws to
prove that, for a 2 → 2 process, a collision of a critical
particle with an incoming “usual” (i.e., not fine-tuned)
particle necessarily leads to the production of a nearly

critical particle and an incoming usual particle. Then we
study whether the produced nearly critical particle can
escape and extract energy. We find that there are two
threshold values, one for mass and one for energy. If the
nearly critical particle is produced below/above the mass
threshold, it is initially outgoing/incoming. Below the
energy threshold the particle must be produced with such
a value of charge that the corresponding critical energy will
be lower than the actual energy, whereas above the thresh-
old the critical energy corresponding to the charge is above
the actual energy. These results qualitatively agree with the
special case [15]. Here we focus on comparing the BSW-
type process (collision with an incoming critical particle)
and the Schnittman process (collision with an outgoing,
reflected critical particle). For instance, a particle that is
initially incoming with energy above the critical energy will
fall into a black hole. Therefore, a particle that is produced
with mass above the threshold must have the energy also
above the respective threshold in order to avoid this. In
Sec. IV C we show that this may not be generally possible
by considering a toy model of interactions of microscopic
particles (cf. the “neutral mass” problem). However, this
problem occurs only for the BSW-type kinematics. Thus,
the Schnittman variant again fares better. The problem is
actually related to other two caveats for microscopic
particles spotted earlier [15,22]. As the energy of (nearly)
critical particles is proportional to their charge, the (nearly)
critical microscopic particles need to be highly relativistic
(i.e., the “energy feeding” problem), and also the produced
particle must have a higher charge than the initial one,
which limits the efficiency. Finally, we show that the energy
feeding problem for microscopic particles may be reduced
by 6 orders of magnitude if we go from the maximal value
of the black hole charge for the Reissner-Nordström
solution to some minimal value required for the processes
to be possible. Despite this, the critical microscopic
particles would still have to be highly relativistic, which
is in sharp contrast to the behavior for a small black hole
charge (“mega-BSWeffect”) seen for the equatorial electro-
geodesic case in [21]. Concluding, our analysis of those
details motivates further study of energy extraction from
black holes through the generalized collisional Penrose
process with charged particles.

II. MOTION AND COLLISIONS OF TEST
PARTICLES ALONG THE AXIS

We start from a general axially symmetric stationary
metric in the form

g ¼ −N2dt2 þ gφφðdφ − ωdtÞ2 þ grrdr2 þ gϑϑdϑ2: ð1Þ

The metric components gφφ; grr; gϑϑ and functions N, ω are
independent of t and φ; the metric is suitable to describe an
equilibrium state of a black hole. We consider also an
electromagnetic field with potential in the form
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A ¼ Atdtþ Aφdφ; ð2Þ

with At, Aφ independent of t and φ. We assume that the
outer black-hole horizon (where N ¼ 0) corresponds to
r ¼ rþ. For extremal black holes, we denote the position of
their degenerate horizon by r ¼ r0.

A. Equations of motion and effective potential

Let us consider the motion of charged test particles along
the axis of symmetry. The (semi)axis forms a two-dimen-
sional submanifold. We can use two integrals of motion
therein, which are related to the Killing vector ∂=∂t and to
the normalization of the momentum. The axial motion is
thus fully integrable. The first-order equations of motion
for a particle with rest mass m and charge q read

pt ¼ Eþ qAt

N2
; pr ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2grr
½ðEþ qAtÞ2 −m2N2�

s
:

ð3Þ

Here E has the interpretation of the energy of the particle
and σ ¼ �1 distinguishes the outward/inward radial
motion.
The motion can be forbidden in some intervals of r due

to the presence of the square root in the expression for pr;
we require ðprÞ2 > 0. Let us assume that the product N2grr
(which is equal to the volume element at the axis) is finite
and nonvanishing at the axis, even for N → 0. For photons,
we put m ¼ q ¼ 0, and their kinematics is thus described
by only one parameter E. Their motion is allowed for any
E ≠ 0. In order to have pt > 0, we restrict to E > 0.
On the other hand, the kinematics of massive particles is

characterized by two parameters, ε≡ E=m and q̃≡ q=m
(specific energy and specific charge). Denoting

W ¼ ðεþ q̃AtÞ2 − N2; ð4Þ

the condition for the motion to be allowed can be stated as
W ≥ 0. Furthermore, since N2 ≥ 0 outside of the black
hole, we can prescribe the decomposition of W,

W ¼ ðε − VþÞðε − V−Þ; ð5Þ

in terms of V� that read

V� ¼ −q̃At � N: ð6Þ

In order for W to be non-negative, it must hold either
ε ≥ Vþ or ε ≤ V−. However, only the first variant is
consistent with pt > 0. Thus, we define V ≡ Vþ and
consider only ε ≥ V as the condition for the motion to
be allowed. ε ¼ V is the condition for a turning point.

B. Critical particles and collision energy

Conditions ðprÞ2 > 0 and pt > 0 noted above have
further implications. Particles with Eþ qAH

t > 0 (AH
t

denotes At at rþ) can fall into the black hole. For
photons, this is the sole option as they have E > 0, q ¼ 0.
Thus, unlike in the equatorial case (see, e.g., [8,16]),
photons along the axis are not so interesting. Turning to
massive, charged particles, there is also a possibility for
εþ q̃AH

t < 0, which corresponds to particles that cannot
get close to the black hole, so it is also uninteresting for a
generalized BSW effect. However, we can consider mas-
sive, charged particles with εþ q̃AH

t ¼ 0. These are on the
verge between the previous cases, and hence they are
usually called critical particles.1 (To complement, particles
that are not critical are called usual in the literature.) Critical
particles appear to have a turning point at the horizon
radius, as seen, e.g., through the fact that their specific
energy, εcr, is equal to the value of the effective potential at
the horizon

εcr ¼ −q̃Atjr¼rþ ¼ Vjr¼rþ : ð7Þ

Nevertheless, their trajectories actually do not reach a
turning point, which we discuss in the next section(s).
Why are the critical particles interesting for collision
processes close to the horizon?
The formula for center-of-mass collision energy reads

(see, e.g., [10] for more details)

E2
CM ¼ m2

1 þm2
2 − 2gαβpα

ð1Þp
β
ð2Þ: ð8Þ

Plugging in the equations of axial motion (3), we get

E2
CM ¼ m2

1 þm2
2 þ 2

ðE1 þ q1AtÞðE2 þ q2AtÞ
N2

− σ1σ2
2

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þ q1AtÞ2 −m2

1N
2

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ q2AtÞ2 −m2

2N
2

q
: ð9Þ

In order to consider theN → 0 limit (i.e., the collision point
arbitrarily close to the horizon radius) in the case of a
collision involving a critical particle, we examine the
expansion of W around rþ with εþ q̃AH

t ¼ 0:

1Some authors (see, e.g., Ref. [3]) define the critical particles
in a different way, such that they are on the brink of being able to
reach the black hole from infinity. We follow the local definition
(cf. [23]), which is more general. Both notions become compat-
ible for extremal, asymptotically flat black hole spacetimes.
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W≐−
∂ðN2Þ
∂r

����
r¼rþ

ðr−rþÞ

þ
�
q̃2
�
∂At

∂r

�
2

−
1

2

∂
2ðN2Þ
∂r2

�����
r¼rþ

ðr−rþÞ2þ���: ð10Þ

The first radial derivative ofN2 at the horizon is proportional
to surface gravity of the horizon and is non-negative. Let us
first consider a generic, subextremal black hole (with nonzero
surface gravity).We see from (10) that for some r sufficiently
close to rþ, expression W will become negative due to the
linear term and, therefore, critical particles cannot approach
rþ for subextremal blackholes [note thatW appears under the
square root in (3); cf. (4)]. In order to consider collisions with
(precisely) critical particles arbitrarily close to the horizon
radius, we thus have to turn to extremal black holes (see,
e.g., [21,23,24] for more detailed analysis). Then we can use
N2 ¼ ðr − r0Þ2Ñ2, where Ñ2 can be (at least formally)
defined as

Ñ2 ≡X∞
n¼2

1

n!
∂
nðN2Þ
∂rn

ðr − r0Þn−2: ð11Þ

Evaluating (9) for a collision of a critical particle 1 and a usual
particle 2, we find that the leading order behavior in the
r → r0 limit is

E2
CM ≈

2

r − r0

(
E2 þ q2At

Ñ2

×

"
q1

∂At

∂r
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21

�
∂At

∂r

�
2

−m2
1Ñ

2

s #)�����
r¼r0;ϑ¼0

:

ð12Þ
The∓ sign corresponds to σ1σ2 ¼ �1. However, for the

usual particle one should consider only σ2 ¼ −1 (cf. [25]
for detailed reasoning). With this restriction, the ∓ sign
means just σ1 ¼∓1. The scenario with incoming particle 1
(upper sign, σ1 ¼ −1) was first described by Bañados, Silk,
and West for the extremal Kerr case in [3] and was
generalized to charged particles in [14]. The collision
process with an outgoing critical particle (σ1 ¼ þ1) was
introduced by Schnittman [8] in a numerical study focused
again on uncharged particles in the extremal Kerr space-
time. (Analytical treatment of the Schnittman process was
considered, e.g., in [26,27].)

C. Motion toward r0 and nearly critical particles

We have seen that for critical particles the center-of-mass
collision energy with an usual particle diverges in the
limit r → r0. However, the energy attainable in such a
thought experiment is always finite, although unbounded,
because critical particles are not able to reach r0 in a finite
proper time. To demonstrate this, let us expand the equation

of radial motion (3) near the radius of the degenerate
horizon,

pr

m
≡ dr

dτ
≐ −ðr − r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Ñ2g̃rr

∂
2W
∂r2

s �����
r¼r0

þ � � � : ð13Þ

We denoted

g̃rr ≡ N2grr
Ñ2

: ð14Þ

Then the approximate solution valid for late proper times is
an exponential “relaxation” toward r0,

r ≐ r0

�
1þ exp

�
−

τ

τrelax

��
þ � � � ; ð15Þ

1

τrelax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Ñ2g̃rr

∂
2W
∂r2

s �����
r¼r0

: ð16Þ

Since no critical particle can ever reach r0, the collision
with another particle can only happen at some radius
rC > r0. Because of this, the difference between usual
and critical particles gets blurred. Indeed, a usual particle
with energy very close to the critical energy will effectively
behave as a critical particle at some radius rC close to r0
provided that ����1 − ε

εcr

���� ∼
�
rC
r0

− 1

�
: ð17Þ

Such particles are called nearly critical.
Nearly critical particles with ε < εcr cannot fall into the

black hole, and they have a turning point at some radius
smaller than rC. Thus, it makes sense to consider also the
outgoing nearly critical particles. Furthermore, if the turn-
ing point is much closer to r0 than the desired collision
point rC or, more precisely, if

0 <

�
1 −

ε

εcr

�
≪

�
rC
r0

− 1

�
; ð18Þ

such outgoing nearly critical particles effectively behave as
precisely critical at rC. This is the motivation behind
including outgoing critical particles in the Schnittman
process.

D. Remarks on class II critical particles

One of the least studied aspects of the BSW-like
phenomena is what happens when relaxation time τrelax
in (16) is infinite, i.e., when the leading order of the
expansion of W in r − r0 for a critical particle is the third
one instead of the second. The critical particles with this
property are called the “class II” critical particles by Harada
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and Kimura [28] (“class I” standing for the generic critical
particles with finite τrelax).
For the class II critical particles the expansion of the

radial equation of motion (3) at r0 turns to

dr
dτ

≐ −ðr − r0Þ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6Ñ2g̃rr

∂
3W
∂r3

s �����
r¼r0

þ � � � : ð19Þ

This leads to the following approximate solution (which
describes outgoing critical particles for τ → −∞ and
ingoing ones for τ → ∞):

r ¼ r0 þ
1

τ2

�
24Ñ2g̃rr

∂
3W
∂r3

�����
r¼r0

þ � � � : ð20Þ

This type of trajectory was previously considered in the
equatorial geodesic case in [29] [be aware of typographic
errors in Eq. (91) therein]. Because of their inverse power-
law behavior, class II critical particles approach r0 much
more slowly than class I critical particles with their expo-
nential approach.

III. KINEMATIC RESTRICTIONS

A. General formulas for critical particles

Critical particles can, in principle, approach the horizon
radius only for extremal black holes. Whether their motion
toward r0 is really allowed will depend on their values of
charge q̃ as well as on the properties of a particular extremal
black hole spacetime.
One way to figure out the conditions for the approach to

be allowed is to look at the expansions of the radial
equation of motion. For class I critical particles the
relaxation time τrelax in (16) must be a real number, and
for class II critical particles the square root on the right-
hand side of (19) must also be real.
The other way is to consider the ε ≥ V condition. Let us

recall that the energy εcr of a critical particle is equal to the
value of V at r0 (7). Therefore, if the effective potential V
grows for r > r0, we will get εcr < V, and the motion of the
critical particle toward r0 is forbidden. Thus, to see whether
a critical particle can approach r0, we need to check
whether the first radial derivative of V at r0 is negative.
Furthermore, we should also look at the second derivative
of V at r0, since it will determine the trend of V, if the first
one is zero.
However, both approaches are equivalent. For critical

particles with pt > 0, it can be shown (see Appendix)
that

sgn
∂
2W
∂r2

����
r¼r0

¼ −sgn
∂V
∂r

����
r¼r0

: ð21Þ

An analogous statement [cf. (A7)] can be made for class II
critical particles,2 and for our present setup, it actually holds
that

∂
3W
∂r3

����
r¼r0;ϑ¼0

¼ −6
�
Ñ
∂
2V
∂r2

�����
r¼r0;ϑ¼0

: ð22Þ

Let us proceed with the analysis based on V. For an
extremal black hole, it is possible to write down an arbitrary
(nth) order derivative of V with respect to r as follows:

∂
nV
∂rn

¼ −q̃
∂
nAt

∂rn
þ n

∂
n−1Ñ
∂rn−1

þ ðr − r0Þ
∂
nÑ
∂rn

: ð23Þ

At r0, this simplifies to

∂
nV
∂rn

����
r¼r0

¼
�
−q̃

∂
nAt

∂rn
þ n

∂
n−1Ñ
∂rn−1

�����
r¼r0;ϑ¼0

: ð24Þ

It is possible to solve for the value of q̃, for which this
expression becomes zero, and evaluate also the correspond-
ing energy of the critical particle using (7). In particular, for
n ¼ 1, we get

q̃II ¼
Ñ
∂At
∂r

����
r¼r0;ϑ¼0

; ð25Þ

and

εII ¼ −
ÑAt
∂At
∂r

����
r¼r0;ϑ¼0

: ð26Þ

If we denote

α≡ −
∂At
∂r

ÑAt

����
r¼r0;ϑ¼0

; ð27Þ

and assume α > 0 (this corresponds to a plausible choice of
gauge constant for At), we can state that class I critical
particles are allowed to approach r0, whenever αε > 1.
For class II critical particles, it holds αε ¼ 1. Plugging (25)
into (24) with n ¼ 2, we obtain

∂
2V
∂r2

����
r¼r0

¼
�
−Ñ

∂
2At

∂r2

∂At
∂r

þ 2
∂Ñ
∂r

�����
r¼r0;ϑ¼0

: ð28Þ

Class II critical particles are allowed to approach r0 if this
expression is, for a given spacetime, negative.

2Since Eqs. (19), (20), and (A7) are applicable also to the
equatorial case, they can be used to relate rigorously the results
about the second derivative of V in [21] (in Secs. IV E and V B) to
the kinematics of the class II critical particles.
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Let us note that for a particle of any kind moving at a
radius rC close to r0, the expansion of V to linear order can
be expressed as

V ¼ εcr þ ÑHð1 − αεcrÞðrC − r0Þ þ � � � : ð29Þ

Here εcrðq̃Þ is given by (7); if αεcrðq̃Þ > 1, the linear
coefficient is negative. However, for particles that behave as
nearly critical around rC, their actual energy ε is by
definition (17) close to the critical one. Therefore, we
can use αε > 1 also as a condition for the existence of
escape trajectories of nearly critical particles (unless αε is
very close to 1), which is discussed in Sec. IV B.

B. Results for the Kerr-Newman solution

For the Kerr-Newman solution with mass M, angular
momentum aM (convention a ≥ 0), and charge Q the
metric (1) reads

g ¼ −
ΔΣ
A

dt2 þA
Σ
sin2ϑ

�
dφ −

a
A

ð2Mr −Q2Þdt
�
2

þ Σ
Δ
dr2 þ Σdϑ2; ð30Þ

where

Δ ¼ r2 − 2Mrþ a2 þQ2;

Σ ¼ r2 þ a2cos2ϑ;

A ¼ ðr2 þ a2Þ2 − Δa2sin2ϑ: ð31Þ

In the extremal caseM2 ¼ Q2 þ a2, so Δ has a double root
at r0 ≡M. The electromagnetic potential is

A ¼ −
Qr
Σ

ðdt − asin2ϑdφÞ: ð32Þ

The effective potential for axial electrogeodesic motion
[as given in (4.7) in [30] ] reads

V ¼ q̃Qr
r2 þ a2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
r2 þ a2

r
: ð33Þ

Let us note that for a ¼ 0, Q2 ¼ M2, and q̃ ¼ sgnQ we
get V ≡ 1.
Particles moving along the axis of an extremal Kerr-

Newman black hole are critical if their specific energy and
charge are related by

εcr ¼
q̃Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q2 þ 2a2

: ð34Þ

In general, the first radial derivative of V at the
degenerate horizon is

∂V
∂r

����
r¼M

¼ −q̃
Q3

ðQ2 þ 2a2Þ2 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ 2a2
p : ð35Þ

It becomes zero for particles with the specific charge
given by

q̃II ¼
ðQ2 þ 2a2Þ32

Q3
; ð36Þ

and if these particles are critical, their specific energy is

εII ≡ 1

α
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ a2ÞðQ2 þ 2a2Þ

p
Q2

: ð37Þ

Class I critical particles are allowed to approach r ¼ M,
whenever αε > 1. For class II critical particles αε ¼ 1. Let
us note that α ≤ 1 for any Q and a. Therefore the condition
αε > 1 implies ε > 1 (i.e., E > m). No bound critical
particles can approach r ¼ M along the axis of the extremal
Kerr-Newman spacetime.3 Furthermore, we can see that
α ∼Q2. Thus, for Q very small, only highly relativistic
critical particles (ε ≫ 1) can approach r ¼ M along the
axis.4

The second derivative of V at r ¼ M is

∂
2V
∂r2

����
r¼M

¼ 2q̃Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p Q2 − 2a2

ðQ2 þ 2a2Þ3 −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
ðQ2 þ 2a2Þ32 :

ð38Þ

Inserting (36), or evaluating (28), we get

∂
2V
∂r2

����
r¼M

¼ −
4a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q2ðQ2 þ 2a2Þ32 : ð39Þ

This quantity is negative for a ≠ 0, and it blows up for
Q → 0. Thus, class II critical particles are allowed to
approach r ¼ M along the axis, except for the cases of
the extremal Kerr solution (where there are no critical
particles moving along the axis whatsoever) and of the
extremal Reissner-Nordström solution (where V becomes
constant for αε ¼ 1).

IV. ENERGY EXTRACTION

A. Application of conservation laws

Let us now explore, in a simple setup, the possibility of
energy extraction from black holes either by a BSW-type
process occurring between particles moving along the axis,

3This differs from the equatorial case; see [21].
4Similarly, looking at the boundary value for charge q̃II (36),

we see that only critical particles with jq̃j > 1 can approach
r ¼ M. And due to Q−3 dependence in (36), for jQj ≪ M, only
critical particles with jq̃j ≫ ε ≫ 1 can approach r ¼ M.
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or by its Schnittman variant. We shall consider a scenario in
which a (nearly) critical particle 1 collides with an incom-
ing usual particle 2 close to the horizon radius r0, they
interact, and two new particles, 3 and 4, are produced. We
impose the conservation of charge,

q1 þ q2 ¼ q3 þ q4; ð40Þ
and the conservation of (both components of) momentum
at the point of collision. The time component gives us the
conservation of energy

E1 þ E2 ¼ E3 þ E4: ð41Þ
In order to make the best use of the conservation of radial
momentum, we shall note that for usual particles near the
horizon, the following combination of the momentum
components cancels up to the first order in r − r0:

N2pt − σN
ffiffiffiffiffiffi
grr

p
pr ∼ ðr − r0Þ2; ð42Þ

whereas with the opposite sign

N2pt þ σN
ffiffiffiffiffiffi
grr

p
pr ≐ 2ðEþ qAH

t Þ þ � � � ð43Þ
contributes to the zeroth order. In contrast, for the critical
particles, or particles that behave as nearly critical around a
desired collision radius rC, both expressions are of the first
order in rC − r0,

N2pt � N
ffiffiffiffiffiffi
grr

p
pr ∼ ðrC − r0Þ: ð44Þ

To account consistently (at each order) for the effect of a
particle labeled i, which is not precisely critical, yet nearly
critical, we define a formal expansion:

Ecr − Ei ¼ Cði;1ÞðrC − r0Þ þ Cði;2ÞðrC − r0Þ2 þ � � � : ð45Þ
Now, let us sum the conservation laws for the time and

radial components of the momenta as follows:

N2ðpt
ð1Þ þ pt

ð2ÞÞ þ N
ffiffiffiffiffiffi
grr

p ðpr
ð1Þ þ pr

ð2ÞÞ
¼ N2ðpt

ð3Þ þ pt
ð4ÞÞ þ N

ffiffiffiffiffiffi
grr

p ðpr
ð3Þ þ pr

ð4ÞÞ: ð46Þ

Considering expansion of this formula in rC − r0 and using
(42), (43), and (44), we reach a conclusion (analogously to
[15,16]) that collision between a (nearly) critical particle 1
and an incoming (σ2 ¼ −1) usual particle 2 at a radius rC
close to r0 must necessarily lead to the production of an
incoming5 usual particle, to be denoted 4, and a nearly
critical particle, which we will label as 3.
Then, the leading (first) order of (46), divided by ÑH,

implies

αE1þσ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2E2

1−m2
1

q
¼αE3− C̃3þσ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαE3− C̃3Þ2−m2

3

q
:

ð47Þ

Here again σ1 ¼ −1 corresponds to the BSW-type proc-
ess, whereas σ1 ¼ þ1 to the Schnittman variant (and σ3 ¼
�1 to outgoing/incoming particle 3). Above we introduced

C̃3 ≡ Cð3;1Þ
ÑH

; ð48Þ

and, for simplification, we chose the particle 1 precisely
critical (E1 ¼ Ecr, and hence C̃1 ¼ 0), which means that we
are using the approximation (18) for the Schnittman process.
All the information about the spacetime coming into (47)

is carried by the parameter α [defined in (27)]. Furthermore,
if we denote the whole left-hand side of (47) as a new
parameter6

A1 ≡ αE1 þ σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2E2

1 −m2
1

q
; ð49Þ

this parameter will express all the dependence on the
properties of particle 1. Since we assumed pt > 0 and
particle 1 cannot bemassless, we canmake sure thatA1 > 0.
Because we absorbed the difference between the BSW-

type process and the Schnittman variant into the definition
of the parameter A1, the discussion of kinematic regimes in
the next section is the same for both. However, if we
consider a particular model process, a significant distinc-
tion may appear, as we discuss in Sec. IV C.

B. Kinematic regimes

Equation (47) enables us to determine whether and under
which circumstances particle 3 can escape and extract
energy from a black hole. Particle 4 necessarily falls into
the black hole, which is the essence of a Penrose process.
Let us note that particle 3 can actually be produced in four
different kinematic regimes, depending on the combination
of the sign of C̃3 and the sign variable σ3. Following the
classification in [15], we will refer to the regimes with
C3 > 0 as “þ,” C3 < 0 as “−,” σ3 ¼ þ1 as “OUT,” and
σ3 ¼ −1 as “IN.”
We analyze the different kinematic regimes from several

points of view. First, we should understand which combi-
nations are compatible with particle 3 escaping from the
vicinity of the black hole (see Fig. 1 for illustration). For
simplicity, let us assume a situation when effective potential
V for particle 3 is well approximated by a linear function
around rC (i.e., that αε3 is not very close to 1).

5See also [25] for a more detailed discussion on why it is
impossible to produce outgoing usual particles near the horizon.

6In order to keep the same letter for this quantity (introduced in
[16] for the vacuum case, and followed, e.g., by [15,18]), we use a
different font to distinguish it from the components of the
electromagnetic potential.
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By definition, C̃3 > 0 implies ε3 < εcr, and hence
ε3 < V (forbidden motion) at the horizon. Therefore, a
particle produced with C̃3 > 0 cannot fall into the black
hole, and even if it is initially incoming, it must reach a
turning point and turn to outgoing. Moreover, since it must
hold that ε3 > V at the radius rC where the particle is
produced, for such a particle the effective potential V must
be decreasing at r0 (i.e., αε3 > 1). Thus, we see that in
kinematic regimes OUTþ and INþ the local escape
condition is satisfied automatically.
On the other hand, particle 3 with C̃3 < 0 will have

ε3 > V both at the horizon and at the point where it is
produced (and also in between these points due to the
assumption of V being well approximated by a linear
function). Thus, if a particle 3 with C̃3 < 0 is not produced
as outgoing, itwill fall into the black hole. Furthermore, if the
effective potential V is growing at r0, i.e., αε3 < 1, particle 3
will have a turning point at some radius greater than rC and it
will not be able to escape even if it is produced as outgoing.
Therefore, in the IN− regime the escape is impossible and for
OUT− it depends on the trend of the effective potential V.
(These findings are summarized in Table I.)
Second, we should determine to what ranges of param-

eters of particle 3 do the different kinematic regimes
correspond. Then we can infer, whether the impossibility
of escape in the IN− regime leads to some bounds on
parameters of the escaping particles, and more specifically,
whether it does limit the efficiency of the collisional
Penrose process, which is defined as

η ¼ E3

E1 þ E2

: ð50Þ

Solving (47) to express C̃3 and σ3, we get

C̃3 ¼ αE3 −
1

2

�
A1 þ

m2
3

A1

�
; ð51Þ

σ3 ¼ sgn

�
A1 −

m2
3

A1

�
≡ sgnðA1 −m3Þ: ð52Þ

From the second equation we see that the value of
parameter A1 forms a threshold for m3. If the interaction
produces particle 3 with a mass above the threshold, the
particle must be incoming, if its mass is below the thresh-
old, it must be outgoing.
Turning to parameter C̃3 note that the solution (51)

satisfies the inequality

C̃3 ≤ αE3 −m3: ð53Þ
Therefore, if C̃3 > 0, we must have αε3 > 1, as we
anticipated because particles with ε < εcr can be produced
only if effective potential V is decreasing at r0. [In general,
one can see from (29), (45), and (48) that (53) is actually

cr

61.8

62

62.2

62.4

1 1.01 1.02 1.03 1.04 1.05
r r0

cr

3.96

3.97

3.98

3.99

4

1 1.01 1.02 1.03 1.04 1.05
r r0

FIG. 1. Effective potential V near the horizon radius r0 ¼ M of the extremal Kerr-Newman black hole with Q
M ¼ 1ffiffi

5
p ; a

M ¼ 2ffiffi
5

p .
The shading represents nearly critical particles; the varying height of the shaded areas illustrates the varying range of energies of
particles that behave as nearly critical at a given r. The red color corresponds to “þ” (C̃ > 0), blue to “−” (C̃ < 0). [See (45) and (48) for
the definition of C̃.] Left: For particles with q̃ ¼ 250, V is decreasing, and thus both signs of C̃ are allowed. Right: For q̃ ¼ 16, V is
increasing, and thus nearly critical particles can exist only with C̃ < 0. It can be seen that particles that behave as nearly critical at lower
values of r will get reflected by V at some higher values of r, and thus they cannot escape.

TABLE I. The four kinematic regimes for production of
particle 3.

σ3 ¼ þ1 σ3 ¼ −1

C̃3 > 0 OUTþ INþ
m3 < A1, E3 > μ m3 > A1, E3 > μ

Guaranteed to escape Guaranteed to escape

C̃3 ≤ 0 OUT− IN−
m3 < A1, E3 ≤ μ m3 > A1, E3 ≤ μ

Escapes if αE3 > m3 Falls inside the black hole
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the linear order of the expansion in rC − r0 of the
condition ε ≥ V.]
Let us denote the value of E3 for which C̃3 ¼ 0 as μ:

μ ¼ 1

2α

�
A1 þ

m2
3

A1

�
: ð54Þ

This quantity again represents a threshold. If particle 3 is
produced with E3 > μ, it must have such a value of
charge that Ecrðq3Þ > E3; if E3 < μ, it must hold that
Ecrðq3Þ < E3. [Here Ecrðq3Þ≡m3εcrðq3Þ; cf. (7).]
A summary of the results about the four kinematic regimes

is given in Table I. Let us note that these results resemble
those for the special case of the Reissner-Nordström solution
studied in [15]. In particular, there is still no unconditional
upper bound on the energy or mass of particle 3, in contrast
with the geodesic (equatorial) case [16,18]. (Such a pos-
sibility is often called the super-Penrose process.) However,
the impossibility of escape in the IN− regime means that
whenever particle 3 is produced with the mass above the
threshold A1, its energy also must be above the threshold μ
(which therefore acts as a lower bound on E3 in this case).
Conversely, whenever particle 3 is produced with E3 ≤ μ, it
must also havem3 < A1, otherwise it falls into theblackhole.
These requirements may not be compatible with the proper-
ties of a particular type of interaction that is responsible for
producing particle 3. This is the third aspect of the kinematic
regimes that needs to be examined. In Sec. IV C we consider
a toy model, where this limitation gets highlighted (the
“neutral mass” problem).
Before carrying out this discussion, let us further note

one interesting property of the OUT− regime. Condition
m3 < A1 (OUT) implies

αμ < A1 ð55Þ
due to (54). From definition (49), we can derive an upper
bound on A1. For the BSW-type process (σ1 ¼ −1), we get
A1 < αE1, whereas for the Schnittman variant (σ1 ¼ 1), it
is A1 < 2αE1. Combining with (55), we get μ < E1 for the
BSW-type effect and μ < 2E1 for the Schnittman one.
Using also the “−” condition E3 ≤ μ, we get E3 < E1 and
E3 < 2E1, respectively. Therefore, we see that E3 can never
exceed E1 in the OUT− regime for the BSW-type process
(preventing net energy extraction), whereas for the
Schnittman variant E3 > E1 is possible in this regime.

C. Discussion of caveats

1. Energy feeding problem

High efficiency η of the collisional Penrose process
means by definition (50) that we can gain much more
energy than we invest. However, despite a high value of η
the process may be “inefficient” if the invested energy itself
needs to be high in order for the process to occur. We call
this the “energy feeding” problem. There are two different

sources of this problem for particles moving along the axis.
One of them was already mentioned in the discussion
below Eq. (37): for the extremal Kerr-Newman spacetime
with a small value of charge (jQj ≪ M), only highly
relativistic critical particles can approach r ¼ M along
the axis. This does not depend on the nature of the particles.
In contrast, the second source of the energy feeding

problem comes into play only if we consider specifically
processes involving microscopic particles that exhibit
charge quantization. For all those particles (known in
nature) their specific charge jq̃j ≫ 1. However, the specific
energy of (nearly) critical particles is proportional to their
specific charge (approximately) through relation (7), or, in
particular, by relation (34) for Kerr-Newman black holes.
Therefore, such microscopic particles need to be highly
relativistic (ε ≫ 1, i.e., E ≫ m) in order to be (nearly)
critical. Since the elementary charge is just 1 order of
magnitude short of the Planck mass, they would actually
have to be extremely relativistic. This issue was previously
noted in [22], and it led the authors to introduce macro-
scopic objects acting as critical particles, which would
make ε ∼ 1 possible [note ε > 1 due to (37)].

2. Neutral mass problem

Although energy extraction by processes involving
critical microscopic particles is already unfeasible due to
the severe energy feeding problem, there are even further
restrictions due to particle physics. Since the energy of a
(nearly) critical particle is proportional to its charge, we
need jq3j > jq1j in order to have E3 > E1. For microscopic
particles, this means that we need to turn to interactions
involving atomic nuclei. (Let us note that such processes
would actually not benefit from high ECM due to a
relatively low binding energy of nuclei, but here we focus
on kinematic aspects.) One of the further problems was
noted previously in [15]; stable nuclei have values of charge
in a range that spans just 2 orders of magnitude. Thus, E3

cannot exceed E1 by more than a factor of 102. However,
the problems become much deeper, if we focus specifically
on the BSW-type mechanism. The mass of stable nuclei
generally increases faster than their charge due to an
increasing share of neutrons (hence “neutral mass”).
Thus, for our model process with q3 > q1 > 0 and
m3 > m1, it will also be more common than the opposite
to have7

q3
q1

<
m3

m1

<
m2

3

m2
1

: ð56Þ

Now we should check whether this inequality is consistent
with particle 3 escaping. The problem again stems from the

7Inequality (56) could be the “rule of thumb” even for
macroscopic particles, as it is harder to hold together larger
amounts of charge.
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fact that critical microscopic particles are to be immensely
relativistic. (At this point we exclude the possibility
Q ≪ M, i.e., α ≪ 1, which is revisited in Sec. IV C 3.)
Namely, for E1 ≫ m1 and σ1 ¼ −1 parameter A1 (49)

will be very small; it can be approximated as

A1 ≐
m2

1

2αE1

þ � � � : ð57Þ

Given this, parameter μ (54) gets large, and it is approxi-
mated as

μ ≈ E1

m2
3

m2
1

þ � � � : ð58Þ

Since certainly A1 < m1 and we assumed m1 < m3, it will
hold that m3 > A1. Thus, our nuclear reaction will occur in
the IN regime. Condition E3 > μ, which is required for the
escape of particle 3 in this regime (cf. Table I), due to (58)
means

E3

E1

>
m2

3

m2
1

: ð59Þ

As both energies are (approximately) proportional to the
respective charges by the same factor, this translates to the
relation

q3
q1

>
m2

3

m2
1

: ð60Þ

However, this is the inequality opposite to (56). Therefore,
we conclude that in our “common nuclear process,” particle
3 will be produced in the IN− regime (E3 < μ) and it will
fall into the black hole. Condition (60) can be satisfied, e.g.,
with specific reactions with q3 > q1 > 0, m3 < m1, which
are in principle also possible. Nevertheless, we see that
there is a strong limitation on the BSW-type processes with
microscopic particles.
However, if we turn to the Schnittman-type kinematics,

the neutral mass problem is circumvented. In particular, for
E1 ≫ m1 and σ1 ¼ þ1, parameter A1 is large, namely

A1 ≈ 2αE1 þ � � � : ð61Þ

Hence we infer m3 < A1 and particle 3 to be produced in
the OUT regime. Parameter μ will be large again, but this
time dominated by the other term than before, i.e.,

μ ≈ E1 þ � � � : ð62Þ

Since we assumed q3 > q1 > 0, and hence E3 > E1,
particle 3 will be produced in the OUTþ regime and will
indeed escape.

3. Specific charge cutoff

The problems arising from the fact that critical micro-
scopic particles have to be immensely relativistic can be
reduced for the extremal Kerr-Newman solution if we
consider Q very small (jQj ≪ M). However, we cannot
decrease the required energy arbitrarily, because we run
into the other source of the energy feeding problem, which
is the proportionality α ∼Q2. Specific charges for all nuclei
are roughly the same (of the same order), say q̃nucl. Because
of the critical condition (34), all critical nuclei will also
have values of specific energy of the same order. Thus,
there will be a distinct transition.
Let us first consider a general value of q̃. Using (36) we

can define a value Q̃min of the specific charge of the black
hole Q̃≡ Q

M, such that for Q̃ sgn q̃ < Q̃min all the critical
particles with the given value of q̃ would be forbidden to
approach r ¼ M. Using (34) or (37) we can also evaluate a
corresponding specific energy εmin. We obtain

Q̃min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ jq̃j23

s
; εmin ¼

jq̃j13ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jq̃j23

q
: ð63Þ

However, for critical nuclei with q̃nucl ≫ 1, we can use
approximate expressions

Q̃min ≐
ffiffiffi
2

pffiffiffiffiffiffiffiffiffi
q̃nucl3

p ; εmin ≈
ðq̃nuclÞ23ffiffiffi

2
p : ð64Þ

Since q̃nucl is around 5 × 1017, we get Q̃min of order 10−6

and εmin around 5 × 1011. Therefore, for extremal Kerr-
Newman black holes with Q̃ ¼ Q̃min, the energy feeding
problem for microscopic particles is reduced by 6 orders
of magnitude as compared with the extremal Reissner-
Nordström case (where εcr¼ q̃nucl). Nevertheless, εmin≫1
in any case. Thus, we can never have nonrelativistic critical
microscopic particles approaching r ¼ M along the axis of
an extremal Kerr-Newman black hole. This is very different
from the “mega-BSW” effect described in Sec. V E of [21]
for equatorial charged critical particles.
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APPENDIX: DERIVATIVES OF W AND V�

Since the relation (5) among W and V� is the same for
both equatorial and axial motion, we can build on what was
derived in [21] (in particular in the Appendix therein). Let
us start with Eq. (34) of [21], which states

∂
2W
∂r2

����
r¼r0;ε¼εcr

¼ 2

�
∂Vþ
∂r

∂V−

∂r

�����
r¼r0

: ðA1Þ

Taking the third radial derivative of (5) above, we get

∂
3W
∂r3

¼ −
∂
3Vþ
∂r3

ðε − V−Þ þ 3
∂
2Vþ
∂r2

∂V−

∂r

þ 3
∂Vþ
∂r

∂
2V−

∂r2
− ðε − VþÞ

∂
3V−

∂r3
: ðA2Þ

If we evaluate this relation for critical particles (ε ¼ εcr) at the
radius of the degenerate horizon (where Vþ ¼ V− ¼ εcr), it
simplifies to

∂
3W
∂r3

����
r¼r0;ε¼εcr

¼ 3

�
∂
2Vþ
∂r2

∂V−

∂r
þ ∂Vþ

∂r
∂
2V−

∂r2

�����
r¼r0

: ðA3Þ

Relations (A1) and (A3) have implications valid for both the
equatorial and the axial motion, some of which can be further
simplified in the axial case.

1. General case

Because Vþ > V− outside the horizon, though Vþ ¼ V−
on the horizon, it must hold that

∂Vþ
∂r

����
r¼r0

>
∂V−

∂r

����
r¼r0

: ðA4Þ

Using this with (A1), we arrive at the following two logical
statements:

∂
2W
∂r2

����
r¼r0;ε¼εcr

< 0⇔

�
∂Vþ
∂r

����
r¼r0

> 0

�
&

�
∂V−

∂r

����
r¼r0

< 0

�
;

ðA5Þ

∂
2W
∂r2

����
r¼r0;ε¼εcr

>0⇔

�
∂Vþ
∂r

����
r¼r0

<0

�
or

�
∂V−

∂r

����
r¼r0

>0

�
:

ðA6Þ

It is easy to check that the two variants in the second
statement correspond to the critical particle having pt > 0
or pt < 0, respectively.8 Thus, with restriction to pt > 0,
Eq. (21) follows.
Using (A4) also with (A3), we get a statement analogous

to (21) for class II critical particles:

ε¼ εcr &
∂Vþ
∂r

����
r¼r0

¼ 0

⇒

�
∂
2W
∂r2

����
r¼r0

¼ 0

�
&

�
sgn

∂
3W
∂r3

����
r¼r0

¼−sgn
∂
2Vþ
∂r2

����
r¼r0

�
:

ðA7Þ

2. Axial case

For motion along the axis (A7) can be further refined.
From definition (6), we can calculate

∂V−

∂r

����
r¼r0;ϑ¼0

¼ −
�
q̃
∂At

∂r
þ Ñ

�����
r¼r0;ϑ¼0

: ðA8Þ

Using the value of q̃ for class II critical particles (25),
we get

∂V−

∂r

����
r¼r0;ϑ¼0

¼ −2Ñjr¼r0;ϑ¼0; ðA9Þ

and if we plug the result into (A3), we arrive at (22).
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